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Abstract

Saturated azacycles are commonly encountered in bioactive compounds and approved therapeutic 

agents. The development of methods for functionalization of the α-methylene C‒H bonds of these 

highly privileged building blocks is of great importance, especially in drug discovery. While much 

effort has been dedicated towards this goal by using a directed C‒H activation approach, the 

development of directing groups that are both general, as well as practical, remains a significant 

challenge. Herein, the design and development of novel amidoxime directing groups is described 

for Ir(I)-catalyzed α-C(sp3)‒H alkylation of saturated azacycles using readily available olefins as 

coupling partners. This protocol extends the scope of saturated azacycles to piperidines, azepane, 

and tetrahydroisoquinoline that are incompatible with our previously reported directing group. A 

variety of olefin coupling partners, including previously unreactive di-substituted terminal olefins 

and internal olefins, are compatible with this transformation. The selectivity for a branched α-

C(sp3)-alkylation product is also observed for the first time when acrylate is used as the reaction 

partner. The development of practical, one-step installation and removal protocols further add to 

the utility of amidoxime directing groups.
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INTRODUCTION

Saturated azacycles constitute a prevalent structural motif in bioactive natural products and 

pharmaceutical compounds (Figure 1).1 The development of methods that enable rapid 

synthesis and late-stage diversification of these heterocycles is appealing from the standpoint 

of drug discovery.2 Not surprisingly, a variety of methods have been developed for the 

functionalization of C(sp3)‒H bonds adjacent to nitrogen in saturated azacycles.3 Important 

progress has been made in the direct functionalization of these heterocycles through 

iminium ion,4 α-amino carbanion,5 αamino radical,6 carbene insertion7, and other 

innovative pathways.8 Functionalizations proceeding via transition-metal-catalyzed α-

C(sp3)‒H bond activation have also been developed.9–16 These transformations usually 

entail the installation of a directing group on the azacycle nitrogen for recruitment of the 

transition-metal catalyst near to the α-C(sp3)‒H bond of interest.17 Although additional 

steps are required for the installation and eventual removal of the directing group, a directed 

C‒H activation approach offers important advantages over other methods.4–8 First, 

regioselectivity can be controlled in the presence of multiple equally reactive C‒H bonds; 

for example, when more than one amino-alkyl groups are present within the substrate. 

Second, the formation of a discrete carbon‒metal bond in the intermediate allows for 

diverse transformations that may not be possible with other approaches.4–8 Third, the 

directing group can be used as a functional handle for modulating the reactivity and 

selectivity of a transformation, thus allowing access to different isomers of the product.

In the realm of transition-metal-catalyzed directed α-C(sp3)‒H activation of saturated 

azacycles, several arylation transformations have been developed.9 In 2014, our group 

reported the first example of a palladium(II)-catalyzed directed α-arylation of saturated 

azacycles using aryl boronic acids as coupling partners (Scheme 1A).18 Our efforts towards 

developing an alkylation transformation using alkyl boronic acids as coupling partners have 

met with limited success;19 possibly due to a challenging sp3‒sp3 reductive elimination and 

competing β-hydride elimination side reactions from the corresponding metal-alkyl 

intermediate. In contrast, iridium(I)-catalyzed α-alkylation using olefins as coupling 

partners is a promising approach.20 Such alkylation reactions proceed via the intermediacy 

of a metal-hydride species, which reacts with olefin coupling partners to affect a net 

alkylation transformation (Scheme 1B).

In 1998, Jun et al. reported the first example of a directed α-C(sp3)–H alkylation of 

benzylamines using a ruthenium(0) catalyst.10a Later in 2001, a ruthenium-catalyzed 

directed αC(sp3)–H alkylation of saturated azacycles was reported by Murai and co-

workers.10b In 2011, the first example of an iridium-catalyzed directed α-C(sp3)–H 

alkylation of aliphatic amines was developed by Shibata and co-workers.11a Since these 

pioneering studies, several groups have developed directed approaches for α-C(sp3)–H 

alkylation of saturated azacycles via ruthenium10c–e and iridium catalysis11b–g (Scheme 2A). 

However, the utility of these approaches is limited due to the use of heterocyclic directing 

groups which require multiple steps and harsh reducing reaction conditions for their 

removal. Additionally, over-alkylation has been a frequently encountered problem.
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Recently, our group reported an alkoxy-thiocarbonyl directing group for α-C(sp3)–H 

alkylation of saturated azacycles using a cationic iridium(I) catalyst (Scheme 2B).21 

Although the one-step installation and removal of this directing group was advantageous 

over previous reports employing heterocyclic directing groups, the synthetic utility of the 

transformation was limited for the following reasons. First, while pyrrolidines could be 

alkylated in moderate yields, the alkylation of other azacycles proved to be challenging. 

Second, the olefin coupling partner scope was limited to only mono-substituted olefins. 

Third, the alkoxy-thiocarbonyl directing group promoted over-alkylation.

These limitations highlight the challenge associated with designing a practical, as well as a 

general directing group. Herein, we disclose the design and discovery of novel amidoxime 

directing groups for an iridium(I)-catalyzed α-C(sp3)–H alkylation of saturated azacycles 

(Scheme 2C). The amidoxime directing groups are compatible with a wide range of 

saturated azacycles and olefin coupling partners, while also being easy to install and remove. 

During our study, we observed an unprecedented selectivity for branched α-C(sp3)-

alkylation products with ethyl acrylate as the olefin coupling partner.22 This observation 

showcases one of the advantages of using a directed C‒H activation approach, wherein a 

new directing group may impact the reactivity of the catalytic intermediate, thus enabling 

access to new mechanistic pathways and products.

RESULTS AND DISCUSSION

We designed the amidoxime directing groups (Scheme 3) based on the following 

considerations:1) an imine moiety to direct the metal insertion, inspired by the high 

reactivity afforded by heterocyclic directing groups in Scheme 2A, 2) amidoxime moiety to 

allow easy removal under mild conditions (in comparison with previous reports of amidine 

directing groups5a,9a), and 3) a modular α-substituent which can be tuned to improve the 

reactivity and selectivity.

Borrowing reaction conditions from our previous work on iridium(I)-catalyzed α-alkylation 

of pyrrolidines with an alkoxy-thiocarbamate directing group,21 we evaluated various 

amidoxime directing groups using pyrrolidine as the model substrate and ethyl acrylate as 

the olefin coupling partner (Table 1). We began our studies with an α-methyl substituted O-

benzyl amidoxime directing group and obtained the α-alkylated product in a total yield of 

29% (2a-1) as a mixture of branched (B) and linear (L) regioisomers. Keeping the oxime 

moiety constant, we changed the αsubstituent of the directing group to a bulkier tert-butyl 

group and observed an increase in the total yield to 67% (2a-2). The introduction of an 

electron-withdrawing trifluoromethyl group as the αsubstituent further increased the total 

yield to 86% (2a-3). On the other hand, using a perfluoroethyl group as the α-substituent 

lowered the total yield to 60% (2a-4). Next, we varied the oxime moiety while fixing the α-

substituent as a trifluoromethyl group. Changing the benzyl oxime to a sterically bulky trityl 

oxime lowered the total yield to 60% (2a-5). Next, we altered the electronics of the oxime 

moiety by using a para-nitro benzyl oxime which gave a slightly lower total yield of 81% 

(2a-6) as compared to the simple benzyl oxime. Increasing the electron-withdrawing nature 

of the oxime moiety further by using a perfluorobenzyl oxime reduced the total yield to 48% 

(2a-7). In order to test the importance of a pendant benzyl oxime unit, we tied it into a 

Verma et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



benzoxazole heterocycle and observed a drop in the total yield to 40% (2a-8). Increasing the 

coordination ability of the pendant oxime unit with a weakly coordinating ester afforded 

product in 70% total yield (2a-9), while a strongly coordinating pyridine completely shut 

down the reaction (2a-10). Next, reaction using an O-phenyl amidoxime directing group 

suffered from poor mass balance and no desired product was observed (2a-11). Employing a 

tert-butanesulfinyl imine as the directing group did not give any product (2a-12). We next 

screened the reaction conditions with trifluoromethyl O-benzyl amidoxime as the optimal 

directing group, and were able to lower the catalyst loading to 5 mol% and the ethyl acrylate 

loading to 4 equivalents to afford a total yield of 83% (2a-3’) of α-alkylated pyrrolidine 

products. As seen from Table 1, the regioisomeric product ratio was found to be dependent 

on the structure of the directing group. Attempts at improving the regioisomeric product 

ratio by further screening of the reaction conditions were unsuccessful. Moreover, the 

regioisomeric ratio was affected by the identity of solvent, the catalyst counteranion, and the 

diene ligand on iridium (see the Supporting Information for details).

We then tested the trifluoromethyl O-benzyl amidoxime directing group against a variety of 

substituted pyrrolidine substrates (Table 2). When ethyl acrylate was used as the olefin 

coupling partner, separable mixtures of branched and linearly α-alkylated products were 

obtained (2b-2i), the ratios of which were dependent on the nature of substituents on the 

pyrrolidine substrates. On the other hand, when 1-hexene was used as the olefin coupling 

partner, only linearly α-alkylated products were obtained (2j-2m). With ethyl acrylate as the 

olefin coupling partner, 2-methyl and 2-phenyl substituted pyrrolidine substrates afforded 

products in total yields of 80% (2b) and 83% (2c), respectively. A benzyl protected proline 

substrate was also compatible and afforded product in a total yield of 68% (2d). Spirocyclic 

and bicyclic pyrrolidine substrates, which are relevant to various medicinal chemistry 

campaigns,23 reacted in good yields of 98% (2e) and 80% (2f), respectively. Pyrrolidine 

substrates with 3-alkyl substituents also reacted in good yields (2g, 2h). On the other hand, 

an electron deficient 3,3-difluoropyrrolidine substrate gave a low yield of 36% (2i). With 1-

hexene as the olefin coupling partner, 3-phenyl, 3-alkyl, 3-methoxy, and 3-amino substituted 

pyrrolidine substrates afforded products in 73% (2j), 86% (2k), 66% (2l), and 77% (2m) 

yields, respectively. We were pleased to find that the use of trifluoromethyl O-benzyl 

amidoxime directing group (with adequate substrate-specific tuning of the reaction 

conditions) prevented over-alkylation of a variety of substituted pyrrolidine substrates, thus 

addressing one of the major limitations with previous directing group designs.9,10

Having established the scope of pyrrolidine substrates with the trifluoromethyl O-benzyl 

amidoxime directing group, we next investigated the scope of olefin coupling partners using 

3,3dimethyl pyrrolidine (1g) as the standard substrate (Table 3). Olefins with a wide variety 

of steric and electronic properties proved to be efficient coupling partners. A wide range of 

styrene analogues, including 4-bromostyrene, afforded the respective linearly α-alkylated 

products in good yields of 66%−81% (3a-3i). Electron deficient olefins such as vinyl 

phthalimide and ethyl vinyl ketone also proceeded to give linearly α-alkylated products in 

78% (3j) and 65% (3k) yields, respectively. Alternate ester protecting groups on the acrylate 

were well tolerated (3l) to give a mixture of branched and linearly α-alkylated regioisomeric 

products. However, vinyl acetate reacted in a low yield of 32% (3m) to give linearly α-
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alkylated product. Electron neutral olefins all gave their corresponding linearly α-alkylated 

products selectively. While allylbenzene (3n) reacted in a moderate yield of 51%, allyl 

silane, vinyl silane, and 1-hexene reacted in good yields of 71% (3o), 74% (3p), and 73% 

(3q), respectively. When vinyl norbornene was used as the olefin coupling partner, the 

reaction occurred regioselectively at the vinyl position in 73% yield (3r). Moreover, a 

selectivity of 6.1:1 was observed in favor of the endo-isomer over the exo-isomer of vinyl 

norbornene. In contrast, in the absence of a vinyl group, simple norbornene reacted in 78% 

yield (3s). The reaction also tolerated di-substituted terminal olefins in moderate yields of 

55% (3t) and 50% (3u), respectively. When cis-2-hexene was used as the olefin coupling 

partner, an isomerized linear product was obtained in a moderate yield of 51% (3v). We also 

observed isomerization of methyl crotonate to give a linear product, albeit in a low yield of 

35% (3w).24 A sterically hindered maleate ester also reacted in 23% yield (3x). To the best 

of our knowledge, this is the first example of an iridium(I)-catalyzed α-C(sp3)‒H alkylation 

reaction which can utilize di-substituted terminal olefins and internal olefins as effective 

coupling partners.

After establishing the performance of the trifluoromethyl O-benzyl amidoxime directing 

group with a variety of substituted pyrrolidine substrates and olefin coupling partners, we 

next tested the efficacy of this directing group for azacycles of other ring sizes (Scheme 4). 

When we subjected the azetidine substrate (1n) to the optimized reaction conditions with 

ethyl acrylate as the olefin coupling partner, no product was observed. The piperidine 

substrate afforded a linearly α-alkylated product in a low yield of 25% (2o). In contrast, the 

azepane substrate reacted in a good yield of 70% (2p) and afforded a mixture of separable 

branched and linearly α-alkylated regioisomers. A similar reactivity trend has been observed 

in previous reports where piperidines were found to be a more challenging class of 

substrates than pyrrolidines and azepanes.

We reasoned that a lower reactivity for the piperidine substrate (2o) relative to the 

pyrrolidine and azepane substrates might be associated with an unfavorable conformation of 

the six-membered saturated azacycle. This led us to consider that a different directing group 

might be required for the piperidine substrate. Leveraging the modular nature of the 

amidoxime directing groups, we reevaluated directing groups for the piperidine substrate as 

shown in Table 4. Under the optimized reaction conditions, with ethyl acrylate as the olefin 

coupling partner, changing the α-substituent to a perfluoroethyl group had deleterious effect 

on reactivity (4a-1). On the other hand, a variety of alkyl groups such as, methyl (4a-2), 

ethyl (4a-3), and isobutyl (4a-4), all worked as efficient αsubstituents and gave a mixture of 

branched and linearly α-alkylated regioisomers in moderate yields. A bulkier alkyl α-

substituent in the directing group led to a higher yield of the linearly αalkylated regioisomer. 

We selected methyl O-benzyl amidoxime as the optimal directing group for piperidines 

because we anticipated that a smaller directing group would have an easier removal protocol.

With the optimal directing group for piperidine in hand, we further optimized the reaction 

conditions using 1-hexene as the olefin coupling partner (see the Supporting Information for 

details). As shown in Table 5, simple piperidine reacted to give a separable mixture of 

mono-and di-alkylated products in a total yield of 65% (5b). Next, we tested the methyl O-

benzyl amidoxime directing group against a variety of substituted piperidine substrates 
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(5c-5j). 3-Methyl piperidine substrate reacted to give mono-alkylated product in 72% yield 

(5c). 4-Methyl and 4-phenyl substituted piperidine substrates also reacted in 82% (5d) and 

62% (5e) yields, respectively, giving a mixture of separable mono-and di-alkylated products. 

Piperidine substrates containing various functional groups such as 4-methoxy (5f), 4-amino 

(5g), 3-trifluoromethyl (5h), and 3-ester (5i) were also compatible and reacted in moderate 

to good yields. A spirocyclic piperidine substrate yielded a separable mixture of mono-and 

di-alkylated products in a total yield of 58% (5j). Tetrahydroisoquinoline was also a 

compatible substrate and reacted to give di-alkylated product in 53% yield (5k). 3-Methyl 

morpholine was a challenging substrate and gave the corresponding mono-alkylated product 

in a low yield of 20% (5l). However, complete site-selectivity was achieved for the α-

C(sp3)‒H bonds next to the nitrogen atom in the presence of the α-C(sp3)‒H next to an 

oxygen atom. Finally, the di-alkylation favored anti-stereochemistry; where 5b-di, 5d-di, 
and 5k were isolated as single diastereomers (see the Supporting Information for details on 

diastereoselectivity).

Scheme 5A shows the one-step installation protocols developed for both the trifluoromethyl 

O-benzyl amidoxime and the methyl O-benzyl amidoxime directing groups starting from 

precursors 6 and 7 (see the Supporting Information for details). These precursors were used 

for the synthesis of the azacycle substrates (1a-3, 1b-1p, 4a-2, 4b-4l) in a divergent manner. 

Scheme 5B shows the removal protocols for two representative products, 2k and 5h. Both 

the directing groups were cleaved effectively under DIBAL-H reduction at 0 °C in a single 

step.

Due to the observation of unconventional branch-selective α-alkylation with acrylates, we 

performed deuterium labelling experiments (Scheme 6). When substrate 1a-3 was subjected 

to the reaction conditions in the presence of D2O and in the absence of an olefin coupling 

partner, deuterium incorporation at the α-and α’-positions of the pyrrolidine substrate was 

observed (Scheme 6A). This result implies that the α-C(sp3)‒H bond of 1a-3 is cleaved 

under the present reaction conditions, without the involvement of an olefin coupling partner. 

Next, the reaction of substrate 1a-3 with deuterated benzyl acrylate was examined (Scheme 

6B). Incorporation of deuterium atoms was detected at the α-and α’-positions of both the 

branched and linearly alkylated products (3y-B, 3y-L). Moreover, the recovered benzyl 

acrylate coupling partner was found to have a reduced deuterium content. These 

observations indicate that the catalytic cycle consists of reversible C‒H bond activation and 

olefin insertion steps. The experimentally observed isomerization of internal olefins to give 

linearly α-alkylated products (3v, 3w) lends further support for a reversible olefin insertion 

step.

On the basis of the above labelling experiments, the proposed mechanism for the 

amidoxime-directed Ir(I)-catalyzed α-C(sp3)‒H alkylation reaction of pyrrolidine with an 

acrylate coupling partner is shown in Scheme 7. Since the reaction yield and selectivity were 

found to be dependent on the diene ligand (see the Supporting Information), it is likely that 

one unit of the diene ligand remains coordinated to iridium.25 The first step involves the 

directed α-C‒H activation of the pyrrolidine substrate via an oxidative addition mechanism, 

leading to the formation of a cationic Ir(III) intermediate. Next, a molecule of acrylate may 

react reversibly with this iridium-hydride species in two different ways - thus giving rise to 
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Pathways L and B. In Pathway L, acrylate undergoes a sterically-controlled 1,2-migratory 

insertion into the Ir‒H bond, leading to a linear Ir-alkyl species, which upon a C‒C 

reductive elimination gives the linearly α-alkylated product. In Pathway B, acrylate 

undergoes an electronically-controlled 2,1-migratory insertion into the Ir‒H bond leading to 

a branched Ir-alkyl species, which upon a C‒C reductive elimination gives the branched α-

alkylated product.

CONCLUSION

In summary, we report the design and discovery of novel amidoxime directing groups for the 

iridium(I)-catalyzed α-C(sp3)‒H alkylation of saturated azacycles using readily available 

olefins as coupling partners. A trifluoromethyl O-benzyl amidoxime directing group was 

developed for substituted pyrrolidines, proline, and azepane substrates. This transformation 

is applicable on wide arrays of olefin coupling partners with diverse steric and electronic 

properties, including previously unreactive di-substituted terminal olefins and internal 

olefins. For more challenging substrates, such as substituted piperidines and 

tetrahydroisoquinoline, a methyl O-benzyl amidoxime directing group was developed. The 

selectivity for a branched α-C(sp3)‒H alkylation product is observed for the first time when 

acrylate was used as the reaction partner. New protocols enabling practical, one-step 

installation and removal of these directing groups were also developed. Future work from 

our group will focus on developing enantioselective α-C(sp3)‒ H alkylation of saturated 

azacycles and on exploiting the potential of amidoxime directing groups for other interesting 

substrates and transformations.

EXPERIMENTAL SECTION

A 2-dram vial was charged with the substrate (0.1 mmol, 1.0 equiv) and taken inside an 

argon glovebox. Ir(cod)2NTf2 (6.9 mg, 0.01 mmol, 0.1 equiv, unless otherwise noted) was 

added followed by a magnetic stir bar. The vial was sealed with a PTFE septum and taken 

out of the glovebox. Degassed PhCl (0.1 mL, unless otherwise noted) and olefin coupling 

partner (0.8 mmol, 8.0 equiv, unless otherwise noted) were added to the vial. The solution 

was stirred at 85 °C for 24 hours (unless otherwise noted). Upon completion, the reaction 

mixture was cooled to rt and diluted with 2 mL EtOAc. The mixture was filtered through a 

pad of celite. The celite was washed thoroughly with EtOAc and the combined organics 

were concentrated in vacuo. The crude reside was purified by preparative TLC to provide the 

alkylated product(s).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Some biologically significant compounds containing α-alkylated saturated azacycles.
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Scheme 1. 
Palladium(II)-and Iridium(I)-catalyzed Directed α-C(sp3)‒H Activation Reactions of 

Saturated Azacycles. DG = Directing Group.
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Scheme 2. 
Evolution of Directing Groups for Transition-metal-catalyzed α-C(sp3)‒H Alkylation of 

Amines with Olefin Coupling Partners.
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Scheme 3. 
Design Principles of Amidoxime Directing Groups.
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Scheme 4. 
Evaluation of the Trifluoromethyl O-Benzyl Amidoxime Directing Group for α-C(sp3)‒H 

Alkylation of Azetidine, Piperidine, and Azepane. aYield was determined by 1H NMR 

analysis of the crude product using mesitylene as the internal standard. bYield after isolation 

by chromatography is shown.
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Scheme 5. 
Installation and Removal of Amidoxime Directing Groups.a aReaction conditions: (a) 

Azacycle (1.0 equiv), 6 (1.2 equiv), triethylamine (1.2 equiv), DCM, 50 °C, under air, 12 h. 

(b) Azacycle (1.0 equiv), 7 (1.2 equiv), DMF, 70 °C, under air, 12 h. (c) 2k or 5h (0.1 mmol, 

1.0 equiv), DIBAL-H (0.5 mmol, 5.0 equiv), toluene (0.5 mL), 0 °C, under N2, 30 min. (d) 

CbzCl (0.3 mmol, 3.0 equiv), Et3N (0.3 mmol, 3.0 equiv), DCM (1.0 mL), rt, under N2, 12 

h.
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Scheme 6. 
Deuterium labelling experiments.
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Scheme 7. 
Proposed Mechanistic Pathways.
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Table 1.

Directing Group Evaluation for α-C(sp3)‒H Alkylation of Pyrrolidine.
a,b

a
Reaction conditions: 1a-1 to 1a-11 (0.1 mmol, 1.0 equiv), Ir(cod)2OTf (0.01 mmol, 0.1 equiv), ethyl acrylate (0.8 mmol, 8.0 equiv), degassed 

PhCl (0.5 mL), 85 °C, under Ar, 6 h.

b
Yields were determined by 1H NMR analysis of the crude products using mesitylene as the internal standard.

c
0.05 equiv of Ir(cod)2OTf (0.005 mmol).

d
4.0 equiv of ethyl acrylate (0.4 mmol).

e
0.1 mL of degassed PhCl.
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f
Yield after isolation by chromatography is shown.
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Table 2.

Pyrrolidine Substrate Scope.
a,b

a
Reaction conditions: 1b to 1m (0.1 mmol, 1.0 equiv), Ir(cod)2NTf2 (0.01 mmol, 0.1 equiv), ethyl acrylate (0.8 mmol, 8.0 equiv), degassed PhCl 

(0.1 mL), 85 °C, under Ar, 24 h.

b
Yields after isolation by chromatography are shown.

c
Ir(cod)2OTf instead of Ir(cod)2NTf2.

d
0.1 equiv of HBF4.Et2O (0.01 mmol) as additive.

e
0.05 equiv of Ir(cod)2OTf (0.005 mmol).
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f
12 h instead of 24 h.

g
48 h instead of 24 h.
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Table 3.

Olefin Coupling Partner Scope.
a,b

a
Reaction conditions: 1g (0.1 mmol, 1.0 equiv), Ir(cod)2NTf2 (0.01 mmol, 0.1 equiv), olefin coupling partner (0.8 mmol, 8.0 equiv), degassed 

PhCl (0.1 mL), 85 °C, under Ar, 48 h.

b
Yields after isolation by chromatography are shown.

c
1a instead of 1g.

d
mono:di = 4:1.

e
mono:di = 7.5:1.
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Table 4.

Directing Group Evaluation for α-C(sp3)‒H Alkylation of Piperidine.
a,b

a
Reaction conditions: 4a-1 to 4a-4 (0.1 mmol, 1.0 equiv), [Ir(cod)Cl]2 (0.005 mmol, 0.05 equiv), AgOTf (0.01 mmol, 0.1 equiv), ethyl acrylate 

(0.8 mmol, 8.0 equiv), HBF4.Et2O (0.01 mmol, 0.1 equiv), degassed PhCl (0.5 mL), 85 °C, under Ar, 24 h.

b
Yields were determined by 1H NMR analysis of the crude products using mesitylene as the internal standard.
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Table 5.

Piperidine Substrate Scope.
a,b

a
Reaction conditions: 4b to 4l (0.1 mmol, 1.0 equiv), [Ir(cod)Cl]2 (0.005 mmol, 0.05 equiv), AgSbF6 (0.01 mmol, 0.1 equiv), 1-hexene (0.8 mmol, 

8.0 equiv), degassed PhCl (2.0 mL), 85 °C, under Ar, 24 h.

b
Yields after isolation by chromatography are shown.

c
0.1 equiv of Ir(cod)2NTf2 (0.01 mmol) instead of [Ir(cod)Cl]2 and AgSbF6.

d
48 h instead of 24 h.
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