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2 Department of Physics, University of South Florida, Tampa, FL, United States of America

☯ These authors contributed equally to this work.

* martin.wurtele@unifesp.br

Abstract

The elucidation of mechanisms behind the thermostability of proteins is extremely important

both from the theoretical and applied perspective. Here we report the crystal structure of

methylenetetrahydrofolate dehydrogenase (MTHFD) from Thermus thermophilus HB8, a

thermophilic model organism. Molecular dynamics trajectory analysis of this protein at differ-

ent temperatures (303 K, 333 K and 363 K) was compared with homologous proteins from

the less temperature resistant organism Thermoplasma acidophilum and the mesophilic

organism Acinetobacter baumannii using several data reduction techniques like principal

component analysis (PCA), residue interaction network (RIN) analysis and rotamer analy-

sis. These methods enabled the determination of important residues for the thermostability

of this enzyme. The description of rotamer distributions by Gini coefficients and Kullback–

Leibler (KL) divergence both revealed significant correlations with temperature. The emerg-

ing view seems to indicate that a static salt bridge/charged residue network plays a funda-

mental role in the temperature resistance of Thermus thermophilus MTHFD by enhancing

both electrostatic interactions and entropic energy dispersion. Furthermore, this analysis

uncovered a relationship between residue mutations and evolutionary pressure acting on

thermophilic organisms and thus could be of use for the design of future thermostable

enzymes.

Introduction

While considerable experimental and theoretical advances have been made, the precise under-

lying mechanisms of protein thermostability remain elusive. However, several important fea-

tures of thermophilic protein stabilization mechanisms have been identified. Thermostability

of proteins appears to involve enhancing the number of salt bridges, hydrogen bonds and

charged amino acids like arginines [1–3] and a better hydrophobic packing and/or larger

hydrophobic core including more amino acids like tyrosines [4–6]. Certainly, thermostability

can be thus linked to a multitude of different mechanisms with no single mechanism uniquely
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determining the thermostability of all proteins. One emerging motif is the possible presence of

a network of stabilizing charged residues in thermophilic and especially extreme thermophilic

proteins [7,8].

Recent studies have analyzed thermostability using sampling simulation techniques like

molecular dynamics (MD) [9,10]. Complemented with known analysis tools, these techniques

have been fruitful in characterizing the dynamic rather than just the static causes of thermosta-

bility. MD analysis has been complemented by more global analyses of trajectories, including

normal-mode analysis (NMA) [11], principal component analysis (PCA) [12] and residue

interaction network (RIN) analysis [13,14].

Here, we have solved by X-ray crystallography the structure of methylenetetrahydrofolate

dehydrogenase (MTHFD) from Thermus thermophilus. This organism is an extreme thermo-

philic model organism, which has been described as having an optimal growth ranging from

65˚C to 72˚C and being resistant to maximum temperatures of 85˚C [15,16]. MTHFD is a key

enzyme in the folate-dependent one carbon metabolism, which is important for the biosynthe-

sis of several amino acids like glycine, alanine and serine, as well as nucleotide bases, formy-

lated methionine and some pro-vitamins [17,18]. In some bacteria like E. coli, MTHFD (called

FolD in this species) is a dual function enzyme that catalyzes the conversion of 5,10-methyle-

netetrahydrofolate and NADP+ to 5,10-methenyltetrahydrofolate and NADPH (dehydroge-

nase function), and further converts the first product to 10-formyltetrahdrofolate

(cyclohydrolase function) [19] (Fig 1A). Some microorganisms have a separate enzyme for

catalyzing the second cyclohydrolase function (FchA) [20], and some species have an alterna-

tive pathway for 10-formyltetrahdrofolate production using formyltetrahydrofolate synthetase

(Fhs) [21]. In eukaryotes, MTHFD is an important anticancer therapy target [22,23].

To analyze possible determinants of Thermus thermophilusMTHFD (TtMTHFD) thermo-

stability, we have carried out 300 ns MD simulations of this enzyme at three temperatures

(29.9˚C / 303 K, 59.9˚C / 333 K and 89.9˚C / 363 K). Additionally, the enzyme was compared

with two related prokaryotic enzymes from the thermoacidophilic archaeon Thermoplasma
acidophilum (PDB identifier 3NGL) [24], which is known to grow at temperatures between

45˚C and 62˚C with an optimum temperature of 59˚C [25,26] and the mesophilic gram-nega-

tive opportunistic human pathogenic bacterium Acinetobacter baumannii (PDB identifier

4B4U) [27], which thrives between 25˚C and 45˚C, with maximum growth rates at 37˚C [28].

To analyze the obtained MD trajectories, we combined several well-known analysis tools such

as Principal Component Analysis (PCA) and Residue Interaction Network (RIN) analysis. For

rotamer analysis, we adapted methods from other research fields, like Gini coefficient analysis

and Kullback–Leibler (KL) divergence analysis. All these methods, together with clustering

methods, provide data and dimension reduction capabilities which we used to identify impor-

tant amino acids that determine the heat stabilization of the protein.

Principal component analysis (PCA) is a dimensionality-reduction method that can be

applied to simplify complex data sets [12]. Briefly, a covariance matrix of the atomic coordi-

nates of a MD trajectory is diagonalized to obtain its eigenvectors and associated eigenvalues,

which represent a measure of the main divergence of the original trajectory. Thus, PCA can be

used determine the major movements of proteins, which are called, in this sense, ‘principal

components’ (PCs).

Residue Interaction Network (RIN) analysis was carried out using the concept of between-

ness centrality (BC). Essentially, every amino acid in a protein (as represented by the position

of its Cα and Cβ atoms) is considered a node in an interaction network with the edges charac-

terizing node interaction defined when the Cβ atoms are located within a given cut off dis-

tance. The number of the shortest paths between two residues that pass through a chosen node
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is termed ‘betweenness centrality’ of the node. BC can be considered a measure of the struc-

tural prominence of a residue [13].

Gini coefficients, originally introduced in econometrics to describe the equality of income

distributions [29], are defined as the ratio between the areas under a true income distribution

and a total equality distribution. In our analysis, we borrowed this notion and applied it as a

simple measure of the breadth of distribution of side chain rotamers. Side chain rotamers are

defined by the usual χ-angle torsion conformations of a protein’s side chains [30]. Smaller

Gini coefficients indicate a rotamer distribution tending towards a uniform distribution. Neg-

ative differences of the Gini coefficients of rotamer distributions at two different temperatures

were interpreted as a measure of entropy-related energy dispersion effects.

Fig 1. MTHFD structure and function. (A) MTHFD catalyzes the conversion of 5,10-methylenetetrahydrofolate via 5,10-methenyltetrahydrofolate to

10-formyltetrahydrofolate in a NADP+ dependent manner. (B) Secondary structural elements of the T. thermophilusMTHFD dimer. Important structural

elements are indicated. LL: lid loop, NTH: N-terminal helix, SBD: substrate binding domain, CH: connector helix, NBD: nucleotide binding domain, CTH: C-

terminal helix. (C) 2Fo-Fc electron density map at the 1.0 σ level of the active site of T. thermophilusMTHFD showing the NADP+ nucleotide. (D) Alignment of

Thermus thermophilus (red) Thermoplasma acidophilum (yellow) Acinetobacter baumannii (blue) crystal structures. (E) Amino acid sequence alignment of

MTHFD from T. thermophilus, T. acidophilum and A. baumannii with secondary structure elements (α-helices, β-strands as arrows) of T. thermophilus
indicated above sequences. Numbering (indicated by dots) refers to the T. thermophilus sequence.

https://doi.org/10.1371/journal.pone.0232959.g001
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Gini coefficient analysis was additionally corroborated using Kullback-Leibler (KL) diver-

gence analysis, which is a finer measure of discrete probability distributions. KL divergence

(DKL), often called the relative entropy, is defined as

DKLðP jj QÞ ¼
X

Pilog
Pi
qi

� �

ð1Þ

where P and Q are two discrete probability distributions satisfying 0 < pi; qi < 1,
X

pi ¼ 1

and
X

qi ¼ 1. It was originally introduced by Shannon to express the information content of

a message transmitted to a receiver [31]. When the sender and receiver probability distribu-

tions share similar representations of a message’s information content, DKL(P||Q) vanishes.

Non-vanishing KL divergence is a qualitative measure of discrimination between sender and

receiver information content. Here, we interpret DKL(P||Q) to discriminate two side-chain

rotamer probability distributions at different temperatures in terms of information content

but, more importantly for our purposes, as an indication of entropy related energy dispersion

effects.

Finally, to combine these different data reduction methods, dimensionless Z-scores (in

form of standard deviations away from the mean) were introduced and clustering techniques

applied. Clustering is an unsupervised machine learning technique that groups objects based

on their features. Hierarchical clustering is based on distance connectivity [32] and was used

here to filter the MD analysis data for important residues involved in the thermostability of

TtMTHFD.

Methods

Cloning, expression and purification

T. thermophilusHB8 methylenetetrahydrofolate dehydrogenase (MTHFD, GenBank entry

Q5SJ94.1) was amplified via PCR amplification of genomic DNA (DSMZ—German Collection

of Microorganisms and Cell Cultures, Braunschweig, Germany) using the DNA oligonucleo-

tides 5’-GGCCGGAGATCTGTGGCGGCCCAGGTGCTTTCGGGACACGAG-3’ and 5’-GGC
CGGAAGCTTAGCCAGAAGCTCCATGGCGCCTCAAGAGGG-3’ (Exxtend, Paulı́nia, Brazil) as

primers and inserted into the BamHI and HindIII sites of the pQtev His-tag E. coli expression

vector (Protein Structure Factory, Berlin, Germany). The construct was confirmed by sequenc-

ing (Exxtend, Paulı́nia, Brazil). TtMTHFD was expressed recombinantly in E. coli BL21(DE3)

at 37˚C for 18h after induction in LB medium with 1 mM Isopropyl-ß-D-1-thiogalactopyrano-

side (IPTG). Cells were harvested by centrifugation at 4500 rpm for 15 min and resuspended

in lysis buffer consisting of 50 mM Tris–HCl pH 8.0, 200 mM NaCl, 10 mM imidazole, 1 mM

PMSF, 5 mM ß-mercaptoethanol, 1% Brij100, 1 mg mL-1 Lysozyme and 2 ng mL-1 DNAse.

The enzyme was purified from the soluble fraction by affinity chromatography as a 33 kDa

His-tagged protein using a 5 mL HisTrap Sepharose column (GE Healthcare) on an ÄKTA-

prime Plus liquid-chromatography system (GE Healthcare). After dialysis in 50 mM Tris–HCl

pH 8.0, 200 mM NaCl, 3 mM DTT, the enzyme was concentrated to 20 mg mL-1 using Amicon

Ultra-15 centrifugal filters (Millipore).

Crystallization and crystallography

TtMTHFD was crystallized by the hanging-drop method using 1 μL drop/1 μL reservoir ratio

conditions in 24-well plates under conditions containing 800mM Potassium Sodium Tartrate

and 100 mM HEPES buffer pH 7.5 as crystallization buffer. The obtained crystals were mea-

sured after flash-cooling in liquid nitrogen using crystallization buffer supplemented with 26%
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glycerol. Two datasets at 1.5406 Å and 1.4587 Å were obtained on a Rigaku MicroMax-007 HF

microfocus rotating anode diffractometer with an R-AXIS IV++ image plate detector at the

Analytical Center at the Chemistry Institute of São Paulo University (IQ-USP, São Paulo, Bra-

zil) and the MX2 Beamline at the Brazilian Synchrotron Light Laboratory (LNLS, Campinas,

Brazil) [33]. Crystallographic data were processed with XDS [34]. The structure of MTHFD

was solved by molecular replacement (MR) using the Phaser [35] module of PHENIX [36].

Electron-density maps were inspected and the structural model was built using Coot [37].

Molecular dynamics (MD)

MD simulations were carried out using the AMBER [38] simulation software package. Param-

etrization of the NADP+ nucleotide was performed using antechamber and the semi-empirical

AM1 with bond charge correction (AM1-BCC) method [39]. The MTHFD NADP+ complexes

were processed with tleap using the ff14SB AMBER force field for the protein and the General-

ized Amber Force Field (GAFF) for the nucleotide, neutralized with counter-ions and solvated

with the TIP3P water model in a cuboid integration box with 14 Å solvent margins from the

complexes. After structure minimizations, short heating MD runs and density equilibration

MD runs, 300 ns molecular dynamic production runs of all three dimeric complexes were per-

formed using the GPU-version of pmemd at three temperatures (303 K, 333 K and 363 K).

Production runs were carried out using 2 fs time steps, constant pressure with isotropic posi-

tion scaling, Particle Mesh Ewald (PME) periodic boundary conditions with an 8 Å classical

non-bonded cut off, a 2 ps collision frequency Langevin thermostat, the SHAKE algorithm

with bonds involving hydrogens constrained and bond interactions involving hydrogens omit-

ted. A total of 200.000 snapshots were produced. RMSD, RMSD per-residue and radius of

gyration analysis was carried out with cpptraj.

Principal component analysis

Principal Component (PC) Analysis was carried out to compare and analyze main trajectory

divergences between trajectories at two temperatures using cpptraj [40] as described by

Galindo-Murillo et al. [41]. Basically, both trajectories were concatenated, RMS-fitted to the

first frame and an average trajectory calculated that was fitted to all other frames. Next, the

covariance matrix between the three coordinates of all Cα atoms was calculated and diagonal-

ized to determine its eigenvectors and associated eigenvalues. The coordinates of the trajecto-

ries were then projected onto the eigenvectors to determine the influence of residues on the

principal components by scalar multiplication p ¼ hxi � e, where x are the three vector compo-

nents of the average position of each atom and e the corresponding vector components of a

specific eigenvector. A mass weighted sum of the P values of all atoms in a residue was calcu-

lated to obtain each residue’s participation on the specific principal component. Additionally,

principal component trajectory interpolations were carried out. Principal component distribu-

tion was evaluated by histograms in bins by projecting the Cα trajectory coordinates on the

corresponding eigenvector components. The obtained values were used to calculate interpo-

lated trajectories, such as P ¼ hXi þ lE, where hxi is the average coordinate over the whole

vector space and E a specific eigenvector and λ evaluated from the histograms.

Residue Interaction Network (RIN) analysis

RIN analysis was carried out using MD-TASK [13]. Trajectories were reduced to Cα and Cβ

atoms using cpptraj. Betweenness centrality (BC) was calculated using the calc_network.py

script. Networks at two different temperatures were compared using the compare_networks.

py script.
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Rotamer analysis

The rotamer distribution of the amino acid side chains (chip, chi2, chi3, chi4) of the proteins

were evaluated using cpptraj based on a library of the most common rotamers in protein struc-

tures [42], using the algorithm described by Haddad et al. [43]. Differences between the Gini

coefficients at different temperatures were calculated using following equation for the Gini

coefficients

G ¼

Xn

i¼1

Xn

j¼1

jxi � xjj

2n2hxi
; ð2Þ

where n is the total number of rotamers of an amino acid and xi is the observed number of the

ith rotamer and hxi is the average value of the rotamer sampled over a trajectory. The KL diver-

gence DKL(P||Q) was calculated using the distribution of side-chain rotamers relative to a uni-

form distribution of those side-chain rotamers.

Heat maps

For heatmap calculations, sequences were aligned with Clustal Omega [44] and inserts

between structures removed after manual inspection. Per-residue PCA component values

from temperature difference PCA analysis, Gini coefficient differences, temperature depen-

dent BC analysis values and difference KL (ΔKL) values for two temperature distributions

when compared with the corresponding uniform distributions were then loaded into a com-

parison matrix using Zi scores (based on the ΔKL, GCD, PC1, DBC for the three different tem-

peratures), where Zi ¼ ðx � hxiÞ=sdðxÞ. Besides correlation analysis, a hierarchical cluster

analysis was performed on the comparison matrix using the Python Seaborn library (https://

github.com/mwaskom/seaborn/tree/v0.8.1). Additionally, an overall per-residue Z-score was

calculated as z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX

z2

i

q

.

Residue identity histograms

Residues with similar composite Z-scores of a protein were binned. Then, the average amino

acid identity of these binned amino acids calculated in comparison with one of the other pro-

teins. Finally, the calculated amino acid identity values were plotted over the Z-score bins.

Graphical representations

Protein structures were rendered with PyMOL [45]. Molecular structures were drawn with

ChemSketch (Advanced Chemistry Development, Inc., Toronto). Graphs were drawn using

gnuplot (http://gnuplot.sourceforge.net/) or matplotlib [46]. For visualization of rotamers,

their MD trajectory rotamer library values were clustered after standardization and PCA anal-

ysis using the k-means clustering algorithm with the Scikit-learn python machine learning

library as described in https://medium.com/@dmitriy.kavyazin/principal-component-

analysis-and-k-means-clustering-to-visualize-a-high-dimensional-dataset-577b2a7a5fe2.

Results and discussion

The MTHFD fold

In order to gain more insight into the temperature resistance of T. thermophilusMTHFD

(TtMTHFD), we produced the enzyme recombinantly in E. coli BL21(DE3), purified and

PLOS ONE Thermostability Determinants of MTHFD

PLOS ONE | https://doi.org/10.1371/journal.pone.0232959 May 13, 2020 6 / 19

https://github.com/mwaskom/seaborn/tree/v0.8.1
https://github.com/mwaskom/seaborn/tree/v0.8.1
http://gnuplot.sourceforge.net/
https://medium.com/@dmitriy.kavyazin/principal-component-analysis-and-k-means-clustering-to-visualize-a-high-dimensional-dataset-577b2a7a5fe2
https://medium.com/@dmitriy.kavyazin/principal-component-analysis-and-k-means-clustering-to-visualize-a-high-dimensional-dataset-577b2a7a5fe2
https://doi.org/10.1371/journal.pone.0232959


crystallized the protein. The crystal structure was solved at 2.15 Å by molecular replacement

using the 3P2O PDB entry (MTHFD from Campylobacter jejuni) as a search model. The final

model included one chain of TtMTHFD, one NADP+ nucleotide molecule and 60 water

Table 1. Crystallographic data collection and structure refinement statistics.a

Crystallographic data collection statistics

Diffraction source MX-2 beamline, LNLS

Wavelength (Å) 1.4587

Temperature (K) 100

Detector PILATUS2M

Crystal-detector distance (mm) 205.12

Rotation range per image (˚) 0.1

Data range 1–1800

Space group P3221

a, b, c (Å) 121.36 121.36 59.62

α, β, γ (˚) 90.0 90.0 120.0

Mosaicity (˚) 0.221

Resolution range (Å) 39.42–2.152 (2.229–2.152)

Total number of reflections 209550 (6228)

Number of unique reflections 25688 (1122)

Completeness (%) 92.32 (38.23)

Redundancy 8.53 (2.96)

hI=sðIÞib 19.87 (0.85)

Rmeas (%) c 8.7 (143.1)

CC1/2
d 99.9 (43.3)

Resolution range (Å) 39.42–2.152 (2.229–2.152)

Completeness (%) 92.32 (38.23)

Number of reflections, test set 25581, 1283 (1044, 55)

Refinement statistics

Rwork Final e 0.2131 (0.3860)

Rfree Final f 0.2439 (0.4540)

Number of nonhydrogen atoms 2235

Protein residues 277

Water 60

RMSDg

Bonds (Å) 0.008

Angles (˚) 0.95

Average B-factors (Å2) 51.13

Ramachandran plot

Most favored (%) 97.45

Allowed (%) 2.55

Outliers (%) 0.00

aValues for the highest-resolution shell are shown in parentheses.
b Signal-to-noise ratio.
c Rmeas ¼ Shkl n= n � 1ð Þð Þ

1=2
Si jIhkl;i � Ihklh ijShklSi Ihkl;i , for n symmetry related refection intensities I

hkl
,
i
.

d CC
1/2

Pearson’s correlation coefficient calculated with data set randomly split in half.

e R
work

¼
P
jFo _ � Fc j _

P
Fo_, where F

o
Vand F

c
Vare the observed and calculated structure factor amplitudes.

f R
free

was calculated as R
work

with 10% of the data omitted from structure refinement.

g RMSD., root mean square deviations from ideal geometry.

https://doi.org/10.1371/journal.pone.0232959.t001
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molecules in the asymmetric unit. The model can be described after refinement by a crystallo-

graphic R factor of 21.3% with a corresponding Rfree of 24.4% (Table 1). TtMTHFD consists of

two α/β-fold sub-domains connected by two large α-helices, which are at the same time the N-

terminal and C-terminal α-helices. The N-terminal α/β-fold sub-domain is the catalytic

domain that binds the main substrate, and the C-terminal α/β-fold sub-domain is the nucleo-

tide (co-substrate) binding domain, which are variants of the structurally conserved Rossmann

dinucleotide-binding domain fold (Fig 1B). Both domains are interconnected by an extended

loop-helix-loop motif that we here termed ‘Connector Helix (CH) region’. In the nucleotide

binding domain, we were able to unambiguously identify and fit a molecule of NADP+ as

shown in Fig 1C. The obtained structure showed, as expected, a high degree of conservation

when compared to similar bacterial MTHFD structures (Fig 1D and 1E). In order to compare

TtMTHFD, we chose two related MTHFD structures from Thermoplasma acidophilum, an

organism with growth optimum between 45˚C and 62˚C (PDB entry 3NGL) and Acinetobacter
baumannii, an organism with growth optimum between 25˚C and 45˚C (PDB entry 4B4U).

Compared to the Thermoplasma acidophilumMTHFD (TaMTHFD) and Acinetobacter bau-
manniiMTHFD (AbMTHFD) structures, T. thermophilusMTHFD (TtMTHFD) showed an

overall RMSD of 0.98 Å (with an overall sequence identity of 36%) and an overall RMSD of

1.29 Å (with an overall sequence identity of 39%), respectively (Fig 1D).

Concerning salt bridges, both TtMTHFD and TaMTHFD have 67 charged surface amino

acids, while AbMTHFD has 57 charged surface amino acids. Conversely, using a cut-off value

of 4 Å, a higher amount of salt-bridges in the crystal structure of TtMTHFD (n = 26), when

compared with TaMTHFD (n = 16) and AbMTHFD (n = 10), could be identified. Interest-

ingly, again TtMTHFD showed a higher number of inter-chain salt bridges (n = 6) in compari-

son with TaMTHFD (n = 2) and AbMTHFD (none), indicating the importance of salt bridges

for the thermo-stabilization of dimers. Furthermore, TtMTHFD had a higher number of argi-

nine-formed salt-bridges (n = 23) compared with TaMTHFD (n = 5) and AbMTHFD (n = 6),

as expected for thermophilic proteins [47].

As crystal structures measured under cryo-conditions give a static view of proteins, 300 ns

molecular dynamics (MD) simulations of the dimeric form of all three proteins where carried

out at three temperatures (303 K, 333 K and 363 K). These temperatures partially represent the

appropriate temperatures for mesophilic organisms, like A. baumannii, a thermophilic organ-

ism like T. acidophilum and an even more thermoresistant organism like T. thermophilus. The

corresponding RMSD values over the trajectories of these simulations are shown in Fig 2A, 2B

and 2C and the corresponding per-residue average RMSD values of all non-hydrogen atoms

are shown in Fig 2D, 2E and 2F. Besides small trends, we could not detect significant shifts of

RMSD values (Fig 2A, 2B and 2C) nor the radii of gyration. The radius of gyration of the

monomers oscillated at the three temperatures around an average of 19.3 Å ± 0.2 Å for

AbMTHFD, 19.1 Å ± 0.2 Å for TaMTHFD and 19.4 Å ± 0.2 Å for TtMTHFD.

Regarding the RMSD values over time (Fig 2A, 2B and 2C), a slight trend to higher RMSD

values with temperature could be seen in all three proteins. This is especially true for the meso-

philic A. baumannii structure where a separation of the RMSD values could be seen, indicating

a possible partial denaturation of the protein with higher temperatures. Moreover, the per-resi-

due RMSD (Fig 2D, 2E and 2F) showed a similar distribution in all three structures. In this

analysis, a high correlation of RMSD values between the residues in each monomer of the sim-

ulated dimers could be observed. Pearson correlation coefficients ranged from 0.75 to 0.96

with an average value of 0.90, indicating a coherent behavior of the MD simulations. Higher

RMSD values correlated with loop regions, as expected. All three proteins showed similar dis-

tributions of RMSD values, with the notable exception of the T. acidophilum lid loop region,
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which showed a slightly lower RMSD values when compared to the homologous regions of the

other two structures (Fig 2D, 2E and 2F).

Principal component analysis

Because molecular dynamics is a thermodynamic sampling technique, we hypothesized that a

more systemic variation technique like principal component analysis (PCA) could be deployed

to extract the main distinctions in movement at different temperatures. Thus, to obtain more

insight on possible underlying mechanisms behind thermo-resistance, PCA was carried out so

that two temperatures were compared, e.g. comparing 303 K to 363 K trajectories.

Important insight can be gained by interpolating movements along the eigenvectors of the

PCs (Fig 3A, 3B and 3C). Several types of movements could be identified. The most promi-

nent movements were: opening/closing of the lid loop and different directed movements lead-

ing to opening/closing or distortion of the substrate binding domain. In the case of

TtMTHFD, displacements of Cα atoms between 303 K and 363 K showed precisely these two

movements. Firstly, the lid loop closes downwards in direction of the substrate binding site.

Secondly, the substrate binding domains followed a well-defined movement (1st PC, eigen-

value of 295, 2nd PC, with a similar eigenvalue of 231). These movements evolve around hinges

on the N-terminal helix and the region of the connector helix. Similar patterns could be

detected in the PCA of the 333 K to 363 K and 303 K to 333 K trajectories of TtMTHFD (not

shown). Altogether this indicates that TtMTHFD shows similar coordinated movements at

different temperature steps. In the case of AbMTHFD, the movements are similar. In the case

Fig 2. RMSD trajectory analysis. Comparison of RMSD plots (in Å) of Cα atoms of 300 ns MD simulations of (A) A. baumannii at different temperatures (303

K light blue, 333 K blue, 363 K dark blue), (B) T. acidophilum (303 K yellow, 333K light orange, 363 K dark orange) and (C) T. thermophilusMTHFD (303 K

light red, 333K red, 363 K dark red). Comparison of per-residue average Cα RMSD values (in Å) of (D) A. baumannii (E) T. acidophilum and (F) T.

thermophilusMTHFD with colors as shown above and secondary structure elements indicated in red (boxes for α-helices, triangles for β-sheet strands).

https://doi.org/10.1371/journal.pone.0232959.g002
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of TaMTHFD, the movements of the substrate binding domain look overall less coordinated,

implying possibly more distortions within this domain.

Fig 3. Principal component analysis. Comparison of 1st PC eigenvector component interpolations of Cα atoms of (A) A. baumannii (blue), (B) T. acidophilum
(yellow) and (C) T. thermophilus (red) MTHFD trajectories formed by concatenation of 300 ns of the 303 K and 363 K MD simulations indicates major

characteristic 1st PC movements/deviations of substrate binding domain and lid loop. (D) Comparison of amplitudes of first principal components (|PC1|) for

each residue of the three simulated proteins, colored as described above, showing important regions with high PC deviations, e.g. in TtMTHFD the lid loop

(amino acids 226 to 239), substrate binding domain (amino acids 26 to 107) and connector helix region (amino acids 108 to 136). Important amino acids of

each protein, selected by applying a 2 standard deviations over average value cut-off, are shown in the respective colors described above. In TtMTHFD lid loop

amino acids Arg 230, Val 231, Glu 232, Gly 233 and Arg 234 show elevated 1st PC values. In TaMTHFD the elements with high 1st PC values are found on

residues of the lid loop (Ile 223, Asn 224, Tyr 225, Val 230). Additionally, residues on structures opposite to the lid loop (e.g. Asp 37) and on the α4 helix (Val

104 and Arg 105), which is adjacent to the connector helix, show elevated 1st PC values. In the case of AbMTHFD, numerous amino acids show elevated 1st PC

values. These amino acids belong to either the lid loop (His 232, Pro 233, Arg 234, Asp 235, Gly 236) or the adjacent loops from the substrate binding domain

(Asp 42, Asp 43, Gly 44, Ala 45, Ser 46; Pro 70, Gln 71, Glu 72, Thr 73, Thr 74, Thr 75, Glu 76, Gln 77; Ala 102, Gln 103, Ile 104).

https://doi.org/10.1371/journal.pone.0232959.g003
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These main movements described here, are possibly a structural characteristic that is intrin-

sic to the dual α/β-domain fold of MTHFD, as similar movements were deduced by simply

comparing the two monomers in the dimer of previously described crystal structures [17,18].

In these dimeric crystal structures, superposition of the NCS related monomers show a torsion

of the substrate binding domain at ‘hinges’ on the N-terminal and α-helical connecting

domains, thus in regions very similar to the ones identified by our PCA. Therefore, overall,

PCA analysis confirms qualitatively the expected motion of the substrate binding domain.

To expand the overall motion to the residue level, trajectory projections were calculated. In

detail, these trajectory projections consist of multiplying the average coordinate of the Cα

atoms of the trajectories by the corresponding components of the eigenvectors to obtain the

absolute value of the contribution of each Cα to the 1st PC (Fig 3D). The most prominent

structural element showing high 1st PC values in TtMTHFD, TaMTHFD and AbMTHFD

includes the lid loop. Additionally, some of the loops from the substrate binding domain show

elevated 1st PC values, especially in TaMTHFD and mostly prominently in AbMTHFD. These

less thermoresistant proteins consequently showed more regions with elevated 1st PC values. It

is important to add that the average Pearson correlation coefficient of all trajectory projections

between both monomer sub-units of the dimer concerning the 1st PC was 0.48.

In conclusion, PCA highlighted the main differences between the protein at different tem-

peratures and could be described at the amino acid level using the vector projections. Many of

these displacements showed a similar trend at different temperatures, indicating that PC

movements are qualitatively based on the structural movements of the protein fold. We there-

fore set out to determine other important descriptions of differences in temperature that could

be linked to the observations derived from PCA.

Residue interaction networks

As PCA showed important conformational changes, we then carried out residue interaction

network analysis (RIN) on the trajectories of the three proteins (Fig 4A, 4B and 4C). Again,

these images showed subtle but detectable differences between the three proteins, this time

centered around the connector helix region. Like in the case of 1st PC projections, also RIN

analysis showed less movement for the more thermostable protein TtMTHFD. As a whole, the

BC distribution of amino acids affected by temperature jumps were similar in all three struc-

tures. AbMTHFD showed a movement that could be interpreted as partial denaturation.

TaMTHFD showed a border-line behavior between TtMTHFD and AbMTHFD. Regarding

BC differences, the more thermophilic TtMTHFD showed smaller movements reminiscent of

a more thermo-resistant protein. This allows to narrow down the analysis of movements to

obtain a more mechanistic view of the temperature effects. However, the interpretation of

both the PC and RIN analysis could be more related to effects than causes. Therefore, a more

causative explanation of the observed displacements was required.

Rotamers

To obtain more causative insight, we decided to undertake a rotamer analysis of the MD trajecto-

ries. This was initially motivated by the hypothesis that charged residues play a role in dynamic

thermostability by acting as energy dissipation structures [7,8]. Analysis of side chain conforma-

tions of amino acids carried out in crystal structures show a preference for a limited number of

the so called rotamer conformations. Thus, a published rotamer library was used to classify the

rotamers in the MD trajectories onto one of these conformations. Next, to describe rotamer dis-

tributions, Gini coefficients were introduced as a measure of these distributions. Gini coefficients

are normally used in econometrics to measure the inequality (higher Gini values) of income
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distributions. These Gini coefficients of the conformation distribution among the main rotamers

were calculated for the MD trajectories and compared at different temperatures for each protein.

Fig 4. Residue interaction network analysis. Comparison of per-residue betweenness centrality (BC) differences

(ΔBC) of Cα/Cβ atoms of 303 K/363 K trajectories of (A) A. baumannii (blue), (B) T. acidophilum (yellow) and (C) T.

thermophilus (red) molecular dynamics simulations showing important amino acids involved in fold stabilization with

important residues highlighted based on a cut-off value of 2 standard deviations. These amino acids cluster mostly

around the connector helix region in all three structures. (A) AbMTHFD shows significantly increased BC values in

several residues that make up the interface between the substrate binding, co-factor binding domain, connector helix

region and lid loop (e.g. His 98, Asp 118, Met 130, Gly 133, Ile 169, His 232 and Pro 233). The amino acids with the

greatest decrease in BC values are Phe 127 and Tyr 137 (together with Ala 136). The decrease in BC for these bulky

amino acids could indicate the onset of denaturation. (B) TaMTHFD shows a similar but stronger distribution of

residues with higher BC values when compared with TtMTHFD (e.g. Arg 105, Asn 106, Pro 118, Arg 128 and Glu

129). All these residues are centered on the connector helix region of the protein. (C) In TtMTHFD, the connector

helix showed elevated betweenness centrality (BC) for several of its residues, specifically His 120, Asn 123 and Gly 125.

Additionally, the hydrophobic residues from the lid loop region, Val 228 and Asn 229, showed significantly increased

BC values.

https://doi.org/10.1371/journal.pone.0232959.g004
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For the sake of simplicity, in the following we will refer to this ‘rotamer Gini coefficient’ simply as

the Gini coefficient. To detect essential amino acids with a particularly high differences in Gini

coefficients, residue plots were constructed (Fig 5A, 5B and 5C).

Because of the simplicity of Gini coefficients, we extended this analysis using the concept of

KL divergence. In computational science, KL divergence is an important measure of

Fig 5. Rotamer analysis. Per-residue rotamer distributions plotted as Gini coefficient differences (ΔGini, GCD) calculated for the 303 K and 363 K trajectories

of the (A) A. baumannii (blue), (B) T. acidophilum (yellow) and (C) T. thermophilus (red) molecular dynamics simulations. Additionally, the ΔKL (difference

Kullback-Leibler divergence) coefficients were calculated in a similar manner for the (D) A. baumannii, (E) T. acidophilum and (F) T. thermophilus
simulations. Important residues with a GCD and ΔKL cut off above 2 standard deviations, are highlighted showing a more uniform distribution in the more

thermophilic T. thermophilus structure than the other two proteins. (A) AbMTHFD shows several amino acids with significantly reduced Gini coefficients.

Whereas some residues are solvent exposed (His 232, Asp 235, Val 239, on lid loop; Asp 42, Glu 111, Gln 201, Asp 228 on other regions), several of these amino

acids are in the hydrophobic core (Val 40, Val 60, Val 122, Val 257, Val 261, Thr 265), confirming an indication of a beginning denaturation of the protein. (B)

TaMTHFD showed less residues with strongly reduced Gini coefficients (like Tyr 44, Val 59, Ser 178, Thr 191, Val 201, Gln 208, Thr 213, Ser 216, Asp 228, Thr

257) during the 303 K to 363 K transition. (C) TtMTHFD showed several surface-exposed mostly hydrophilic and charged amino acids with significantly

decreased values (e.g. Asn 229, Val 231, Glu 232 and Arg 234 from the lid loop, as well as Ser 7, Ser 27 and Gln 104 from other regions). Additionally, some

hydrophobic side-chain residues like Pro 41 and Phe 119 as well as hydrophobic core related residues like Val 47 and Val 217 showed significantly decreased

Gini coefficients. (D) Similar to the Gini analysis, AbMTHFD showed significantly lowered KL divergence for both solvent exposed and buried amino acids,

like His 232, Arg 234 (lid loop), Arg 166, Arg 191, Gln 201 (solvent exposed, nucleotide binding domain), Met 146, Met 174, Met 177 (buried, nucleotide

binding domain) Leu 125, Arg 129, (connector helix, solvent exposed), Met 130 (CH, buried), Val 261, Thr 265 (C-terminal helix); Arg 59 and Arg 107

(nucleotide binding domain). (E) TaMTHFD showed significantly lowered KL divergence for the solvent exposed amino acids Lys111, Arg 137, Arg 158, Arg

173, Arg 192, Arg 209 and the semi exposed residue Met 211 (from the nucleotide binding domain), Lys 13 (solvent exposed, N-terminal helix), Leu 32 and Val

59 (buried, substrate binding domain). (F) In TtMTHFD several residues showed significantly lowered KL divergence like Asn 229, Glu 232 (from the lid loop);

Arg 144, Arg 197, Arg 213, Arg 218 (solvent exposed charged amino acids from the nucleotide binding domain); Phe 119, Arg 126 (from the CH helix) and Arg

20, Arg 36, Arg 60, Arg 102 (all solvent exposed from the substrate binding domain). (G) Shows the average Gini coefficient values for the three proteins

colored in the scheme described above for the three temperatures, indicating that this parameter drops with higher temperatures as expected. (H) To

corroborate this, the KL divergence values were plotted for the three temperatures and three proteins.

https://doi.org/10.1371/journal.pone.0232959.g005
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comparisons between probability distributions. We thus calculated the KL divergence for differ-

ent temperatures in reference to a uniform distribution of rotamer probabilities, so as to corrob-

orate possible energy dissipation in rotamers (Fig 5D, 5E and 5F). Because of the uniform

distribution reference, reduced KL divergence values indicate a more uniform distribution.

As expected, in TtMTHFD most residues show a reduction in both KL divergence and Gini

coefficients upon transition from 303 K to 363 K (Fig 5C and 5F). Interestingly, in these fig-

ures, the more thermo stable TtMTHFD shows a slightly more uniform distributed peaks with

lower intensities, both for the Gini coefficients and KL divergence values. In addition, several

charged residues and hydrophobic residues appear to have especially reduced Gini coefficients

and KL divergences. This is particularly striking for the KL divergencies of TtMTHFD, where

most significant peaks are from charged residues (Fig 5F). Thus, the rotamer analysis confirms

the hypothesis that temperature resistant proteins have more charged large amino acids like

arginine and lysins on their solvent exposed surface possibly because these residues act like

heat energy dissipators. To corroborate the validity of Gini and KL analysis, average Gini and

KL values were plotted against the temperature (Fig 5G and 5H, respectively). As can be seen,

both average Gini and KL values are reduced with higher temperatures, corroborating their

validity.

Determinants of thermostability

Taken together all four analyses indicated important determinants of thermostability in

MTHFD. To obtain more mechanistic insight, it is however essential to integrate the dif-

ferent approaches in order to identify correlations between the different descriptors. To

scale these ΔKL, GCD, PC1 and DBC values at the three temperatures for comparison, dif-

ferent Zi scores (that is number of standard deviations from the mean) were calculated for

these per-residue values. Then, heat map analysis was carried out with the different per-

residue Zi scores using hierarchical clustering (Fig 6A). The clustering showed strong cor-

relations between the difference KL values (ΔKL) and the Gini coefficient differences

(GCD). Additionally, the 1st PC values (PC1) at different temperatures tended to correlate

with each other, as did the ΔBC values (DBC).

To highlight better the clustering of residues, composite per-residue Z-score, defined as the

RMS of the individual Zi, were calculated. When plotted on the structure, these residues with

high composite Z-scores are mostly of two kinds. They are mostly charged solvent exposed res-

idues or semi-buried hydrophobic residues (Fig 6B). As examples of these high composite Z-

score residues can be cited: Val 228, Asn 229, Val 231 and Glu 232 from the lid loop; Arg 213,

Glu 242, Glu 245 from the nucleotide binding domain; Glu 108, Phe 119, Pro 121, Arg 126,

from the connector helix region; Arg 102 from the substrate binding domain. Of these cited 12

residues, four are identically conserved in TaMTHFD and two in AbMTHFD. Except the

charged residues from the lid loop, all other charged residues from TtMTHFD mentioned

form salt-bridges. Thus, some of the residues with high composite Z-scores indeed are

involved in salt bridges, which appear to be one of the determinants of thermo stabilization of

TtMTHFD. Residues involved in salt bridges in this structure, have an average composite Z-

score of 3.8, which can be considered below 1 standard deviation (1.9) above the average com-

posite Z-score (2.9), indicating that not all salt bridges have elevated Z-scores. Regarding the

ΔKL value from the 303 K to 363 K jump, charged amino acids of TtMTHFD not involved in

salt bridges have a mean value of -0.14, whereas charged amino acids in salt bridges have a

value of -0.19. This is an interesting result, as it indicates that salt bridges have an elevated

capacity to absorb heat by energy dissipation. Thus, an important conclusion is that in

TtMTHFD a large amount of salt bridges probably contributes both statically, i.e. through
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more elevated Coulomb interactions, as well as dynamically, through higher energy dissipation

capabilities, to the stabilization of the protein.

Because it can be assumed that residues with high composite Z-scores probably are

structurally important for thermostability, average Pearson correlation coefficients for the

different evaluated parameters were calculated. These Pearson correlation coefficients are

shown in Table 2 for all residues of TtMTHFD. Interestingly, a high correlation was found

between GCD and ΔKL (0.68) and a slight correlation between PC1 and GCD (-0.37).

However, when the residues with high composite Z-score (i.e. with more than two stan-

dard deviations from the average) were compared, more significant correlations for GCD/

ΔKL (0.74) and PC1/GCD (-0.50) (Table 3) could be obtained. Thus, a high composite Z-

Fig 6. Amino acid heatmap. (A) Obtained per-residue first principal component projections (PC1), betweenness centrality differences (DBC), Gini coefficient

of rotamer distribution differences (GCD) and KL coefficient of rotamer distributions differences (ΔKL) Z-scores at the three different temperatures (303 K,

333 K, 363 K as indicated) of the MD simulations of T. thermophilusMTHFD were hierarchically clustered. While ΔKL values clustered to corresponding GCD

values, PC1 and DBC values clustered separately. (B) Clustering allowed to score residues with a composite Z-score and important residues (1 standard

deviation above average) are shown projected on the T. thermophilus T. thermophilusMTHFD T. thermophilusMTHFD MTHFD crystal structure (Gln 104,

Glu 108, Pro 121, Asn 123, Val 124, Arg 126, Leu 127, Gly 131, Val 228, Asn 229, Val 231, Glu 232, Glu 245 and Phe 248). PCA of the rotamer library values of

the 2 sigma level composite Z-score charged residues of T. thermophilusMTHFD MD trajectories is shown at 303 K (C) and 363 K (D) demonstrating visually

energy dispersion effects. The coloring indicates k-means clustering of the rotamer vectors, which led to an identification of 4 rotamer conformation clusters.

Residue identity histograms comparing T. thermophilusMTHFD with A. baumanniiMTHFD (E) and with T. acidophilumMTHFD (F) showing that residues

with high composite Z-scores (decreasing in bins from left to right) are less conserved. This indicates a selective evolutionary pressure in thermophiles,

especially as demonstrated by the TtMTHFD versus TaMTHFD comparison.

https://doi.org/10.1371/journal.pone.0232959.g006
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score seems to indicate amino acids which show elevated correlating behavior between

principal components and rotamer energy dispersion. The (negative) correlation between

PC1 and GCD is particularly intriguing because it indicates that movement (as described

by the PC1 calculated from joint 303 K and 363K trajectories) actually “transfers” energy to

rotamers movements during temperature increases. To visualize rotamer energy disper-

sion, PCA-analysis of the rotamer library value changes at different temperatures during

the MD trajectories was carried out. Fig 6C shows PCA of the charged residues with 2

sigma level composite Z-scores at 303 K and Fig 6D shows PCA at 363 K. From these PCA-

projections, the energy dispersion effect of the charged residues becomes apparent, corrob-

orating the notion that charged residue networks could be of great importance for the ther-

mostabilization of proteins.

To check if there is any correlation of composite Z-scores with amino acid mutations

between TtMTHFD and the other two proteins, residue identity histograms comparing pro-

teins were generated. Indeed, there was a trend of amino acids with high composite Z-scores

to be more mutated between TtMTHFD and TaMTHFD (Fig 6E). This trend was even more

significant when TtMTHFD was compared with mesophilic AbMTHFD (Fig 6F). In the case

of heat-maps and residue identity histograms for TaMTHFD and AbMTHFD, similar results

could be found (S1A and S1B Fig).

As an overall conclusion, this indicates that composite Z-scores like the one defined in

this work, could be considered important descriptors of thermostability in proteins. Thus,

composite Z-scores integrating rotamer analysis by KL divergence and Gini coefficients, PC

and RIN analysis data from MD simulations can be used to define amino acids that play a

more active role in thermostability of protein folding. Furthermore, this type of analysis can

eventually be used to predict the effect of mutations on the thermostability of proteins and

thus be of help in the protein design of thermostable mutants. We therefore propose an ana-

lytical mechanism to detect important mutated residues that determine the thermostability

of proteins. It is tempting to speculate, as postulated by Ladenstein et al. [7], that rotamer

energy dispersion at higher temperatures is causally related to thermostability in proteins

like TtMTHFD via a mechanism involving interacting charged residues, as we showed here

with help of rotamer distribution analysis. Further research has to be carried out to corrobo-

rate and expand this hypothesis.

Table 3. Pearson correlation coefficients of evaluated parameters for amino acids of TtMTHFD with a composite

Z-score higher than 2 standard deviations (2 σ level).

PC1-303-363 DBC-303-363 GCD-303-363 ΔKL-303-363

PC1-303-363 1 0.02 -0.50 -0.26

DBC-303-363 1 0.02 0.10

GCD-303-363 1 0.74

ΔKL-303-363 1

https://doi.org/10.1371/journal.pone.0232959.t003

Table 2. Pearson correlation coefficients of evaluated parameters for all amino acids of TtMTHFD.

PC1-303-363 DBC-303-363 GCD-303-363 ΔKL-303-363

PC1-303-363 1 0.16 -0.37 -0.24

DBC-303-363 1 0.03 0.06

GCD-303-363 1 0.68

ΔKL-303-363 1

https://doi.org/10.1371/journal.pone.0232959.t002
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Supporting information

S1 Fig. Amino acid heat-map of T. acidophilum MTHFD. (A) PC1, DBC, GCD and ΔKL val-

ues were hierarchically clustered for the T. acidophilumMTHFD MD simulations at the indi-

cated temperatures. Residue identity histograms comparing T. acidophilumMTHFD with T.

thermophilusMTHFD (B) and with A. baumanniiMTHFD (C). The less thermophilic

TaMTHFD showed only a small trend to have more substituted amino acids at high composite

Z-score positions when compared with TtMTHFD and had a more significant trend when

compared with AbMTHFD.

(TIF)

S2 Fig. Amino acid heat-map of A. baumannii MTHFD. (A) PC1, DBC, GCD and ΔKL val-

ues were hierarchically clustered for the A. baumanniiMTHFD MD simulations at the indi-

cated temperatures. Residue identity histograms comparing A. baumanniiMTHFD with T.

thermophilusMTHFD (B) and with T. acidophilumMTHFD (C). AbMTHFD showed a trend

to have more substituted amino acids at high composite Z-score positions when compared

with TtMTHFD and had a slight trend when compared to TaMTHFD.

(TIF)
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