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Abstract

Despite its importance for γ-aminobutyric acid (GABA) inhibition and involvement in 

neurodevelopmental disease, the regulatory mechanisms of the K+/Cl− co-transporter KCC2 

(encoded by SLC12A5) during maturation of the central nervous system (CNS) are not entirely 
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understood. Here, we applied quantitative phosphoproteomics to systematically map sites of 

KCC2 phosphorylation during CNS development in the mouse. KCC2 phosphorylation at Thr906 

and Thr1007, which inhibits KCC2 activity, underwent dephosphorylation in parallel with the 

GABA excitatory-inhibitory sequence in vivo. Knock-in mice expressing the homozygous 

phospho-mimetic KCC2 mutations T906E/T1007E (Kcc2E/E), which prevented the normal 

developmentally regulated dephosphorylation of these sites, exhibited early postnatal death from 

respiratory arrest and a marked absence of cervical spinal neuron respiratory discharges. Kcc2E/E 

mice also displayed disrupted lumbar spinal neuron locomotor rhythmogenesis and touch-evoked 

status epilepticus associated with markedly impaired KCC2-dependent Cl− extrusion. These data 

identify a previously unknown phosphorylation-dependent KCC2 regulatory mechanism during 

CNS development that is essential for dynamic GABA-mediated inhibition and survival.

INTRODUCTION

Type A GABA receptors (GABAARs) are ligand-gated anion channels that allow 

bidirectional flux of Cl− ions. The direction of net Cl− flux, governed by the transmembrane 

electrochemical gradient for Cl−, is determined by regulation of the intracellular 

concentration of Cl− ions [Cl−]i and the post-synaptic membrane potential (1). GABAAR 

activation in the adult CNS triggers hyperpolarizing phasic and tonic inhibitory 

neurotransmission. In contrast, GABAAR activation in the immature CNS elicits inhibitory 

shunting of membrane conductance or even increased membrane excitability, which plays an 

important role in brain development via effects on neuronal proliferation, migration, and 

synaptogenesis (2–7).

The developmental “switch” in GABA function from excitatory to inhibitory has been 

attributed to a transition from the immature neuronal [Cl−]i of ~15 to 20 mM to the mature 

neuronal value of ~4 mM (8). This transition requires increased neuronal Cl− extrusion 

dependent on the K-Cl cotransporter KCC2 (SLC12A5), beginning in rodents during the 

first postnatal week and progressing through the brain in a caudal-to-rostral direction (8–10). 

KCC2-null mice with increased levels of neuronal [Cl−]i die perinatally and exhibit 

anomalous GABA-mediated neuronal excitation (11). Neuronal hyperexcitability induced by 

KCC2 hypofunction promotes epilepsy, autism, and other neurodevelopmental pathologies 

(12).

The critical role of KCC2 in GABA signaling and neurological disease has generated 

considerable interest in its mechanisms of regulation. Although the total abundance of 

KCC2 increases along with the GABA excitation-to-inhibition transition, the relative 

contributions to the developmental increase in KCC2 activity of altered KCC2 polypeptide 

abundance and altered regulation of KCC2 activity remain unclear. Moreover, some neurons 

of the brainstem, spinal cord, and suprachiasmatic nucleus dynamically modulate [Cl−]i such 

that GABA rhythmogenically cycles from excitatory to inhibitory effects in respiratory (13), 

locomotor (14), and circadian networks (15).

KCC2 phosphorylation alters its activity, regulates neuronal [Cl−]i, and strongly impacts the 

GABA reversal potential (EGABA) (8, 16–22). Nonetheless, the sites of regulated 

phosphorylation in KCC2 have not been systematically identified nor functionally examined 
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during CNS development in vivo. Among identified phospho-sites, the dual phosphorylation 

of Thr906/Thr1007 (“pThr906/pThr1007”) is a particularly potent switch of KCC2 activity in 

vitro (19, 23–25). Indeed, constitutive dephosphorylation of KCC2 Thr906/Thr1007, achieved 

via alanine mutagenesis at these sites, potently stimulates KCC2 activity > 10-fold (24). 

KCC2 pThr906/pThr1007 maintains the GABA-dependent depolarization of cultured 

immature neurons by reducing neuronal Cl− extrusion capacity (24, 26, 27). However, the 

function of the KCC2 pThr906/pThr1007 phospho-switch has not been examined during CNS 

development in vivo.

In this study, we tested the hypothesis that regulated phosphorylation of KCC2, specifically 

at the WNK/SPAK-kinase-regulated Thr906/Thr1007 phosphorylation sites of KCC2, is 

essential for normal CNS function and organismal survival. To test this hypothesis, we 

performed unbiased quantitative phospho-proteomics to systematically map sites of KCC2 

phosphorylation during development. We also performed detailed biochemical and 

electrophysiological characterization of a novel mouse model of KCC2 that mimics 

constitutive phosphorylation at pThr906/pThr1007 through glutamic acid mutagenesis.

RESULTS

Systematic identification of KCC2 phosphorylation sites during development

KCC2 expression is limited to neurons in the central nervous system (CNS) (28). To map 

potential sites of KCC2-regulated phosphorylation in vivo during CNS development, we 

immunoprecipitated endogenous KCC2 from E18.5, P0, P20, and adult mouse brains using 

specific anti-KCC2 antibodies, and fractionated the purified immune complexes by sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (see Methods; Fig. 1A). 

KCC2 samples were then digested with trypsin, and the resulting peptides identified by 

liquid chromatography and dual mass spectroscopy (LC-MS/MS) (Fig. 1B). Phospho 

peptides and specific phosphorylation sites were assigned by precise match of predicted and 

observed m/z ratios of precursor ions and their product fragment ions using MaxQuant (29, 

30).

Eighteen independent KCC2 phosphorylation sites were reproducibly identified at all time 

points in three independent experiments (Fig. 1C and table S1). Six sites mapped to the 

KCC2 intracellular amino (N)-terminal domain, three were located in the large KCC2 

extracellular loop, and nine were positioned in the KCC2 intracellular carboxyl-terminal 

domain. Sites identified (numbering standardized to the human KCC2b isoform herein) 

included Thr906 and Thr1007 phosphorylated by the WNK-SPAK kinases in vitro (25); 

Ser940 phosphorylated by PKA and PKC in vitro (21, 31); and Thr6 phosphorylated by 

SPAK/OSR1 in vitro (25). Candidate kinases for other identified sites in the KCC2 N-

terminus included PKA, PKC, CAMK2, CDK5, and GSK3 (table S2). The phosphorylation 

sites at Ser25, Ser31, Ser937, Ser1025, and Ser1026 did not match defined kinase specificity 

motifs. Three previously unknown phosphorylation sites detected in KCC2, Thr8, Thr799 and 

Ser812, were not previously annotated in the mouse PhosphoSitePlus database (32).

Potential developmentally regulated phospho-sites were determined by label-free 

quantitation based on normalized peptide intensities (30). Among the 18 distinct KCC2 
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phosphorylation sites (table S1), phosphorylation at 8 sites changed significantly during 

development, as assessed at E18.5, P0, P20, and adult (Fig. 1D). Hierarchical clustering 

analysis showed two distinct clusters of developmentally regulated phosphorylation sites 

(Fig. 1D). In the first cluster, Ser932, Thr999, and Ser1026 showed increased phosphorylation 

during development. A second cluster containing Thr6, Thr8, Thr906, Ser1022, and Ser1025 

showed decreased phosphorylation during development. Among all identified sites, Thr906 

showed the greatest reduction in developmental phosphorylation among all KCC2 

phosphorylation sites (>65% reduction in adult brain vs. E18.5 brain; Fig. 1D).

KCC2 phosphorylation sites Thr906 and Thr1007 were of particular interest, as these KCC2 

residues are highly phosphorylated during early CNS development, are evolutionarily 

conserved from frogs to humans (fig. S1, A and B) and all human KCC paralogs (fig. S1C), 

and are critical regulators of KCC2 activity (23). We therefore assessed KCC2 

phosphorylation at these sites in the developing brain by anti-KCC2 immunoblot of 

immunoprecipitates with phospho-specific antibodies recognizing p-Thr906 and p-Thr1007, 

as described previously (19, 25) (Fig. 1E). In wild-type (WT) mouse brains, KCC2 

phosphorylation at Thr906 and Thr1007 decreased >95% during CNS development from 

E18.5 to adult, in parallel with a >340% increased KCC2 abundance (Fig. 1E) (24).

An in vivo genetic model to prevent the developmental dephosphorylation of KCC2 at 
Thr906/Thr1007

To investigate the in vivo role of regulated KCC2 pThr906/pThr1007 during CNS 

development, we used homologous recombination to generate knock-in mice expressing the 

dual KCC2 glutamic acid substitutions T906E/T1007E (“T906E/T1007E”, Fig. 2A), which 

antagonizes KCC2-dependent Cl− extrusion from neuronal cells in vitro by mimicking 

inhibitory phosphorylation at these sites (24, 27, 33). Southern blot analysis (fig. S2A) and 

DNA sequencing confirmed the presence of the T906E and T1007E mutations at their 

respective codons in KCC2 exons 22 and 24 (Fig. 2B).

Heterozygous KCC2 T906E/T1007E+/wt mutants were viable, fertile, and survived to 

adulthood without apparent abnormalities, as true also for heterozygous and homozygous 

KCC2 T906A/T1007A mice (34). Among progeny from T906E/T1007E+/wt intercrosses, 

homozygous T906E/T1007E+/+ mutant mice (herein termed “Kcc2E/E” mice) developed in 

utero at the expected Mendelian ratio, whereas all Kcc2E/E died within 4 to 12 hours after 

birth due to spontaneous cessation of regular respiratory rhythm (Fig. 2C).

Pregnant mice were therefore subjected to Caesarian section at gestational day 18.5 (E18.5). 

WT and heterozygous pups consistently survived this early delivery and exhibited similar 

postnatal courses. Kcc2E/E neonates were grossly normal, though 11.3% lower in body 

weight than WT or T906E/T1007E+/wt mice (fig. S2B). P0 Kcc2E/E mice had anatomically 

and histologically normal brain, heart, lungs, and other organs (Fig. 2D and fig. S3). 

Whereas T906E/T1007E+/wt and Kcc2E/E brain tissues exhibited the expected decreases in 

anti-KCC2 pThr906 and pThr1007 phospho-specific antibody immuno-reactivity (27) (Fig. 2E 

and fig. S2C), the total polypeptide abundances of KCC2, NKCC1, and the NKCC1/KCC2 

regulatory kinases WNK1/SPAK were unchanged (Fig. 2E and fig. S2C).
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Touch-provoked recurrent generalized seizures in Kcc2E/E mice

Reduction of KCC2 activity increases neuronal [Cl−]i, compromises GABAergic inhibition, 

and promotes spontaneous, recurrent generalized seizures in mice and humans (35). 

Strikingly, Kcc2E/E, but not WT or T906E/T1007E+/wt, mice exhibited severe, touch-

provoked, recurrent generalized seizures triggered by (i) mild brush stroke (Fig. 2, F to H, 

and movie S1), (ii) tail pinch (Fig. 2, I to K, and movie S2), and (iii) tail suspension (Fig. 2, 

L to N, and movie S3). Brush stroke induced generalized tonic-clonic seizures of >55s 

duration, including tonic convulsions with or without opisthotonus (Fig. 2, F to H). Tail 

pinch provoked primary or secondary generalized tonic-clonic seizures of >32s duration, and 

tonic convulsions with or without opisthotonus (Fig. 2, I to K). Tail suspension uniformly 

elicited severe generalized tonic primary or secondary convulsions with opisthotonus (Fig. 

2L–N). Kcc2E/E mice also exhibited spontaneous seizures (movie S4), increasing in 

frequency before death.

An anomalous neuronal distribution with normal dendritic spine morphology in Kcc2E/E 

brains

KCC2-mediated K+-Cl− cotransport is required for GABA-dependent neuronal proliferation 

and migration (36). We therefore examined the neuronal distribution (reflecting both 

neuronal proliferation and migration) in the developing Kcc2E/E mouse brain by labeling 

neurons with 5-ethynyl-2´-deoxyuridine (EdU) at E14.5, followed by counting at E18.5 (Fig. 

3A). Analysis revealed fewer EdU-labeled neurons in the Kcc2E/E septum, greater numbers 

of EdU-labeled neurons in preoptic areas (POA), and unchanged numbers of EdU-labeled 

neurons in caudate putamen and deeper neocortex (Fig. 3B).

Independent of its Cl− transport function, KCC2 regulates dendritic spine maturation and 

excitatory synapse development via structural interactions between KCC2 and the spine 

cytoskeleton (37). We therefore assessed neuronal (and dendritic spine) morphology in 

primary cultures of cortical neurons from Kcc2E/E mice. Soma size and shape, dendritic 

arborization, and spine morphogenesis were similar in day 26 primary cultured WT and 

Kcc2E/E neurons (Fig. 3C).

Impaired GABA-dependent Cl− extrusion capacity of Kcc2E/E neurons

During development, KCC2 becomes the dominant mediator of Cl− extrusion in CNS 

neurons (8). Deficits in KCC2-mediated Cl− extrusion result in increased [Cl−]i, and this 

facilitates pathological GABAAR-mediated depolarizing responses (38). The abundance of 

KCC2 at P0 is greater in the spinal cord than in the neocortex or hippocampus (17, 18, 20, 

39). Therefore, we applied the gramicidin-perforated patch-clamp technique in ventral spinal 

cord neurons and in acute lumber spinal cord slices from P0 WT and Kcc2E/E mice (Fig. 

4A) to measure the GABA reversal potential (EGABA), determined primarily by the Cl− 

equilibrium potential (reflecting [Cl−]i (9, 40) and an index of KCC2 activity) (11). EGABA 

was indistinguishable in WT and Kcc2E/E mice spinal cord neurons (Fig. 4B). To measure 

efficacy of KCC2 mediated Cl− extrusion, we performed transient Cl− loading by whole-cell 

patch-clamp recording using a low Cl− (12 mM) pipette solution. Ventral spinal cord 

neurons Cl−-loaded by GABA during depolarizing voltage-clamp underwent current clamp 

recording of GABA responses at 20 s intervals over a 5 min period (41). In Cl−-loaded 
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conditions, GABA-evoked potentials in WT spinal cord neurons increased >4-fold (Fig. 4C), 

reflecting increased [Cl−]i, then rapidly relaxed to initial amplitudes, consistent with rapid 

KCC2-dependent Cl− extrusion (Fig. 4C). Whereas WT peak potentials had fully recovered 

to initial values within 100 s after prolonged GABA exposure, Kcc2E/E peak potentials 

remained >20% above initial values (Fig. 4D).

Lack in spontaneous respiratory discharge recordings from ventral cervical spinal cord 
neurons of Kcc2E/E mice

Because Kcc2E/E mice died in respiratory distress shortly after birth, we examined the 

effects of the KCC2 T906E/T1007E mutation on spontaneous respiratory discharge. 

Respiratory discharges were recorded from C4 or C5 ventral cervical spinal cord neurons in 

brainstem-spinal cord preparations (42); for further details, see the Methods). Respiratory 

discharges were indistinguishable in WT and heterozygous T906E/T1007E+/wt mice (Fig. 4, 

E and F). In contrast, spontaneous respiratory discharges were essentially absent in almost 

all homozygous Kcc2E/E mice (Fig. 4, E and F). A single Kcc2E/E mouse showed abnormal 

bursting activity (21 min−1) and one other Kcc2E/E mouse showed infrequent breathing (1 

min−1). These results suggest that the abnormal respiratory patterns preceding death in 

Kcc2E/E mice result from aberrant spontaneous respiratory discharges in cervical spinal cord 

neurons.

Altered locomotor rhythm recordings from lumbar spinal cord ventral roots of Kcc2E/E 

mice

Analogous to the role of GABA in respiratory rhythmogenesis, the strength of GABA 

inhibition is an essential factor for normal locomotor rhythm (43, 44). As impaired KCC2-

dependent Cl− extrusion was observed in ventral spinal cord neurons of Kcc2E/E mice (Fig. 

4, C and D), we assessed the effect of in vivo KCC2 T906E/T1007E mutation on recorded 

rhythmic motor activity from L2 ventral roots (Fig. 4G). Perfusion of 5-hydroxytryptamine 

(5-HT) induced rhythmic bursts in both WT and T906E/T1007E+/wt mice, as also previously 

described (45, 46). In contrast, although locomotor rhythm was observed in Kcc2E/E mice, 

the frequency of locomotor rhythm was significantly lower in Kcc2E/E mice than in WT and 

T906E/T1007E+/wt heterozygous mice (Fig. 4H). The coefficient of variation of the 

interburst intervals was also significantly lower in Kcc2E/E mice than in WT and T906E/
T1007E+/wt mice (Fig. 4I). These results confirm that regulated KCC2 Thr906/Thr1007 

phosphorylation is essential for generation of normal locomotor rhythm.

DISCUSSION

We have shown the inhibitory phosphorylation of the WNK/SPAK-regulated Thr906/Thr1007 

motif in KCC2 is significantly reduced during the course of CNS development. Second, 

regulated KCC2 Thr906/Thr1007 phosphorylation is essential for mouse survival; 

antagonizing the normal developmental down-regulation of KCC2 Thr906/Thr1007 via 

homozygous phospho-mimetic mutagenesis of these sites causes respiratory arrest and early 

post-natal death. Third, corroborating and extending previous in vitro findings (24, 26), 

phospho-mimetic mutation of Thr906/Thr1007 in vivo prevents KCC2 from dynamically 

increasing its Cl− extrusion capacity (such as in response to a Cl− load). This results in an 
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imbalance of neuronal excitation and inhibition that leads to impaired rhythmogenesis in 

respiratory and locomotor networks, accompanied by profound neuronal hyperexcitability 

manifesting as touch-evoked generalized seizures. Fourth, Kcc2E/E mice exhibit anomalous 

neuronal distribution with normal dendritic spine morphology, consistent with the known 

importance of KCC2 function on neuronal proliferation and migration (47), and the activity-

independent role of KCC2 in dendrite spine maturation (37, 48).

KCC2 mRNA expression in mice starts as early as E10.5 in spinal cord and brainstem, 

which exhibit the earliest development of KCC2-dependent Cl− extrusion. Mouse KCC2 

transcripts are expressed in developing motoneurons in spinal cord ventral horn and in 

medulla as early as E12.5 (11) and in sensory nuclei at E15.5, with progressively increasing 

expression during embryonic development (17). After E15.5, NKCC1 abundance decreases 

in motoneurons while KCC2 functional expression increases and contributes to emergence 

of a more negative ECl, so that GABA and glycine function as inhibitory neurotransmitters 

in the majority of mouse spinal motoneurons by E17.5 (49). This switch may correspond to 

the period at which locomotor networks start to generate alternating flexor and extensor 

motor activities, concomitant to network expression of left-right alternation, indicative of 

functional network inhibition (18, 50). Inhibitory spinal interneurons are essential for 

generation of locomotor rhythms (44). Consistent with the importance of KCC2 Thr906/

Thr1007 phosphorylation in the developmental regulation of KCC2-dependent Cl− 

homeostasis, spinal cord neurons of Kcc2E/E mice exhibited a significantly impaired Cl− 

extrusion capacity compared to their counterparts. The significantly impaired (slow) 

locomotor rhythms in Kcc2E/E mice suggest that regulated phosphorylation of KCC2 at 

Thr906/Thr1007 is essential for the generation of locomotor rhythm.

GABA also critically regulates respiratory rhythmogenesis and motor output patterning (51–

54) and plays essential roles in termination of both inspiratory and expiratory phases of 

respiration (55–59). Application of the GABAAR agonist, muscimol, increased respiration-

related rhythmic activities in an E17 rat brainstem-spinal cord preparation but decreased 

those activities in an E20 preparation (60), suggesting that GABA switches from facilitating 

to inhibiting respiration-related rhythmic activities during development. This GABA-

induced switch in respiration-related rhythmic frequency has been attributed to a 

developmental decrease in [Cl−]i (50). We showed that Kcc2E/E mice died from respiratory 

distress within hours after birth and lacked spontaneous respiratory discharge recordings 

from cervical ventral roots. These results suggest that KCC2-dependent Cl− extrusion 

capacity is essential for spontaneous respiratory discharges as previously observed (11), and 

that KCC2 Thr906/Thr1007 phosphorylation is likely essential for developmental switches 

in GABA-regulated rhythmic respiration. This is compatible with the previous observation 

that application of a KCC2 inhibitor significantly decreased the frequency of respiration-

related rhythmic activities of mice at P1 (61).

Kcc2E/E mice showed normal organogenesis and the developmental up-regulation of KCC2 

total protein abundance. However, Kcc2E/E mouse brains exhibited significant abnormalities 

in neuronal distribution in the septum, hypothalamus, hippocampus, and cortex. These 

results suggest that regulated KCC2 Thr906/Thr1007 phosphorylation is essential for neuronal 

proliferation and/or migration in developing forebrain. Considering that KCC2 is absent but 
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NKCC1 is highly expressed in the neuroepithelium (20, 62), altered distributions of 

proliferating cells might be due to disturbed migration rather than to altered proliferation. 

GABA is involved in radial and tangential migration of cortical cells. GABAA receptor 

activation is a stop signal for radial migration in the cortical plate. In contrast, depolarizing 

GABA promotes tangential migration of interneurons, whereas increased KCC2 expression 

reduces interneuron motility (63). Depolarizing GABA responses are required in immature 

migrating cells, because voltage-dependent Ca2+ channel-mediated Ca2+ signaling is closely 

coupled with migration. Thus, perturbation of immature Cl− homeostasis in Kcc2E/E mice 

could result in anomalous migration. Indeed, overexpression of mutant KCC2 has been 

shown to arrest radial migration (26).

Status epilepticus (SE) is defined as a continuous seizure of long duration, or recurrent 

seizures occurring in close temporal proximity without full inter-ictal recovery. An 

imbalance of excitatory and inhibitory neurotransmission that results in hyperexcitation of 

neural network activity plays a critical role in generation of SE (68, 69). GABAergic 

mechanisms are critical in terminating seizures (70–73). Susceptibility to SE is higher in 

neonates than in adults likely reflecting depolarizing GABA functions secondary to KCC2 

functional immaturity. An acute Cl− overload due to intense neuronal activity would also 

reduce efficacy of GABAergic inhibition (70). In this setting, KCC2-mediated Cl− extrusion 

is considered crucial for preventing rundown of GABAergic inhibition.

Gramicidin patch-clamp measurements of E18.5 neurons in WT and Kcc2E/E mice showed 

equivalent EGABA, indicating that the transporter activity was not completely eliminated in 

Kcc2E/E mice. Thus, resting [Cl−]i in the absence of increased network activity, particularly 

GABAergic interneuron activity, was not significantly altered in Kcc2E/E mice. However, an 

impairment of neuronal Cl− extrusion velocity became evident after acute Cl− loading. 

Previous reports showed that strong activation of GABAergic input can substantially 

increase [Cl−]i, indicating that Cl− extrusion capacity of KCC2 is transiently overwhelmed 

by acute massive Cl− influx (70, 74, 75). Thus, rapid KCC2-mediated Cl− extrusion is 

required for recovery from such acute increases in [Cl−]i. The Cl− extrusion velocity of 

Kcc2E/E might be lower than that of WT, explaining our observed increase in time required 

to reverse [Cl−]i after its transient GABA-induced increase.

KCC2 is important not only for maintenance of static [Cl−]i but also for recovery from 

transient increases in [Cl−]i that occur during the course of repeated inhibitory inputs. 

Indeed, mice with mutations that prevent KCC2 Ser940 phosphorylation (S940A) exhibit 

EGABA comparable to that of WT, but show a deficit in Cl− extrusion after Cl− loading, with 

increased susceptibility to kainate-induced seizures (16). Kcc2E/E mice are similarly prone 

to stimulus-evoked seizures. All Kcc2E/E mice exhibited SE-like tonic spasms provoked by 

mild sensory stimulation such as brushing (tactile), tail pinch (pain), and tail-suspension 

(proprioceptive and vestibular). Thus, “robust” GABAergic inhibition is required to prevent 

recruitment of excitation culminating in seizure propagation and extending to development 

of SE. Therefore, the impairment in Cl− extrusion resulting from mild KCC2 hypofunction 

in Kcc2E/E mice contributes to epileptogenesis induced by activation of afferent pathways 

that include GABAergic inputs. Indeed, heterologous expression of two KCC2 mutants, 

causative for epilepsy of infancy with migrating focal seizures mimicking the patient status, 
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resulted in [Cl−]i significantly higher than that associated with wild type KCC2, but lower 

than in the absence of KCC2. These findings clearly indicate that even mildly impaired 

neuronal Cl− extrusion can significantly compromise the robustness of GABAergic 

inhibition in SE (40).

Our findings are also consistent with the recent demonstration that genetic mutation of 

KCC2 Thr906/Thr1007 to alanine (Ala), modeling constitutive dephosphorylation, elicited 

enhanced KCC2 activity while limiting onset and severity of seizures in homozygous mice 

(34). These KCC2 T906E(A)/T1007E(A) transgenic animals together represent valuable 

models to study the in vivo roles of regulated KCC2 phosphorylation and provide important 

genetic evidence that drug development targeting the KCC2 Thr906/Thr1007 phospho-switch 

is a compelling novel strategy to modulate GABA-mediated neurotransmission. Our study 

also identified several previously unknown candidate regulators of KCC2 Thr906, such as 

GSK3 kinase beta, implicated in regulation of the WNK-SPAK signaling pathway (76). Our 

ongoing, systematic identification of additional novel KCC2 phosphorylation sites, kinases, 

and kinase regulators should drive future work on the roles of regulated KCC2 

phosphorylation during CNS development and their contributions to GABA 

neurophysiology.

Materials and Methods

Immunoprecipitation and in-gel trypsin digestion of KCC2

Native mouse KCC2 was purified from brain lysates using 15μg rabbit anti-mouse KCC2 

(Cat# 07–432, Millipore) conjugated to protein A agarose. In all cases, protein extracts were 

mixed with immunoprecipitating antibodies and incubated at 4 °C for 4 hours. IPs were 

washed and the products fractionated by SDS-PAGE on 4–20% gradient gels. Proteins of the 

expected molecular weights were visualized by QC colloidal Coomassie blue staining. The 

destained protein band was excised into 1 mm3 pieces, which were then subjected to in-gel 

trypsin digestion. The gel pieces were washed with 1:1 acetonitrile (ACN):water followed 

by 1:1 ACN:NH4HCO3 (100 mM). Peptides produced by overnight trypsin digestion at 

37°C were lyophilized for further analysis (25).

LC-MS/MS and quantitative analysis of KCC2 phosphorylation sites

Protein digests were analyzed using liquid chromatography–mass spectrometry (LC-

MS/MS) on a Thermo Scientific Q Exactive Plus mass spectrometer equipped with a Waters 

nanoAcquity UPLC system utilizing a binary solvent system (Buffer A: 100% water, 0.1% 

formic acid; Buffer B: 100% acetonitrile, 0.1% formic acid). Trapping was performed at 5μl/

min, 97% Buffer A for 3 min using a Waters Symmetry® C18 180μm x 20mm trap column. 

Peptides were separated using an ACQUITY UPLC PST (BEH) C18 nanoACQUITY 

Column 1.7 μm, 75 μm x 250 mm (37°C) and eluted at 300 nl/min with the following 

gradient: 3% buffer B at initial conditions; 5%−30% B in 140 min; 30%−50% B in 15 min; 

and 50%−90% B for 5–15 min before returning to initial conditions. Full MS scan was 

acquired in profile mode over the 300–1,500 m/z scan range using 1 microscan, 70,000 

resolution, AGC target of 3E6, and a maximum injection time (IT) of 45 ms. Data-dependent 

MS/MS scan was acquired in centroid mode using 1 microscan, 17,500 resolution, AGC 

Wantanabe et al. Page 9

Sci Signal. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target of 1E5, a maximum IT of 100 ms; 1.7 m/z isolation window; normalized collision 

energy of 28; and 200–2,000 m/z scan range. Up to 20 MS/MS scans were collected per MS 

scan on species with an intensity threshold of 1E4, charge states +2 to +6, peptide match 

preferred, and dynamic exclusion set to 20 seconds.

Raw mass spectra were searched against the mouse UniProt protein database using 

Andromeda search algorithm within MaxQuant 1.5.8.3 software (29, 77). Carbamidomethyl 

(C) was selected as a fixed modification, while oxidation (M), acetylation (protein N-term) 

and phosphorylation (STY) were selected as variable modifications. Perseus software 1.5.8.5 

(78) was employed for quantitative analysis of the results from MaxQuant. The raw intensity 

of each phosphorylation site was normalized based on starting amount of proteins in the 

SDS-PAGE gel measured by densitometry. After removal of contaminant and reversed 

peptides, normalized phosphopeptide intensities were log2-transformed and filtered for valid 

values in 3 biological replicates from at least one developmental stage. Remaining missing 

values were imputed from the normal distribution. ANOVA with permutation-based FDR 

(control at 0.05) was used to detect significant differences in phosphopeptide levels between 

developmental stages. Hierarchical clustering of the z-score transformed abundance of the 

significant phosphorylation sites was performed using Euclidean distance and the average 

linkage method. Sequence logos around phosphorylated residues were created 

(PhosphoLogo) for subsets of significant sites based on profile plots (increasing or 

decreasing).

Construction of the Targeting Vector

The Kcc2 gene-targeting vector was constructed from 129Sv mouse genomic DNA 

(Genoway, Lyon, France). T906E and T1007E point mutations were inserted into exon 22 

and exon 24, respectively. A loxP-flanked Neomycin cassette was inserted in intron 22. 

Thr1007 corresponds to numbers in human and rat and the mutated residue in mouse is 

Thr1006. We mention this residue as Thr1007 in this paper to avoid confusion with previous 

studies performed using rat KCC2 and to be consistent with the mouse study by Moore et al. 
(2018).

Production of Kcc2 double point mutant targeted ES cell clones

Linearized targeting vector was transfected into 129Sv ES cells (genOway, Lyon, France) 

according to genOway’s electroporation procedures. PCR, Southern blot and sequence 

analysis of G-418 resistant ES clones revealed the recombined locus in 2 clones. PCR across 

the 5’ end of the targeted locus used a forward primer hybridizing upstream of the 5’ 

homology arm (5’- ATAGCGTTGGCTACCCGTGATATTGC-3’) and a reverse primer 

hybridizing within the Neomycin cassette (5’ 

AGGCTAGGCACAGGCTACATCCACAC-3’). Two Southern blot assays were hybridized 

with an internal and an external probe to assess recombination accuracy at the respective 5’ 

and 3’ ends of the Kcc2 locus. Absence of off-target mutations was confirmed by sequence 

analysis.
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Generation of chimeric mice and breeding scheme

Recombined ES cell clones microinjected into C57BL/6 blastocysts gave rise to male 

chimeras with significant ES cell contribution. These chimeras were bred with C57BL/6J 

mice expressing Cre-recombinase to produce the Kcc2 double point mutant heterozygous 

line lacking the Neomycin cassette. F1 genotyping was performed by PCR and Southern 

blot. PCR primers hybridizing upstream (5’-GTGGTTCGCCTATGGGATCTGCTACTC-3’) 

and down-stream (5’-AGACAAGGGTTCATGTAACAGACTCGCC-3’) of the Neomycin 

cassette allowed PCR identification of the 298 bp Kcc2 endogenous allele amplicon, the 

1946 bp double point mutant allele ampicon harboring the Neomycin cassette, and the 387 

bp double point mutant amplicon lacking the Neomycin cassette. Southern blot 

hybridization with an external probe allowed identification of the 14.1 kb wild-type allele 

and the 4.6 kb double point mutant allele.

Antibodies

The following antibodies were raised in sheep and affinity-purified on appropriate antigens 

by the Division of Signal Transduction Therapy Unit at the University of Dundee: KCC2A 

phospho-Thr 906 (SAYTYER(T)LMMEQRSRR [residues 975 – 989 of human KCC3A] 

corresponding to SAYTYEK(T)LVMEQRSQI [residues 899 – 915 of human KCC2A], 

S959C); KCC2A phospho-Thr 1007 (CYQEKVHM(T)WTKDKYM [residues 1032 – 1046 

of human KCC3A] corresponding to TDPEKVHL(T)WTKDKSVA [residues 998 – 1014 of 

human KCC2A], S961C); NKCC1 total antibody [residues 1–288 of human NKCC1, 

S022D]; SPAK-total antibody [full-length GST-tagged human SPAK protein, S551D]; 

SPAK/OSR1 (S-motif) phospho-Ser373/Ser325 antibody [367–379 of human SPAK, 

RRVPGS(S)GHLHKT, which is highly similar to residues 319–331 of human OSR1 in 

which the sequence is RRVPGS(S)GRLHKT, S670B). Pan-KCC2 antibody (residues 932–

1043 of human KCC2) was from NeuroMab (73–013). Anti (neuronal)-β-Tubulin III 

antibody was from Sigma-Aldrich (T8578). Horseradish peroxidase-coupled secondary 

antibodies used for immunoblotting were from Pierce. IgG for control immunoprecipitation 

experiments was affinity-purified from pre-immune serum using Protein G-Sepharose.

Buffers for Western Blots

Buffer A contained 50 mM Tris/HCl, pH 7.5 and 0.1mM EGTA. Lysis buffer was 50 mM 

Tris/HCl, pH 7.5, 1 mM EGTA, 1 mM EDTA, 50 mM sodium fluoride, 5 mM sodium 

pyrophosphate, 1 mM sodium orthovanadate, 1% (w/v) Triton-100, 0.27 M sucrose, 0.1% 

(v/v) 2-mercaptoethanol, and protease inhibitors (Roche complete protease inhibitor cocktail 

tablets, 1 tablet per 50 mL). Tris-buffered saline (TBS) -Tween buffer (TTBS) was Tris/HCl, 

pH 7.5, 0.15 M NaCl and 0.2% (v/v) Tween-20. SDS sample buffer was 1X NuPAGE LDS 

sample buffer (Invitrogen), containing 1% (v/v) 2-mercaptoethanol. Protein concentrations 

were determined following centrifugation of the lysate at 16,000 × g at 4 °C for 20 minutes 

using the Bradford method with bovine serum albumin as the standard.

Immunoprecipitation with phosphorylation site-specific antibodies

KCCs phosphorylated at KCC2 Thr906- and Thr1007-equivalent residues were 

immunoprecipitated from clarified hippocampal and cortical culture lysates (centrifuged at 

Wantanabe et al. Page 11

Sci Signal. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16,000 × g at 4 °C for 20 minutes) using phosphorylation site-specific antibody coupled to 

protein G–Sepharose(19). The phosphorylation site-specific antibody was coupled with 

protein-G–Sepharose at a ratio of 1 mg of antibody per 1 mL of beads in the presence of 20 

μg/mL lysate to which corresponding non-phosphorylated peptide had been added. Two mg 

clarified cell lysate were incubated with 15 μg antibody conjugated to 15 μL protein-G–

Sepharose for 2 hours at 4°C with gentle agitation. Beads were washed three times with 1 

mL of lysis buffer containing 0.15 M NaCl and twice with 1 mL of buffer A. Bound proteins 

were eluted with 1X LDS sample buffer.

Immunoblotting

Cell lysates (15 μg protein) in SDS sample buffer were subjected to electrophoresis on SDS-

polyacrylamide gels and transferred to nitrocellulose membranes. The membranes were 

incubated for 30 min with TTBS containing 5% (w/v) skim milk, then immunoblotted in 5% 

(w/v) skim milk in TTBS with indicated primary antibodies overnight at 4°C. Antibodies 

prepared in sheep were used at concentrations of 1–2 μg/ml. The incubation with 

phosphorylation site-specific sheep antibodies was performed in the presence of 10 μg/mL 

of the non-phosphorylated form of the phosphorylated peptide antigen used to raise the 

antibody. The blots were then washed six times with TTBS and incubated for 1 hour at room 

temperature with secondary HRP-conjugated antibodies diluted 5000-fold in 5% (w/v) skim 

milk in TTBS. After repeating the washing steps, signal was detected with enhanced 

chemiluminescence reagent. Immunoblots were developed using a film automatic processor 

(SRX-101; Konica Minolta Medical) and films were scanned at 600-dpi resolution 

(PowerLook 1000; UMAX). Figures were generated with Photoshop and Illustrator (Adobe). 

The relative densitometry intensities of immunoblot bands were determined with ImageJ 

software.

Seizure induction by mild physiological stimulation

Seizures were induced in P0 mice by brushing, tail pinch, or tail suspension: For brushing, 

backs were brushed ten times with a soft brush. For tail pinch, tails were pinched with 

tweezers. For tail suspension, mice were suspended upside-down from their tails. Responses 

to stimulation were video-recorded for 300s and durations and types of seizures analyzed. 

Seizure severity was classified according to the presence or absence of opisthotonus.

Patch-clamp recordings from spinal cord neurons

The Animal Care and Use Committee of Hamamatsu University School of Medicine 

approved all animal experiments. All efforts were made to minimize the number of animals 

used and minimize suffering. Under deep isoflurane anesthesia, lumber spinal cords were 

removed from P0–1 mice and embedded in 3% agarose. Coronal lumber spinal cord slices 

(350 μm) were made using the vibrating microtome 7000 (Campden) in a cold, oxygenated 

sucrose solution containing (in mM): 220 sucrose, 120 NaCl, 2.5 KCl, 0.5 CaCl2, 1.25 

NaH2PO4, 1 MgCl2, 26 NaHCO3, 30 glucose, 10 MgSO4 (pH 7.4). The slices were 

maintained in standard artificial cerebrospinal fluid (ACSF) consisting of (in mM) 120 

NaCl, 2 KCl, 1 KH2PO4, 1 MgCl2, 2 CaCl2, 26 NaHCO3, and 10 glucose (pH 7.4), and 

equilibrated with 95% O2 and 5% CO2 at room temperature prior to the recording. For 

recording, slices were transferred to a recording chamber, perfused with oxygenated ACSF 

Wantanabe et al. Page 12

Sci Signal. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the presence of tetrodotoxin (500 nM). Electrophysiological recordings were performed 

using a MultiClamp 700B amplifier (Molecular Devives) and pClamp9 software (Molecular 

Devives). Currents were filtered at 2 kHz, digitized at 10 kHz using DigiData1322A. The 

data were analyzed off-line using Clampfit9 (Molecular Devices).

To estimate the reversal potential of GABA-stimulated currents (EGABA) in ventral spinal 

cord neurons in acute lumber slices, we performed gramicidin-perforated patch-clamp 

recording to acquire GABA-evoked responses with native intracellular Cl− concentrations 

(9). Patch electrode pipettes (2–4 MΩ) were pulled from borosilicate glass capillaries on a 

P-97 puller (Sutter Instruments) and filled with pipette solution composed of 150 mM KCl 

and 10 mM HEPES (pH 7.2), supplemented with gramicidin. Gramicidin (Sigma-Aldrich) 

was dissolved in methanol to prepare a stock solution of 10 mg/ml, then diluted in pipette 

solution to a final concentration of 30 μg/ml.

Reversal potential of the 100 μM GABA-induced current was measured at −50 mV holding 

potential (Vh), and 0.5 s voltage ramps from −100 to 0 mV were applied before and during 

GABA application. EGABA was estimated by measuring the voltage at which the I-V 

relationships before and during GABA application intersected (40). 30 sec duration GABA 

puffs were applied through a patch pipette approximated to the soma, using an IM-300 

programmable microinjector (Narishige).

To measure the efficacy of KCC2 mediated Cl− extrusion, we performed transient Cl
−loading by whole-cell voltage-clamp recording. Patch electrodes were filled with pipette 

solution containing (in mM) 123 K gluconate, 2 MgCl2, 8 NaCl, 1 EGTA, 4 ATP, 0.3 GTP, 

and 10 HEPES (pH 7.2). Basal responses to 100 μM GABA puffs (3 psi and 3 sec duration) 

were recorded every 20 sec in current-clamp mode. Then, Cl− was loaded by exposing the 

neurons to GABA for 20 sec in voltage-clamp mode (Vh=0 mV). After Cl− loading, GABA 

responses were once again recorded every 20 sec in current-clamp mode to measure the rate 

of Cl− extrusion (41).

Extracellular recordings from spinal cord ventral roots

For recordings of respiratory discharges, brainstem-spinal cord block preparations from P0 

mice were isolated under deep isoflurane anesthesia (42). The brainstem was rostrally 

decerebrated between the VI cranial nerve roots and the lower border of the trapezoid body. 

The preparation was placed in a recording chamber and perfused continuously with the 

following modified ACSF (in mM): 124 NaCl, 5 KCl, 1.2 KH2PO4, 2.4 CaCl2, 1.3 MgSO4, 

26 NaHCO3, 30 glucose (pH 7.4), equilibrated with 95% O2 and 5% CO2. Respiratory 

motor neuron activity was recorded extracellularly with a glass suction electrode from the 

proximal end of ventral spinal roots at the cervical 4 (C4) or C5 level. The neuronal activity 

was recorded using a patch clamp amplifier (MultiClamp 700B) and pClamp9 software 

Neuronal activity (bursts per minute) was calculated from the mean burst activity over a 

period of 3 minutes.

For locomotor rhythm recording, spinal cord was isolated from P0–1 mice under deep 

isoflurane anesthesia (46). The spinal cord was dissected from the mid-cervical to sacral 

levels, placed in a recording chamber and perfused continuously with the following modified 
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ACSF (in mM): 118.4 NaCl, 4.69 KCl, 1.18 KH2PO4, 2.52 CaCl2, 1.25 MgSO4, 25 

NaHCO3, 11.1 glucose (pH 7.4), equilibrated with 95% O2 and 5% CO2. The locomotor 

rhythm (induced by perfusion with 20 μM 5-hydroxytryptamine (5-HT) (46)), was recorded 

from lumbar 2 (L2) ventral roots by suction electrode using a MultiClamp 700B amplifier. 

Data were sampled at 10 kHz, low-pass filtered at 3 kHz, high-pass filtered at 15 Hz and 

analyzed with pClamp9 software.

EdU staining

To label dividing cells, EdU (50 mg/kg/B.W., Invitrogen) was intraperitoneally injected into 

pregnant mice at E14.5. Under deep anesthesia with ketamine/xylazine, embryos were 

dissected at E18.5 and transcardially perfused with 4% paraformaldehyde. Brains were 

sectioned coronally (30 μm) and EdU was visualized using the Click-iT™ EdU Alexa Fluor 

488 Imaging Kit (Invitorogen) according to manufacturer’s protocol. Slices were imaged 

using a confocal laser-scanning microscope (FV1000-D; Olympus), and EdU positive cells 

were counted in coronal sections (3 sections of each animal) of the septum, preoptic area 

(POA), caudate-putamen (CPu), hippocampus (HP), and neocortex using Image J software 

(NIH).

Primary culture of neurons

E17.5 embryos (2 wild type and 2 homozygotes) were removed from pregnant mice under 

deep ketamine/xylazine anesthesia. Cortices were papain-dissociated for 20 min at 32 °C 

and plated on 10 mm microcoverglass (Matsunami) coated with polyethyleneimine in a 

Nunc 12-well dish (Thermo Fisher). One culture from each animal was maintained at 37 °C 

in Neurobasal medium (Invitrogen) supplemented with B-27 (Invitrogen), humidified 5% 

CO2 / 95% air. Neurons were transfected with pCMV-EGFP at DIV (days in vitro) 5 using 

Lipofectamine 3000 (Invitrogen) per manufacturer’s instructions. After 26 days in culture, 

neurons were fixed with 4% paraformaldehyde, permeabilized with 0.3% Triton X-100, then 

blocked with 1% normal goat serum and 2% bovine serum albumin. The neurons were then 

incubated overnight at 4°C with chicken anti-GFP antibody (1:500, Aves Labs). Goat anti-

chicken AlexaFluor-conjugated secondary antibody (1:300, Invitrogen) was then applied for 

2 h at room temperature. Immunofluorescent images were acquired by confocal laser-

scanning microscope (FV1000-D; Olympus). Spine density was analyzed from 2 randomly 

selected neurons in each culture dish from individual animals by using the FilamentTracer 

module (v. 8.1.2, Bitplane) within Imaris software. Spine formation by WT and homozygote 

neurons were compared by unpaired t-tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of KCC2 phosphorylation sites regulated during CNS development.
(A) Phosphorylation site mapping. KCC2 was immunopurified from mouse brain, 

fractionated by SDS-PAGE, and digested with trypsin. Blot is representative of lysates from 

19 mice. Schematic lays out how phospho-peptides were subjected to LC-MS/MS. (B) 
Representative MS/MS spectrum assignment of peptide TLVMEQR (pThr929; presented as 

human KCC2B pThr906). The phosphorylated precursor ion ( 478.71 +2) was selected and 

produced the fragment ion spectrum shown. Specific y and b fragment ions allowed 

unambiguous identification of the precursor peptide and its phosphorylation at Thr906 

(human numbering). Fragment ions with neutral loss of phosphate (-Pb/a1, -Pb/a2, -Pb/a3 

etc.) are indicated. (C) Identified KCC2 phosphorylation sites are numbered as in human 

KCC2B (GeneID 57468). All KCC2 peptides observed at various developmental stages are 

listed in table S1. (D) Heat map representation of significant KCC2 phosphorylation sites 

and their changes during development. Hierarchical clustering showed distinct pattern of 

KCC2 phosphorylation at these residues. Amino acid residue numbering is referenced to 
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isoform 1 of mouse Slc12a5 (UniProt: Q91V14). (E) Brain lysates were subjected to 

immunoprecipitation (IP) by pan-KCC2 antibody (KCC2) or by phosphorylation site-

specific antibodies recognizing the Thr906- or Thr1007-phosphorylated forms of KCC2, and 

immuno-precipitated protein was detected with pan-KCC2 antibody (IB). Whole-cell lysates 

were subjected to immunoblot using antibodies recognizing the indicated proteins or 

phosphoproteins. D, dimeric KCC2; M, monomeric KCC2. Blot is representative of 3 

experiments. (F) Band intensities represented in (E) were quantitated with ImageJ software. 

Calculation of intensity ratios was based on the calculation: (phospho-dimeric KCC2 + 

phospho-monomeric KCC2) / (total dimeric KCC2 + total monomeric KCC2), as described 

previously (24). ***p<0.001; **p<0.01; *p<0.05; ns, not significant by one-way ANOVA 

with post-hoc testing (n=6, data are mean ± SEM).
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Figure 2. KCC2 T906E/T1007E (Kcc2E/E) phospho-mimetic mice.
(A) Genomic targeting strategy depicting T906E (exon 22) and T1007E (exon 24). The 

intron 22 Neomycin selection cassette is excised by Cre recombinase. (B) Sanger 

sequencing trace of KCC2 T906E/T1007E. (C) Genotypes of surviving progeny from 

Kcc2+/E intercrosses at E18.5, P0, and P10. N is noted in the graph. (D) Consecutive axial 

brain sections revealed no gross defects in Kcc2E/E mutant mice (hom, p0). Images are 

representative of 20 mice. (E) WT brain lysates at indicated ages were immunoprecipitated 

(IP) with site-specific phospho-antibodies recognizing KCC2 pThr906 or pThr1007. 
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Immunoprecipitates were immunoblotted with pan-KCC2 antibody (IB). Whole-cell lysates 

were immunoblotted with indicated antibodies. D, dimeric KCC2; M, monomeric KCC2. 

Band intensities were quantitated with ImageJ software, shown in fig. S2C. Blot is 

representative of 3 experiments. (F to N) Percentage of WT, heterozygous (het) and 

homozygous (hom) P0 Kcc2E/E mice exhibiting seizures, type of seizure [partial (P), 

secondary generalized (G), tonic (T), and tonic-clonic types (T-C)], and duration of seizure 

(with or without opisthotonos: dark and light blue, respectively) provoked by brushing (F to 

H), tail pinch (I to K), and tail suspension (L to N). **p<0.01 by chi square test. Data are 

from 11–13 mice.
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Figure 3. Developing Kcc2E/E mouse brains exhibit anomalous distribution of proliferating 
neurons but normal dendritic spine morphology.
(A) Neuronal distribution in WT and homozygous Kcc2E/E E14.5 brains. Representative 

images of EdU-positive neurons in the septum, hypothalamus, hippocampus, and cortex of 

WT (n = 3) and homozygous Kcc2E/E (n = 4) mouse brains. Proliferating cells were labeled 

with EdU at E14.5 and then immunostained for EdU at E18.5. EdU-positive cells in each 

region of interest (ROI) were counted as in Methods. Images are representative of 7 mice. 

(B) Quantitation of EdU-positive neuron density in WT versus homozygous Kcc2E/E E14.5 
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brains, assessed in the septum, pre-optic area (POA), caudate-putamen (CPu), hippocampus, 

and cortex (ROI 1 and 2). **p<0.01 by unpaired t-test, n=4 (Kcc2E/E) and 3 (WT). (C) Spine 

formation in WT and homozygous Kcc2E/E neurons. Representative images of EGFP-

transfected DIV 26 primary cultured cortical neurons from WT and homozygous Kcc2E/E 

mice (each n=3).
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Figure 4. Kcc2E/E neurons exhibit impaired GABA-dependent Cl− extrusion, and disrupted 
rhythmogenesis.
(A) Gramicidin-perforated, voltage-clamped currents (9) recorded at −50 mV holding 

potential. Two 0.5 s voltage ramps from −100 to 0 mV were applied before and during 30 s 

puff application of 100 μM GABA; sample I-V curves before (black) and after GABA 

application (red). EGABA was estimated from the voltage axis intercept (detailed further in 

the Methods). Insets (upper left) are representative GABA-evoked current traces at −50 mV 

holding potential in ventral spinal cord neurons of acute lumber spinal cord slices from P0 

WT (left) and Kcc2E/E mice (right). Data are representative of 12 mice. (B) Neuronal EGABA 

Wantanabe et al. Page 26

Sci Signal. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from WT (−59.6 ± 2.1; n=5) and homozygous Kcc2E/E mice (−58.7 ± 1.8 mV; n=7). Data 

were not significantly different by an unpaired t-test. (C) Representative traces of GABA 

responses in P0 ventral spinal cord neurons of acute lumber spinal cord slices from WT and 

Kcc2E/E mice. After current clamp recording of basal GABA responses (3-s 100 μM GABA 

puffs every 20 s) in neurons from WT and Kcc2E/E mice, neurons were Cl−-loaded by 

prolonged (20 s) GABA puff during depolarizing voltage-clamp (Vh = 0 mV). Post-Cl−-

loading, responses to brief GABA puffs were again recorded in current-clamp mode, 

demonstrating 407±78% increased peak neuronal Cl− extrusion. Data are representative of 

23 mice. (D) Normalized recovery of neuronal GABA responses in WT (black circles; n=10) 

and Kcc2E/E mice (red squares; n=13) post-Cl− loading. Cl− extrusion rate was impaired in 

Kcc2E/E mice. Each neuronal response was normalized to the GABA pulse peak value (0%) 

and to peak post-Cl− loading GABA pulse-induced response (100%) for each neuron. WT 

peak potentials recovered to initial values (−3.9 ± 3.8%; n=10), whereas Kcc2E/E peak 

potentials remained 23.0 ± 4.1% above initial values (n=13). *p<0.05, **p<0.01 by unpaired 

t-test. Open symbols, single cells; filled symbols, mean values with standard error. (E) 
Respiratory motor neuron recordings from P0 mouse cervical spinal cord ventral rootlets 

(C4-C5) (42). Spontaneous rhythmic activity was measured in WT mice (n=6), T906E/
T1007E+/wt mice (n=10), and Kcc2E/E mice (n=11). (F) Respiratory rhythm of WT (10.4 ± 

1.1 min−1; n=6), heterozygous Kcc2E/wt (11 ± 1.1 min−1; n=10), and Kcc2E/E mice (1.3 ± 

0.8 min−1; n=9). Means ± SEM; **p<0.01 by Kruskal-Wallis test. (G) P0 L2 ventral root 

spontaneous activity (upper traces), and locomotor rhythm (lower traces) was induced by 

perfusion of 20 μM 5-HT (45, 46) in WT (n=8), heterozygous (n=8), and Kcc2E/E mice 

(n=7). (H) Rate of the locomotor rhythm in WT (7.1 ± 2.2 min−1; n=8), T906E/T1007E+/wt 

mice (8.5 ± 2.7 min−1; n=8), and Kcc2E/E mice (1.9 ± 0.1 min−1; n=7). Means ± SEM; 

**p<0.01 by Kruskal-Wallis test. (I) Coefficient of variation of interburst intervals in WT 

(0.9 ± 0.04; n=8), T906E/T1007E+/wt mice (0.9 ± 0.04; n=8), and Kcc2E/E mice (0.1 ± 

0.001; n=7). Means ± SEM; **p<0.01 by Kruskal-Wallis test.
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