Skip to main content
. Author manuscript; available in PMC: 2020 May 13.
Published in final edited form as: J Comput Chem. 2010 Jun;31(8):1644–1655. doi: 10.1002/jcc.21448

Table II:

RRMS’s for different coarse grained models.a

Model Cytosine Guanine Thymine Adenine Total vdW and total elec. Total
1 (3333) 22.4 30.5 61.8 46.5 37.8 40.6
30.0 31.6 31.2 31.5 31.0
2 (3344) 22.3 30.4 36.7 45.9 31.3 33.1
29.8 31.7 23.9 26.9 28.2
3 (3345) 22.3 30.3 37.0 43.0 30.9 32.6
29.8 31.7 23.9 23.9 27.5
4 (3444) 22.2 27.6 37.4 45.6 30.4 31.1
29.9 27.4 23.9 26.8 26.5
5 (3445) 22.2 27.5 37.6 43.1 30.0 30.7
29.8 27.4 23.9 23.9 25.8
6 (4344) 21.3 29.9 36.7 45.7 30.9 33.0
24.8 31.8 23.9 26.8 27.2
7 (4345) 21.4 29.8 37.1 43.0 30.5 32.5
24.8 31.8 23.9 23.9 26.5
8 (4444) 21.2 27.4 37.3 45.4 30.1 31.0
24.8 27.4 23.9 26.9 25.4
9 (4445) 21.2 27.4 37.4 43.4 29.8 30.6
24.8 27.4 23.9 23.9 24.6
a

The electrostatic potential RRMS’s computed for each of four bases are shown in columns 2–5 in normal type. The Van der Waals energy RRMS’s for pairs of like bases (e.g., G-G, C-C etc.) are shown in columns 2–5 in bold-face type. The total electrostatic potential RRMS’s for all 4 bases, and the total van der Waals energy-RRMS’s for all 10 possible pairs of interacting molecules are shown in the next-to-last column in normal and bold face type, respectively. The total-energy RRMS’s for all 10 possible pairs of interacting molecules are shown in the last column. All RRMS’s are computed according to equations (18a,b,c) as explained in “Results and Discussion”.