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Abstract

Background: The HIV epidemic continues to grow among men who have sex with men (MSM) 

in countries across sub-Saharan Africa including Nigeria. To inform prevention efforts, we used a 

phylogenetic cluster method to characterize HIV genetic clusters and factors associated with 

cluster formation among MSM living with HIV in Nigeria.
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Methods: We analyzed HIV-1 pol sequences from 417 MSM living with HIV enrolled in the 

TRUST/RV368 cohort between 2013 and 2017 in Abuja and Lagos, Nigeria. A genetically-linked 

cluster was defined among participants whose sequences had pairwise genetic distance ≤1.5%. 

Binary and multinomial logistic regressions were used to estimate adjusted odds ratios (AORs) 

and 95% confidence intervals (CIs) for factors associated with HIV genetic cluster membership 

and size.

Results: Among 417 MSM living with HIV, 153 (36.7%) were genetically linked. Participants 

with higher viral load (AOR=1.72 95% CI: 1.04–2.86), no female partners (AOR=3.66; 95% CI: 

1.97–6.08), and self-identified as male gender(compared with self-identified as bigender)

(AOR=3.42; 95% CI: 1.08–10.78) had higher odds of being in a genetic cluster. Compared to un-

linked participants, MSM who had high school education (AOR=23.84; 95% CI: 2.66–213.49), 

were employed (AOR=3.41; 95% CI: 1.89–10.70), had bacterial STIs (AOR=3.98; 95% CI: 0.89 

−17.22) and were not taking antiretroviral therapy (AOR=6.61; 95% CI: 2.25 −19.37) had higher 

odds of being in a large cluster (size>4).

Conclusions: Comprehensive HIV prevention packages should include behavioral and 

biological components, including early diagnosis and treatment of both HIV and bacterial STIs to 

optimally reduce the risk of HIV transmission and acquisition.
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Introduction

Genetic clustering methods have been widely used to identify characteristics of specific 

populations who are at heightened risk of transmitting HIV to uninfected individuals [1–11]. 

Examination of similarities between genetically-linked sequences [12–15] has shown that 

highly similar virus strains can be inferred as being connected by a short chain of 

transmission[16] and these clustered sequences may be linked as transmission pairs or 

belong to a larger local transmission network[7]. However, factors such as the recency of 

infection, sampling fractions (i.e. the intensity of sampling of local transmissions), survivor 

bias (i.e. younger individuals are more likely to cluster), and migration status (i.e. 

immigrants are more likely to be infected while abroad) may also contribute to any observed 

phylogenetic linkages[7]. Phylogenetic studies conducted among key populations [3, 11, 13, 

17–23] in high-income countries have combined epidemiologic data and genetic clustering 

patterns to examine factors associated with cluster size and membership, including 

demographic characteristics, geographic variables, and risk behaviors. For example, 

transmission related to same-sex sexual practices among men[2, 14, 17, 21, 23], younger 

age[13, 17, 21], being an immigrant[13], urban residence[17] and substance use[23] were 

found to be positively associated with cluster membership.

These methods are starting to be applied in countries across sub-Saharan Africa to give 

additional insights into the dynamics of local HIV epidemics and to mobilize resources 

towards achieving epidemic control. For example, De Oliveira et al. found through clustered 

sequences that men aged 25–40 years old were the primary source of HIV transmissions to 
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adolescent girls in KwaZulu-Natal, South Africa [6]. This finding informed the Determined, 

Resilient, Empowered, AIDS-free, Mentored and Safe (DREAMS) initiative, a global 

partnership to reduce HIV infections among adolescent girls and young women in 10 sub-

Saharan African countries[24]. In a mixed HIV epidemic like Nigeria, with multiple risk 

groups requiring intervention to halt onward transmission, there is a need to document the 

characteristics of genetic clusters and examine factors that determine the formation of 

clusters to inform the development of interventions that decrease HIV transmission in high-

risk populations. Some of the highest HIV incidence rates among key populations in Nigeria 

are seen in men who have sex with men (MSM) [25]. Using a dynamic infectious disease 

model fitted to time-scaled phylogenies, we previously estimated transmission patterns of 

MSM and a representative sample of newly enrolled treatment-naïve people living with HIV 

[26].

The purpose of this study was to describe HIV genetic clusters among HIV-infected MSM 

and to examine associations between cluster membership, risk behaviors, and preventive 

practices in two Nigerian communities with a high burden of HIV.

Methods

Study Protocol

TRUST/RV368 is a multicenter prospective observational cohort that recruited MSM in 

Abuja and Lagos, Nigeria, using respondent-driven sampling (RDS) between 2013 and 2017 

as previously described [27, 28]. Eligible participants included those who were assigned 

male sex at birth, aged 16 and older in Abuja or 18 and older in Lagos, and reported 

receptive or insertive anal intercourse in the previous 12 months. Demographic and 

behavioral data were obtained from structured interviews. Upon enrollment, participants 

were screened for HIV using fingerstick blood samples in a parallel testing algorithm with 

Determine (Alere, Watham, MA, USA) and Uni-gold (Trinity Biotech, Co-Wicklow, 

Ireland) rapid tests with HIV-1/2 Stat-Pak (Chembio Diagnostics, Medford, NY) as a tie-

breaker for discrepant results.

All participant plasma samples with HIV RNA ≥1,000 copies/mL at enrollment were 

genetically sequenced for clustering analysis. Samples with HIV RNA below this cut-off 

were excluded because of poor amplification. Participants who were HIV uninfected at 

enrollment were followed every three months for up to 18 months and incident infections 

were sequenced at the time of seroconversion.

Ethical Considerations

The institutional review boards at the Nigerian Federal Capital Territory Health Research 

Ethics Committee, the Nigerian Ministry of Defense, the University of Maryland Baltimore, 

and the Walter Reed Army Institute of Research reviewed and approved the research 

protocol. All participants provided written informed consent and data were de-identified 

prior to analysis.
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Genetic Sequencing and Pairwise Calculation

Sequences of the HIV-1 pol gene (corresponding to HXB2 positions 2273–3869 or 2108–

3308) were generated using previously-described methods [18, 26, 29]. Pairwise genetic 

distances, corresponding to HXB2 positions 2317–3249, were calculated using the TN93 

model[30]. Genetic clusters were defined among individuals whose sequences had a genetic 

distance of ≤1.5% [15, 31]. The cut-off at 1.5% was used for consistency with prior studies 

of MSM populations and to conservatively estimate any direct linkages between 

transmission pairs as shown by Kroon et al [32].

The HIV-1 Genotyping Tool at the National Center for Biotechnology Information, Jumping 

Profile HMM Tool at GLOBICS, REGA HIV Subtyping Tool at BIOAFRICA, NCBI 

BLASTn tool, and the HIV BLAST tool at the Los Alamos HIV sequence database website 

(https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST.html) were used to determine 

the subtype(s) of each sequence. If the subtype(s) of a sequence from all tools were in 

agreement, a final subtype result was assigned. If the results were different, neighbor joining 

trees of the sequences along with relevant HIV-1 reference subtypes or CRFs were made at 

various breakpoints and over the span of the whole sequence to determine the genetic 

relatedness of the sample to reference sequences[33].

Sequence Quality Control

Obtained sequencing electropherograms were visually inspected using Sequencher 5.4 

(Gene Codes Corp., Ann Arbor, Michigan, USA) at two independent laboratories (the 

Institute of Human Virology Nigeria, Abuja, Nigeria and the U.S. Military HIV Research 

Program in Bethesda, Maryland, USA) to verify that each nucleotide base was covered by at 

least three reads, one of which had to be in the opposite direction as the other two. 

Sequences were first aligned using HIV Align (http://www.hiv.lanl.gov/content/sequence/

VIRALIGN/viralign.html) and the alignments were manually edited using Geneious (http://

www.geneious.com). Sequence genetic relatedness was assessed in MEGA version 5.2.2. 

Samples with sequences that were <1.0% different and had been processed on the same day 

were re-processed and re-sequenced to rule out cross-sample contamination.

Dependent Variables:

Cluster Membership: if a participant had a genetic distance less than 1.5% from another 

participant, both participants were classified as part of a genetic cluster. For analysis, we 

evaluated cluster membership in two ways: as a dichotomized outcome based on whether or 

not a given participant was a member of any genetic cluster and as a categorical outcome 

based on whether a given participant was not in any genetic cluster, in a small genetic cluster 

(cluster size of 2–3 participants), or in a genetic cluster of 4 or more participants.

Independent Variables:

Antiretroviral Therapy (ART) Use: A comprehensive chart review was performed to 

determine ART exposure among all participants with sequencing data. A participant was 

considered ART experienced if he initiated three-drug ART more than 28 days before the 

sample for sequencing was drawn.
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Consistent Condom Use: Participants self-reported their frequency of condom use 

during vaginal sex, receptive anal sex and insertive anal sex in the previous 12 months. The 

frequencies were measured on a 5-point Likert scale: never, almost never, about half of the 

time, almost always, and always. Participants were classified as using condoms consistently 

if they reported almost always or always using condoms for all three types of sexual 

intercourse.

Bacterial Sexually Transmitted Infection (STI) Status: Participants provided blood, 

urine, oropharyngeal swabs and rectal swabs for bacterial STI testing. If they were 

diagnosed with syphilis, gonorrhea, chlamydia, or presented with symptoms consistent with 

an otherwise undiagnosed syndrome consistent with a bacterial STI, they were classified as 

having a bacterial STI.

Number of Male Partners: Participants reported the average number of male partners for 

anal sex in the past 12 months. We dichotomized responses as either less than or equal to 1 

male partner or more than 1 male partner to minimize measurement error.

Sexual Positions: The sexual positions of the participants were inferred from the self-

reported number of partners for insertive or receptive anal sex in the past 12 months. 

Participants were categorized as insertive or receptive if they only reported insertive or 

receptive sex, respectively. If participants reported both, they were classified as versatile.

All the behavioral questionnaire and clinical evaluations were completed at the enrollment 

or seroconversion visit concurrent with the collection of blood for sequencing.

Statistical Analyses

We used multivariable logistic regression to evaluate characteristics associated with genetic 

clustering and multinomial logistic regression to assess factors associated with cluster size. 

The primary dependent variables were a binary category of any clustering and a multinomial 

category for none, small (size 2–3) and large (size 4 and above) genetic clusters. The 

independent demographic variables were age, education, gender identity, employment status, 

religion, and sexual orientation. We also assessed the associations between cluster 

membership and ART status, consistent condom use, STI status, sexual position and number 

of male sexual partners. Viral load and CD4 count at the time of sequencing and the stage of 

HIV infection (prevalent or incident) were included as potential confounding variables[7]. 

Because viral load was positively skewed, log10 transformations were used in the final 

models. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were reported. The 

regression analyses were adjusted for non-random sampling method by including RDS 

weights. Sensitivity analyses were conducted to evaluate the odds of clustering at various 

genetic distance threshold: 1%, 2%, and 4.5%.

A correlation permutation test was also performed to evaluate the likelihood of observing 

any clustering for certain behaviors. We calculated the Pearson’s correlation of ART use, 

STI status and the number of male partners between every pair of genetically linked 

participants and compared these with the null distribution of correlation obtained from 

randomly permuting observed data. The achieved significance level (ASL) and null 
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distribution were reported. Although the TRUST/RV368 cohort is a longitudinal study, these 

analyses were conducted cross-sectionally because all independent variables were collected 

at the same time as sequencing. R package, igraph, and SAS 9.4 were used in data 

management and analysis.

Results

Descriptive analysis

A total of 417 HIV viremic MSM were eligible for virus sequencing, including 153 (36.7%) 

who were members of genetic clusters. The demographic characteristics of the sample 

stratified by cluster status are presented in Table 1. More than half of participants reported 

inconsistent condom use in the past 12 months and having a bacterial STI regardless of their 

clustering status. MSM who were not members of an HIV genetic cluster were more likely 

to have female sexual partners in the past 12 months (50.4%) than MSM in an HIV cluster 

(37.3%). ART use was low, only 6.5% among those with clustering and 12.1% among those 

without clustering.

Sequences were obtained from 376 (90.2%) prevalent and 41 (9.8%) incident HIV 

infections. The average genetic distance between sequences was 8.3% with a range of 0.00%

−15.37%. A total of 207 genetically-linked ties presented in 46 genetically-linked clusters 

(Figure 1). Among the genetically-linked clusters, 30 (65.2%) were comprised of pairs and 

10 (21.7%) included 3–5 participants. The most common HIV subtype was CRF02_AG and 

its associated recombinants, which was found in 319 (76.5%) sequenced participants. The 

largest HIV genetic cluster included 15 participants whose HIV was a mix of subtype A1 

and A1/U recombinant.

As depicted in Figure 1, 8 (50%) of the incident cases among clustered individuals were 

concentrated in the two largest clusters and not evenly distributed throughout the clusters. 

Participants within the same cluster were more likely to have the same STI and report 

similar frequencies of condom use, although condom use was low among all participants.

Model Results:

Tables 2 and 3 show the results of logistic regression models that evaluated factors 

associated with membership in an HIV genetic cluster. Compared to participants who self-

identified as bigender, male participants had 2.42 times higher odds of being in a cluster 

(95% CI: 1.08–10.78). Compared to MSM who reported sex with female partners in the past 

12 months, MSM with no female partners had 2.66 times higher odds of being in a cluster 

(95% CI: 1.97–6.80). Viral load was also significantly higher (AOR=1.72; 95% CI: 1.04–

2.86) in clustered participants.

In multinomial logistic regressions, participants with more than a high school education had 

higher odds of being in a large cluster (size 4 and above vs. un-clustered: AOR = 23.84; 95% 

CI: 2.66–213.49), but lower odds of being in a small cluster (size 2–3 vs. un-clustered: 

AOR=0.34; 95% CI: 0.08–1.51) as compared to not being in an HIV genetic cluster. 

Participants who self-identified as male had higher odds of being in a small cluster (size 2–3 

vs. un-clustered: AOR = 17.28; 95% CI: 2.93–102.12) than participants who self-identified 
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as bigender. Compared to MSM who reported sex with female partners in the past 12 

months, MSM with no female partner had 3.67 (95% CI: 2.05–10.64) times higher odds of 

being in a large cluster (size 4 and above) and 2.17(95% CI: 1.89–5.32) times higher odds of 

being in a small cluster (size 2–3), as opposed to un-clustered MSM. As shown in Table 3, 

ART-inexperienced participants had higher odds of being in a large cluster (≥4 cluster size 

vs no cluster: AOR = 6.61; 95% CI: 2.25–19.37), but there was no statistically significant 

difference between the probability of clustering between participants who were not in small 

clusters(size 2–3) and un-clustering participants. Compared to participants that were not 

members of an HIV genetic cluster, those within a large cluster (≥4) had slightly higher odds 

of having bacterial STIs (AOR = 3.98; 95% CI: 0.89–17.22), and those within a small cluster 

(2–3 cluster size) had higher odds of self-reporting receptive sex (AOR=3.48; 95% CI: 2.03–

5.92) and versatile sexual position(AOR=2.87; 95% CI: 2.41–3.41), as opposed to insertive 

sexual position.

Inferences drawn about risk behaviors associated with genetic clustering were relatively 

robust across sensitivity analyses using different genetic cut-offs to determine clusters 

(Supplemental Tables 1 and 2). Although not all results were statistically significant, the 

direction of most of the results was consistent. Younger age (20–25 vs. 25 and above), no 

female partners, high viral load, ART inexperience, and having bacterial STIs were 

associated with increased odds of cluster membership across different cut-offs. Male gender 

identity was positively associated with clustering when lower cut-offs were used (1%, 2%) 

but the association was reversed with a higher cutoff of 4.5%. Higher CD4 count was 

associated with higher odds of clustering probability at the 4.5% cutoff but not significant 

for the lower cutoffs.

Permutation tests found no association between HIV genetic links and ART use (ρ= 0.12, 

ASL=0.20), STI status (ρ= 0.09, ASL = 0.31), number of male partners (ρ= 0.02, ASL = 

0.78) or consistent condom use (ρ= −0.04, ASL = 0.65).

Discussion

In the setting of a mixed epidemic, we found that one-third of Nigerian MSM living with 

HIV in the TRUST/RV368 cohort were genetically clustered. MSM who were ART-

inexperienced and only engaged in same-sex sexual practices were more likely to belong to 

any genetic cluster and particularly a large cluster (≥4). MSM who were employed, had a 

higher education level, and had bacterial STIs were also more likely to be in a large genetic 

cluster (≥4). Although clustered individuals were more likely to engage in high-risk 

behaviors, permutation tests suggest that this pattern was not significant at the dyadic level. 

The HIV risk behaviors of one linked individual were not directly correlated with the risk 

behaviors of his linked partner.

Previous studies on genetic clustering in countries across sub-Saharan Africa found smaller 

phylogenetic clusters (size <5) than observed in this study [1, 8, 9]. Our largest reported 

cluster was composed of 15 individuals and 5 out of 46 clusters were composed of more 

than 6 individuals. If we increased the genetic distance threshold for defining a cluster to 

4.5%, as used in de Oliverira et al.[6], the largest cluster would be composed of 255 
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individuals. Fifty percent of the MSM in this study reported having at least one female 

partner, consistent with our prior work showing that a substantial portion of female HIV 

infections was attributable to transmissions from MSM reporting unmet HIV prevention 

needs [26]. However, since we only included male participants in our study, further research 

is needed to verify any linkages between Nigerian MSM and heterosexual female 

populations. Recruitment into the cohort used RDS, which tends to recruit participants who 

are alike and connected, thereby potentially contributing to the clustering pattern observed. 

However, among 207 genetically-linked pairs, only 7 were directly linked by RDS. The 

geodesic distance from RDS recruitment chains was not correlated with genetic distance 

(Pearson’s correlation: ρ = 0.05). Previous studies in El Salvador[34] and Croatia[20] also 

found no correlation between RDS recruitment links and phylogenetic distances. Since the 

RDS recruitment strategy did not restrict social contacts between participants and limited the 

number of recruitments, the degree to which the transmission network overlapped with the 

RDS network is unclear.

Recent infections were more likely to cluster than prevalent infections with 50% of the 

incident cases concentrating in the two largest genetically-linked clusters among clustering 

participants. The clustering of incident cases may be due to an increased risk of transmission 

among larger clusters. Another possible explanation is that new infections are more 

contagious and more likely to produce other incident cases because of their higher plasma 

HIV levels [35, 36]. The high transmission rate during acute HIV infection, combined with 

our finding that participants in large clusters were less likely to be on ART, underscore the 

urgency of ART initiation as soon as possible after seroconversion. HIV prevention 

interventions that focus on sexual networks of recently diagnosed individuals and network-

based HIV screening among key populations may facilitate early diagnosis and treatment.

Our data also highlight the burden of sexually transmitted co-infections among HIV genetic 

clusters. For the majority of participants, STIs were presumably acquired after the formation 

of phylogenetic linkages, suggesting that high-risk behaviors persisted after infection with 

HIV. Since bacterial STIs could facilitate HIV transmission, comprehensive HIV treatment 

packages should include condom education, STI screening and treatment, as well as ART to 

optimally curb further transmission for both HIV and STIs [28, 37].

There were several strengths in our study, including an RDS recruitment strategy that 

allowed us to sample a highly marginalized population of MSM in Nigeria, a prospective 

design that allowed us to characterize newly-diagnosed incident infections, and detailed 

behavioral data that allowed us to inform targeted intervention strategies. However, this 

study had some limitations. First, we could only sequence HIV from individuals who had a 

viral load greater than 1000 copies/ml, which may have introduced bias to our analyses. 

Among 968 HIV-infected participants in this cohort, only 43% had a high enough viral load 

to be sequenced and individuals on suppressive ART could not be included in these analyses. 

Beyond the TRUST cohort, this sequenced sample only represented approximately less than 

10% of the local MSM population (The local population size in Abuja was estimated 

through RDS scheme and self-reported network size by RDS Analyst[38–40]. Mean: 2470; 

95% CI: 2330–2920). The small sampling fraction limited our ability to infer the underlying 

transmission network. Second, we could only assess the association between HIV risk 
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behaviors and cluster membership at the aggregated level, which did not account for 

variations of each cluster. Third, like all genetic clustering studies, we were unable to 

determine whether the results of genetic linkage were due to direct or indirect transmissions.

Conclusion

We documented HIV genetic clusters among MSM in Nigeria, where a mixed HIV epidemic 

is disproportionately impacting key populations such as MSM. We found that MSM who 

were in HIV genetic clusters were less likely to report ART use, had high viral loads often 

related to recent HIV acquisition, and did not consistently use condoms, all of which are 

important targets for combination interventions to prevent onward HIV transmission. The 

high prevalence of bacterial STIs among MSM in HIV genetic clusters underscores the need 

for behavioral interventions that promote safer sex with early diagnosis and treatment of 

bacterial STIs. Ultimately, without evidence-based and human rights affirming 

implementation strategies to prevent the acquisition and transmission of HIV for all of those 

at risk, an HIV-free future remains improbable in Nigeria.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of risk behaviors in clusters.
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Table 1:

Sample characteristics stratified by cluster among MSM in Nigeria

Characteristics Not in a Cluster In a cluster Total P-value
1 RDS-Adjusted

N=264(63.3%) N=153(36.7%) N=417(100%) P-value
2

Categorical N (%) N (%) N (%)

Gender Identity

 Male 199(75.4%) 125(81.7%) 324(77.7%) 0.12 0.41

 Transgender Women 35(13.3%) 19(12.4%) 54(13.0%)

 Both Male and Female 29(11.0%) 8(5.2%) 37(8.9%)

Age 0.07 0.60

 16–19 27(10.2%) 24(15.7%) 51(12.2%)

 20–24 109(41.3%) 71(46.4%) 180(43.2%)

 >=25 127(48.1%) 58(37.9%) 185(44.4%)

Male Partners 0.81 0.42

 <=1 149(56.4%) 88(57.5%) 237(56.8%)

 >1 114(43.2%) 64(41.8%) 178(42.7%)

ART use 0.07 0.50

 ART Experienced 32(12.1%) 10(6.5%) 42(10.1%)

 ART Inexperienced 231(87.5%) 141(92.3%) 372(89.2%)

Education 0.71 0.56

 Above High School 235(89.0%) 141(92.2%) 376(90.2%)

 Less than High School 23(8.7%) 12(7.8%) 35(8.4%)

 Missing 6(2.3%) 0(0.0%) 6(1.4%)

Religion 0.09 0.71

 Christianity 192(72.7%) 123(80.4%) 315(75.5%)

 Muslim or Atheist 71(26.9%) 30(19.6%) 101(24.2%)

Occupation

 Employed 202(76.5%) 111(72.5%) 313(75.1%) 0.25 0.53

 Unemployed 57(21.6%) 41(26.8%) 98(23.5%)

 Missing 5(1.9%) 1(0.7%) 6(1.4%)

Consistent Condom Use

 Always 95(36.0%) 44(28.8%) 139(33.3%) 0.12 0.65

 Not Always 165(62.5%) 108(70.6%) 273(65.5%)

 Missing 4(1.5%) 1(0.7%) 5(1.2%)

STIs

 No other STIs 73(27.7%) 34(22.2%) 107(25.7%) 0.14 0.93

 Have other STIs 163(61.7%) 108(70.6%) 271(65.0%)

 Missing 28(10.6%) 11(7.2%) 39(9.4%)

Female Partner

 No Female Partner 130(49.2%) 95(62.1%) 277(66.4%) 0.01 <0.01

 Have Female Partner 133(50.4%) 57(37.3%) 190(45.6%)

Sexual Orientation 0.45 0.28
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 Gay 95(36.0%) 61(39.9%) 156(37.4%)

 Bisexual 168(63.6%) 92(60.1%) 260(62.4%)

WHO Stage 0.65 0.07

 Stage 1 222(84.1%) 130(85.0%) 352(84.4%)

 Stage 3–4 25(9.5%) 17(11.1%) 42(10.1%)

 Missing 17(6.4%) 6(3.9%) 23(5.5%)

Incidence 0.74 0.25

 Prevalent Cases 239(90.5%) 137(89.5%) 376(90.2%)

 Incident Cases 25(9.5%) 16(10.5%) 41(9.8%)

Sexual Position 0.01 0.43

 Insertive 43(16.3%) 13(8.5%) 56(13.4%)

 Receptive 56(21.2%) 53(34.6%) 109(26.1%)

 Versatile 162(61.4%) 86(48.6%) 248(59.5%)

 Missing 3(1.1%) 1(0.7%) 5(1.0%)

Subtypes 0.10 0.03

 A1 2(0.8%) 4(2.6%) 6(1.4%)

 CRF02_AG 154(58.3%) 90(58.8%) 244(58.5%)

 CRF02_AG recombinant 13(4.9%) 4(2.6%) 17(4.1%)

 CRF02_AG/B recombinant 21(8.0%) 11(7.2%) 32(7.7%)

 CRF02_AG/G recombinant 17(6.4%) 9(5.9%) 26(6.2%)

 G 38(14.4%) 15(9.8%) 53(12.7%)

 G-containing recombinant 1(0.4%) 5(3.3%) 6(1.4%)

 Others 18(6.8%) 15(9.8%) 33(7.9%)

CD4 Count(cells/mm3) 0.52 0.76

 >=500 45(17.1%) 29(19.0%) 74(17.8%)

 350–449 63(23.5%) 44(28.8%) 106(25.4%)

 201–349 72(27.3%) 41(26.8%) 113(27.1%)

 <=200 82(31.1%) 39(25.5%) 121(29.0%)

 Missing 3(1.1%) 0(0.0%) 3(0.7%)

Continuous Mean (SD) Mean (SD) Mean (SD)

Viral Load (Log10copies/ml) 4.61(0.83) 4.68(0.74) 4.63(0.79) 0.38 <0.01

Missing 28(10.6%) 11(7.2%) 39(9.3%)

1:
Chi-square p-value was reported excluding

2:
P-value for Rao-Scott Chi-Square test was reported
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Table 2:

Factors associated with cluster membership and size

Membership in a Cluster Cluster Size 2–3 Cluster Size>3

OR 95% CI OR 95% CI OR 95% CI

Age

 >25 Reference Reference

 20–25 2.04 0.76–6.21 2.15 0.89–5.17^ 1.85 0.29–11.66

 16–19 1.85 0.16–22.03 2.30 0.20–26.20 1.38 0.08–25.40

Gender Identity

 Both Male and Female Reference Reference

 Male 3.42 1.08–10.78* 17.28 2.93–102.12* 1.84 0.49–6.87

 Transgender Women 1.71 0.36–6.80 5.22 0.17–159.89 1.48 0.50–4.38

Education

 Less than High School Reference Reference

 Above High School 1.24 0.32–4.83 0.34 0.08–1.51 23.84 2.66–213.49*

Religion

 Muslim or Atheist Reference Reference

 Christianity 1.46 0.41–6.89 2.14 0.61–7.46 1.00 0.17–5.84

Occupation

 Unemployed Reference Reference

 Employed 1.14 0.49–4.09 0.71 0.18–2.89 3.41 1.89–10.70*

Sexual Orientation

 Gay Reference Reference

 Bisexual 1.31 0.96–1.79^ 1.87 0.74–4.68 1.02 0.40–2.55

Female Partner

 Have Female Partner Reference Reference

 No Female Partner 3.66 1.97–6.80* 3.17 1.89–5.32* 4.67 2.05–10.64*

log10 Viral Load 1.72 1.04–2.86* 2.08 1.08–4.02* 1.46 0.80–2.66

CD4

 >=500 Reference Reference

 350–449 1.21 0.57–2.57 0.84 0.25–2.84 1.82 0.53–6.31

 201–349 1.31 0.66–2.60 0.78 0.19–3.13 2.35 0.84–6.54

 <=200 0.85 0.27–2.61 0.72 0.10–5.00 0.99 0.40–2.42

Site

 Abuja Reference Reference

 Lagos 0.59 0.29–1.18 0.58 0.25–1.34 0.59 0.26–1.35

*
p < 0.05

^
p < 0.1 for trend

AIDS. Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LI et al. Page 17

Table 3:

Association between ART status, sexual behaviors, and cluster membership and size

Membership in a cluster Cluster Size

Cluster Size 2–3 Cluster Size>3

AOR
1 95% CI AOR

1 95% CI AOR
1 95% CI

ART use
1

 ART experienced Reference Reference

 ART inexperienced 2.82 0.79–10.14 1.86 0.48–7.20 6.61 2.25–19.37*

Condom Use
2

 Always Reference Reference

 Not Always 0.99 0.40–2.45 0.79 0.25–2.51 1.23 0.71–2.13

STI
2

 No other STI Reference Reference

 Have other STI 1.16 0.31–4.35 0.55 0.12–2.47 3.98 0.89–17.22^

Sexual Position
2

 Insertive Reference Reference

 Receptive 1.97 0.44–8.43 3.48 2.03–5.92* 1.24 0.15–10.10

 Versatile 1.90 0.69–5.23 2.87 2.41–3.41* 1.38 0.32–6.02

# of Male Partners
2

 ≤1 Reference Reference

 >1 1.32 0.78–2.29 1.42 0.67–3.06 1.24 0.73–2.08

1:
Each model was adjusted for age, education, sexual orientation, employment status, HIV incidence and study site.

2:
All the variables were fitted independently.

^
p-value <0.10

*
p-value <0.05
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