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Abstract

Motivation plays a central role in human behavior and cognition, and yet is not well-captured by 

widely-used artificial intelligence (AI) and computational modeling frameworks. This paper 

addresses two central questions regarding the nature of motivation: what are the nature and 

dynamics of the internal goals that drive our motivational system, and how can this system be 

sufficiently flexible to support our ability to rapidly adapt to novel situations, tasks, etc? In 

reviewing existing systems neuroscience research and theorizing on these questions, a wealth of 

insights for constraining the development of computational models of motivation can be found.
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Motivation for Motivation

Motivation lies at the heart of all cognition and behavior. We only think what we are 

motivated to think, and do what we are motivated to do. At some level, this is an empty 

tautology. But if we could construct an artificial cognitive system that exhibits human-like 

motivation, it would likely revolutionize our understanding of ourselves, by helping to 

unravel the details of how our motivational system works and how we can make it work 

better — e.g., most widely-used artificial intelligence (AI) / computational modeling 

approaches in this area are based on the reinforcement learning (RL) framework, which is 

rooted in the classic behaviorist tradition that treats the organism as a relatively passive 

recipient of rewards and punishments [1, 2]. These models typically have only one 

overriding goal (to accrue as much reward as possible), and although recent “deep” versions 

of these models have demonstrated spectacular success in game playing [3], these models 

remain narrowly focused on maximizing one objective, and do little to help us understand 

the flexibility, dynamics, and overall richness of human motivational life.
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By contrast, we are manifestly under the spell of our own internal motivations and goals, 

with many dramatic examples of the sheer power of these systems. Anyone who has been a 

parent can appreciate the transition that emerges around the age of 2, when your child 

suddenly starts to strongly want things, and really not want other things, to the point of 

throwing epic tantrums that clearly exceed any rational metabolic cost / benefit analysis. The 

current tragic epidemic of suicide is another stark indicator that our motivational systems are 

strong enough to override even our basic survival instincts. Likewise, the rational economic 

picture of human decision-making runs counter to the large numbers of voters who appear to 

disregard their own economic, health, and other considerations in favor of more strongly felt 

social affiliations and other powerful motivational forces. These have not been traditional 

targets of computational modeling, but perhaps they should become the main focus, to probe 

the deepest, darkest secrets of our motivational systems.

This paper highlights central challenges and progress in developing computational models of 

human motivation, focusing on a biologically-based approach involving interactions among 

different brain systems to understand how both the normal and disordered system functions. 

Two central questions, the answers to which would significantly advance our computational 

models, are:

• Can we specify with computationally-useful levels of precision the nature and 

dynamics of the internal goals that drive our motivational system?

• How can the motivational system be sufficiently flexible and open-ended to 

support the huge range of human motivated cognition and behavior, and our 

ability to rapidly adapt to novel situations, tasks, etc?

If good answers to these questions can be found, perhaps we will then understand the 

underlying basis of human flexibility, adaptability, and overall robustness, which remains 

unmatched in any artificial system, even with all the recent advances in AI.

The Nature and Dynamics of Goal States

It is broadly accepted that we can usefully characterize our motivational systems in terms of 

internal goals, which serve as the core construct for understanding how motivated behavior 

is organized toward achieving specific desired outcomes [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17]. But defining with computational precision exactly what a goal is, and how it 

actually functions within the biological networks of the brain, remains a central challenge. 

An important point of departure is to at least assert that active goal states ultimately 

correspond to states of neural activity in the brain, which are architecturally centrally 

positioned to drive behavior in ways that other neural activity states are not. This central, 

influential status of goal-related activation states implies, under most mechanistic attempts 

to define properties of conscious awareness [18, 19], that typically they should be something 

we’re aware of. However, that does not mean that we are necessarily aware of the various 

forces driving the activation of active goal states in the first place [14] — this is a major, but 

separable topic that will not be pursued further here.

A major challenge here is that the term goal can refer to many different things. Perhaps this 

can instead be turned into an opportinity, by adopting a distributed, multi-factorial model of 
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goal states (Figure 1). Specifically, we can think of an overall goal state as composed of 

multiple interacting yet distinguishable components, with good support for at least the 

following three major components based on a substantial body of systems neuroscience 

research and theory [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 17]:

• Internal representations of biologically and affectively salient outcomes, e.g., the 

unconditioned stimulus (US) of classical conditioning, including food, water, 

social (vmPFC), specifically including the orbitofrontal cortex (OFC), plays a 

central role in actively maintaining and tracking these US-like states (which are 

richer and more stimulus-specific than pure “value”), and OFC damage impairs 

the ability to adapt behavior to rapid changes in these US outcomes [16]. As in 

classical conditioning theory, a critical feature of these US-like representations is 

that they provide a biologically-based a-priori grounding to the entire 

motivational system: goals are not purely arbitrary and fanciful, but rather are 

ultimately driven by core biologically-based needs. There is an extensive 

literature on drives going back to Hull [34], and Maslow’s hierarchy of needs 

[35], which relate to this essential component of motivated behavior, and modern 

neuroscience research suggests that many different specialized subcortical areas, 

including the amygdala and hypothalamus for example, are the source of neural 

projections that converge into the OFC to anchor our highest-level cortical goal 

states [21].

• Sensory-motor plans that specify how behavior and cognition should be directed 

to achieve the desired outcomes. Extensive research indicates that networks in 

the dorsolateral prefrontal cortex (dlPFC) support such representations, and 

strongly influence other brain areas in support of such plans [36, 37, 38]. For 

example, scoring a goal in a game (using a particular strategy) is an action-

oriented, plan-level “goal” for achieving the outcome-goal of winning. The 

dlPFC also interacts extensively with the parietal lobe, which represents the 

sensory aspects of the action plan, e.g., the visualization of the ball going into the 

net.

• Integrated utility combines information from the above components to determine 

the net balance between the value of the potential outcome (in OFC) against the 

relative costs and effort associated with the specific plan being considered to 

obtain that outcome (in dlPFC). There is extensive evidence that the anterior 

cingulate cortex (ACC) encodes this integrated utility information, including 

uncertainty and conflict signals associated with potential action plans [39, 40].

All of these brain areas (and other related neighboring areas, such as the anterior insula and 

broader vmPFC) interact through extensive interconnectivity in the process of converging on 

an overall goal state. This goal state in turn drives subsequent behavior in accord with the 

engaged action plan, with extra attentiveness to progress toward, and opportunities 

consistent with, the expected outcome. The ACC state may play a critical role in energizing 

behavior in proportion to the net overall utility [41, 42]. A critical advantage of 

incorporating these multiple factors together under the goal construct is that they all should 

mutually interact in the goal-selection process: the specific sensory-motor plans necessary to 
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achieve a given affectively-salient outcome must be appropriate to the specifics that 

particular outcome (indicating the need for more than purely abstract value representations), 

and the integrated utility obviously depends on both maximize overall utility.

Computationally, this process of converging on an overall goal state can be described as a 

parallel constraint satisfaction process [44, 45, 46], where many individual factors, encoded 

directly via rates of neural firing communicated over learned synaptic weights, mutually 

influence each other over a number of iterative step-wise updates to converge on an overall 

state that (at least locally) maximizes the overall goodness-of-fit between all these factors. 

The properties of this system may explain how unconscious factors can come to influence 

overt behavior in the course of solving the reduction problem of choosing one plan among 

many alternatives [47, 48]. We have implemented this process in two related models [43, 46] 

as illustrated in Figure 2, both of which demonstrate the importance of this interactive, 

constraint-satisfaction process of goal selection.

This notion of tightly interacting yet functionally separable brain areas can help make sense 

of empirical data showing that while individual neurons throughout all of these areas exhibit 

tuning for each of the above factors, more comprehensive population-code data in monkeys 

shows clearer differences in overall coding across these areas, in ways that correspond nicely 

with the above functional account [30, 49]. The separability of these areas also aligns with 

the separate loops of interconnectivity between these frontal areas and corresponding basal 

ganglia areas [20, information as part of the overall ventral pathway, while ACC encodes 

action-based affective information as part of the dorsal pathway [51].

Finally, as noted above, these high-level, cortical systems interact extensively with the many 

different subcortical affective / motivational areas including the amygdala, hypothalamus, 

lateral habenula, and ventral striatum (nucleus accumbens), which in turn modulate the 

firing of deep midbrain neuromodulatory systems including the ventral tegmental area 

(VTA) dopaminergic system, and the serotonergic system in the dorsal raphe nucleus. These 

neuromodulators in turn shape learning throughout the affective / motivational system, 

focusing learning on affectively-significant, unexpected outcomes. Computational models of 

these systems at multiple levels of analysis show how these interacting systems can produce 

the signature phenomena of classical and instrumental conditioning, thereby explaining how 

perceived rewards and punishments can modulate behavior [52, 53, 54, 55].

In summary, from the above discussion, the existing systems neuroscience literature can 

provide a specific and concrete basis for developing computational models of how 

componential, distributed goal states could work together to guide behavior in 

motivationally-appropriate ways. The detailed way in which any given specific goal state 

might come into activation may be complex, chaotic, and difficult to explain [14], but 

hopefully we can at least articulate the broader principles and organization of the neural 

systems involved, and the computational models can provide a critical bridging link between 

these neural systems and overall adaptive behavior.
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Temporal Dynamics of Goal-Enaged vs. Goal-Selection States

Another major set of questions for computational models concern the temporal dynamics of 

when these goal states get activated, how long they are maintained, and how the system 

knows when a goal has been completed, and can therefore move on to another. Interestingly, 

our everyday subjective vocabulary characterizes these goal dynamics well, providing at 

least some potential insight into how the neural system functions. We experience satisfaction 
and pleasure when our goals are achieved, frustration and anger when they are impeded, and 

disappointment, sadness, and rage when we are forced to finally give them up. Boredom 
dominates when we can’t find anything interesting to engage in, and the aversiveness of this 

state suggests the overall importance of having actively-engaged goals [56]. The broad scope 

and likely universal nature of these of states associated with goal-driven processing suggests 

that our brains have biologically-grounded, primary motivational / affective states associated 

with keeping ourselves in a productive goal-engaged mode of functioning.

Indeed, one of the most effective components of the standard treatment for major depressive 

disorder is the concerted reestablishment of basic goal-engaged behaviors, known as 

behavioral activation [57]. Self actualization, or the achievement of major life goals, confers 

a broad sense of experiencing higher levels of adversity and challenge on a moment-to-

moment basis [58]. The importance of these goal-oriented states for our everyday lives again 

points to the centrality of motivation for understanding human cognition, and a key 

computational modeling challenge is to construct the necessary metacognitive monitoring 

and motivationally-significant grounding to enable a model to capture the corresponding 

goal dynamics. We really need our models to experience something like frustration when we 

impede their ability to make progress on goal states that were activated through their own 

constraint-satisfaction process!

Further insight into these dynamics comes from considering the puzzle of procrastination: if 

goal achievement is so rewarding, why do we procrastinate so much? This and other 

interesting phenomenology can be explained by considering the different forces in play at 

two different points in the overall goal dynamics [8, 12, 13, 43, 59]: when you are currently 

engaged in pursuing an active goal (goal-engaged), versus when you are selecting the next 

goal state to engage in (goal-selection). These are labeled postdecisional or volitional vs. 

predecisional or motivational according to the Rubicon model [13]. In the goal-engaged 

state, the brain develops a form of tunnel-vision, and can become obsessed with completing 

the goal, sometimes to the point of neglecting other important needs. Video games in 

particular have perfected the engagement of this state, by providing incremental positive 

rewards and indicators of progress toward the goal, which seem particularly important for 

sustaining the goal state. In recent years, many activities have become “gamified” by 

adopting this same strategy, with exercise equipment, point cards, and especially social 

media apps tapping into this same drive to “keep surfing that wave of progress toward your 

goal.” Giving up on our goals is aversive, so even if we no longer value the outcome that 

much, it is hard to stop. How many times have you finally managed to disengage from an 

addictive game, or binge-watching a TV series, only to realize with disgust how much time 

has been wasted on a seemingly meaningless activity?

O’Reilly Page 5

Trends Cogn Sci. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is precisely this obsessive, locked-in nature of the goal-engaged state that requires the 

goal-selection process to be cautious and careful. In effect, your brain knows that whatever 

goal you end up selecting to engage in, you will run the risk of overcommitting, so it works 

extra hard to ensure that only the best goals are selected. But what is best for your brain’s 

reward pathways may not be what you rationally consider to be the best. Your brain evolved 

in times of scarcity and challenge, and thus a quick, safe, highly-rewarding outcome is 

generally preferred over a longer-term, more uncertain gamble [60] — this is the same 

dynamic for why we prefer sugary and fatty foods, instead of the longer-term benefits of 

healthy vegetables etc. This is also why you tend to gravitate toward simpler, more satisfying 

tasks when faced with the unwelcome prospect of writing that overdue paper, paying those 

bills, doing your taxes, or replying to those more difficult emails that have been festering in 

your inbox. Your brain is just being “rational” in choosing the most immediately rewarding 

goals for you. To overcome this biological bias, you must somehow align your sense of 

value with those things that you actually need to do. And that is where deadlines come in: 

they force the issue and finally get that difficult task over threshold. feeling that it wasn’t so 

bad after all (only to forget it again in time for the next such difficult task). This discrepancy 

clearly demonstrates that we have fundamentally different value functions operating during 

goal selection vs. the goal engaged state, and computational models will need to incorporate 

these state-dependent differences in value. Heckhausen, Gollwitzer and colleagues have 

published several studies demonstrating the differences between these states, providing 

further potential targets for computational models [13].

Interestingly, the opposite of procrastination, precrastination, has also been found, where 

people prefer to get a more difficult task out of the way first [61]. This reversal of the usual 

pattern may be attributable to the desire to reduce the dread or weight of more difficult tasks, 

which is another countervailing motivational force that helps mitigate against 

procrastination. The exact balance of these forces in any given situation may have to do with 

the perceived inevitability of the different tasks — if it is clearly not possible to put off the 

more difficult task, then it makes more sense to get it out of the way first, as that will lighten 

your mental burden.

These kinds of pervasive mental phenomena that are strongly tied to the dynamics of goal 

activation and completion provide concrete targets for computational modeling, and are 

further evidence for the central importance of goal states in shaping our mental lives. 

Computational models will likely require built-in motivational drive states associated with 

all of the above dynamics (satisfaction, disappointment, etc) to keep the system productively 

engaged in a sequence of goal selection and completion cycles. The breakdown of various 

elements in this overall dynamic could lead to the emergence of a depressive state, which 

produces a self-reinforcing feedback loop of disappointment and sadness associated with the 

lack of goal engagement (and associated feelings of lack of overall self-efficacy and self-

worth).

The prevalence of depression, and the diversity of etiologies that all converge on the same 

general dysfunctional behavior, suggests that the balance of this goal-driven machinery may 

be relatively delicate overall. Although it sounds a bit creepy in an uncanny-valley sense, 

there is no obvious theoretical reason why computational models could not exhibit all of 
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these kinds of dynamics, and thus provide significant insights into the complex emergent 

dynamics of these motivational systems. The existence of such models would likely 

undermine the widely-held belief that it is precisely this capacity for complex emotional and 

motivational dynamics that makes us uniquely human.

Flexibility, Novelty, and the Importance of Sequential Processing

Let us now turn to the second major question posed at the outset: how can the motivational 

system be sufficiently flexible and adaptive to account for these signature properties of 

human behavior and cognition? The central hypothesis considered here is that the 

distributed, multifactorial nature of goal states, along with basic physical constraints, 

converge to require goal-related processing to be fundamentally sequential in nature, and 

this sequentiality in turn [46].

Physically, we can generally only do one thing at a time (walking and chewing gum being 

the exception rather than the rule), and this constraint appears to extend into the cognitive 

realm as well [62]; apparent multitasking is usually accomplished by rapid switching 

between tasks. As such, goal selection represents the fulcrum by which otherwise parallel 

processing systems in the brain must produce a serial sequence of individual actions, 

carefully selected to optimize this extremely limited serial resource. The parallel constraint-

satisfaction process that drives goal selection must therefore properly integrate the many 

different factors relevant to the current situation (internal body state, external cues and 

constraints, etc) to come up with a plan that satisfies as many of these constraints as possible 

within a given plan of action.

The transition to a serial mode of processing, while slower overall, also affords many 

benefits, which can be summarized by “the three R’s”: Reduce, Reuse, and Recycle. Serial 

processing reduces binding errors that would otherwise arise from considering multiple 

options at the same time, across multiple distributed brain areas. For example, if the ACC 

activates an “effortful” representation in response to multiple different dlPFC plans being 

considered in parallel, how does the system know which plan is being so evaluated? This is a 

widely-recognized problem for parallel distributed systems [63], which is avoided by only 

considering one potential plan at a time, so that the associated representations across the rest 

of the brain areas can be assumed to reflect the evaluation of that one plan. This is a key 

feature of our existing models of this parallel distributed constraint satisfaction process [43, 

46] (Figure 2). However, even when the focus is on one particular goal, other goals (e.g., 

longer-term ones) can still inject relevant constraints into the process, and thus influence and 

integrate across time scales, etc.

In addition, serial processing enables the same representations to be reused over time, 

greatly facilitating the ability to transfer knowledge from one situation to another, and 

supporting the ability to make reasonable decisions in novel situations. For example, a single 

common distance representation could be used in many different sequential goal selection 

contexts to help compute expected time and effort costs, whereas a parallel system would 

require multiple such representations to avoid interference.
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Finally, serial processing allows prior states to recycle or reverberate over time, 

contextualizing the evaluation of subsequent processing with some of the main conclusions 

derived from earlier processing steps. In contrast, purely parallel systems require dedicated, 

separate substrates for each type of processing being in done in parallel, and it is often 

challenging or even impossible to ensure that the proper information and constraints are 

communicated across each of these parallel channels. This is the fundamental reason why 

even relatively simple machines can be universal computational devices (i.e., Turing 

machines), but parallel computers must be carefully configured to achieve specialized 

computational functions (and many problems are simply not computable in parallel due to 

mutual interdependencies). Thus, to achieve this same kind of universal, flexible 

computational ability, the brain must likewise rely on fundamentally serial processing. 

imposing sequential processing on an otherwise fundamentally parallel distributed neural 

computer is the basal ganglia [46, 32], as featured in the ACT-R production system model 

[64, 65, 66]. The basal ganglia has opposing Go vs. NoGo pathways [67, 68] that compete to 

decide whether to engage a proposed goal state that is currently activated and being 

evaluated in parallel across the distributed cortical representations [46]. If the basal ganglia 

registers a NoGo (based on its history of dopamine-modulated learning; [55, 69]), then the 

process is iterated again with a new plan that emerges from the ashes of the previous one, 

and so on until something gets the basal ganglia’s Go approval, subject to relevant time and 

other constraints, etc.

Thus, the basic limitations against doing multiple things at the same time can actually give 

rise to a much greater level of flexibility enabled by serial processing. The frontal cortex and 

basal ganglia may have initially evolved to support basic motor action selection, but it is 

notable that these very structures are among the most enlarged in humans, and our unique 

symbolic cognitive abilities may represent the further development of these serial processing 

mechanisms, to produce a powerful integration of both massively parallel and flexible serial 

processing [70].

Concluding Remarks and Outstanding Questions

In summary, there are considerable constraints and relevant data for developing 

computational models of distributed goal representations that capture the differential value 

functions associated with goal-selection vs. the goal- engaged state. Furthermore, if these 

models operate with significant serial dynamics, they can achieve greater flexibility, at the 

cost of slower overall functioning. Managing the complexities of these serial dynamics is 

notoriously difficult in complex recurrent networks, so this represents a major challenge, as 

well as opportunity.

Many important further questions arise directly from the ideas discussed here (see the 

Outstanding Questions box), including major issues regarding the relevant time scales over 

which goals operate, and how the longer-term goals interact with the more immediate, active 

goal states that drive online behavior. Hierarchical models are appealing [17], but a more 

heterarchical framework may be more flexible, with longer-term goals providing various 

forms of context and constraint that guide the ongoing dynamics of goal selection and goal 

enaged pursuit. In any case, understanding the basic properties of goal dynamics and 
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learning at the simplest level would likely provide important insights into these bigger 

questions. There is also recent work within the machine learning / AI community that is 

adapting traditional RL algorithms to include multiple goals and related motivational issues 

[71, 72].

Thus, there are many exciting open challenges in understanding the nature of human 

motivation, and this untapped frontier has great potential for basic and applied scientific 

benefits. Fundamentally, we all seek control and self-determinism most strongly, and 

understanding how dissonance reduction mechanisms) can provide deep insights into why 

we can at once be so manifestly irrational and yet much more adaptive, robust, and flexible 

than any existing artificial system.
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Highlights

• Motivation can be operationalized in terms of goals, which are distributed and 

multifactorial, including: biologically and affectively salient outcomes, 

sensory-motor plans, and integrated utility representations. Different 

frontostriatal loops are specialized for each of these factors, involving the 

OFC, dlPFC, and ACC, respectively.

• We appear to have different value functions when considering potential goals 

to pursue, compared to when we are engaged in pursuing an active goal: the 

goal selection phase is relatively conservative because the goal engaged state 

is so dominated by pursuit of the active goal. This can explain procrastination 

and other phenomena.

• The coordination and binding across these distributed goal representations 

during planning and decision making requires serial processing, which also 

has the benefit of enabling flexible reuse of processing systems across time, 

resulting in serial Turing-machine like flexibility.
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Outstanding Questions

• What other components or factors are represented in distributed goal states, 

and which brain areas are critical for such representations?

• What kinds of monitoring or metacognitive signals are required for 

implementing computational models of motivational states like satisfaction, 

frustration, boredom, etc? These involve tracking progress toward achieving 

desired outcomes — how is this progress tracking encoded in the brain, and 

how does it connect to central affective brain systems involved in dopamine 

regulation, etc?

• The most important specific version of the previous question is how we 

determine when a goal has been accomplished? Is it just the first sight or first 

taste of a desired outcome, or do you have to consume the whole thing? 

Likewise, how do secondary reinforcers like money, which can be very 

abstract these days, drive primary reward pathways? These issues have critical 

implications for all aspects of learning, as they determine when a phasic 

dopamine signal occurs.

• How are different time scales of goals encoded? Are the intuitive inner and 

outer loops of subgoals and goals represented by distinct neural systems, or is 

everything just interleaved within a common distributed system that unfolds 

over time?

• How are dlPFC plans represented such that they can bias the unfolding of a 

sequence of actions over time to accomplish specific goals? In effect, they 

function like a computer program — how close is this analogy and are there 

neural equivalents of core elements such as loops, conditionals, subroutines, 

variable binding, etc?

• To what extent can existing reinforcement-learning computational 

frameworks be extended to incorporate the richer motivational systems 

implicated in this paper?

• How can novel goal states be learned? Many models assume a preexisting, 

limited vocabulary of possible goals, but human goals are open-ended and 

endlessly creative. The ultimate challenge here is to understand how 

“arbitrary” patterns of neural activity turn into something that can actually 

motivate and guide behavior toward achieving specific, desired outcomes.
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Figure 1: 
Schematic for how 4 different anatomically-defined loops through the frontal cortex and 

basal ganglia (Alexander, De-Long, & Strick, 1986) correspond to a three-factor distributed, 

componential goal state, which collectively drives concrete action selection in the fourth 

motor-oriented loop (supplementary motor area, SMA). Orbitofrontal cortex (OFC) 

maintains and tracks biologically-salient outcomes, dorsolateral prefrontal cortex (dlPFC) 

selects, maintains and guides sensory-motor plans, and the anterior cingulate cortex (ACC) 

integrates these factors, along with potential effort and other costs, in terms of overall utility. 

The consistent frontostriatal loops across these areas supports flexible, dynamically-gated 

active maintenance and updating of these distributed goal states (e.g., [32, 33])
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Figure 2: 
Computational model demonstrating how multiple separate goal-state components interact 

to produce coherent overall goal selection [43]. A simulated rat (named “emery”) forages in 

a plus-maze like environment, with four different possible primary value (PV) locations (red 

= meat, blue = water, yellow = sugar, green = veggies). In addition to these positive PV 

outcomes, each location can also have negative outcomes: e.g., veggies can be bitter, and 

meat can be rotten. For each run, emery experiences 2 states of negative body state 

depravation (e.g., thirst and need for vitamins from veggies), which drive goal selection. 

Emery processes a bitmap first-person camera view into the environment, to extract an 

invariant Object IT representation. The ACC ActPlans units encode the 4 different potential 

Targets to approach, coordinating the OFC PosLV (positive learned value) representations 

that learn the specific Target features associated with different PV outcomes, with the 

specific dlPFC motor plan required (approach target in this case). The NegLV OFC 
representation encodes negative outcomes associated with different targets, and helps 

constrain the target selection process. All of these PFC areas interact through bidirectional 

connections to settle on the Target that best satisfies all of these factors (constraint 

satisfaction). At that point, those PFC states are gated in (via simulated Ventral Striatum 

(VS) gating), and maintained during the goal engaged period. These top-down signals bias 

the dopamine-driving pathways in simulated amygdala (CeM, BLA to produce phasic 

dopamine signals in response to increments of progress toward the target state.
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