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Abstract

Elevated levels of ambient air pollution has been implicated as a major risk factor for morbidities 

and premature mortality in India, with particularly high concentrations of particulate matter in the 

Indo-Gangetic plain. High resolution spatiotemporal estimates of such exposures are critical to 

assess health effects at an individual level. This article retrospectively assesses daily average 

PM2.5 exposure at 1 km × 1 km grids in Delhi, India from 2010–2016, using multiple data sources 

and ensemble averaging approaches. We used a multi-stage modeling exercise involving satellite 

data, land use variables, reanalysis based meteorological variables and population density. A 

calibration regression was used to model PM2.5: PM10 to counter the sparsity of ground 

monitoring data. The relationship between PM2.5 and its spatiotemporal predictors was modeled 

using six learners; generalized additive models, elastic net, support vector regressions, random 

forests, neural networks and extreme gradient boosting. Subsequently, these predictions were 

combined under a generalized additive model framework using a tensor product based spatial 

smoothing. Overall cross-validated prediction accuracy of the model was 80% over the study 

period with high spatial model accuracy and predicted annual average concentrations ranging from 

87 to 138 μg/m3. Annual average root mean squared errors for the ensemble averaged predictions 
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were in the range 39.7–62.7 μg/m3 with prediction bias ranging between 4.6–11.2 μg/m3. In 

addition, tree based learners such as random forests and extreme gradient boosting outperformed 

other algorithms. Our findings indicate important seasonal and geographical differences in 

particulate matter concentrations within Delhi over a significant period of time, with 

meteorological and land use features that discriminate most and least polluted regions. This 

exposure assessment can be used to estimate dose response relationships more accurately over a 

wide range of particulate matter concentrations.
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INTRODUCTION

Air pollution is a major public health hazard in low and middle income countries, such as 

India, with concentrations of particulate matter (PM) far exceeding the permissible limits in 

regions across the country1,2. Specifically, urban centers and the Indo-Gangetic plain in 

India are influenced by high levels of PM3,4, with both local and global sources of emission. 

Numerous publications have implicated air pollution, both indoor and outdoor, as major risk 

factors of mortality and morbidity due to respiratory and cardiovascular causes1,5,6,7. 

Further, certain sections of the population, such as children, elderly and pregnant women are 

at a heightened risk from increasing levels of PM, thus making air pollution an area of high 

priority for policy changes in Delhi and India in general8,9,10. In order to better understand 

the impact of air pollution on both chronic and acute health effects at an individual level, it is 

important to accurately assess air pollution exposure.

Ambient air pollution is a complex process with multiple sources of variation across space 

and time. Levels of particulate matter depends on spatiotemporal variations in meteorology 

as well as differences in land use patterns, such as road density are spatial with slow rates of 

temporal change. Valid prediction models to assess ambient air pollution exposure must 

attempt to capture both sources of variation. In the Indian context, air pollution modeling 

exercises have mainly used land use regressions or remote sensing based simulations to 

provide predictions across space and time4,11,12. However, land use regressions capture 

spatial features and are not equipped to distinguish temporal variations in the data13. On the 

other hand, chemical transport models coupled with remote sensing observations are 

dependent on known chemical processes at coarse spatial resolutions, which may not capture 

the ground realities14. In addition, until recently, the lack of an extensive ground monitoring 

network and pollution data in India hindered the development of comprehensive 

retrospective prediction model for ambient PM concentrations.
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Globally, there have been very few attempts to amalgamate data from all possible sources to 

predict air pollution exposure at a fine spatiotemporal resolution. In the recent years, hybrid 

prediction models have been developed for ambient air pollution concentrations in the New 

England area in United States, Mexico City, entire continental United States and Italy 

respectively15,16,17,18. These studies have used data derived from satellites (such as Aerosol 

Optical Depth (AOD) and ultraviolet absorption index), reanalysis based meteorological data 

and land use variables within hybrid modeling frameworks to predict levels of particulate 

pollution. Machine learning algorithms have been used sparsely to predict pollutant 

concentrations in different locations across the world and have obtained considerable 

prediction accuracy10,19,20. However, the application of ensemble averaging across different 

machine learning algorithms is under-utilized in this field. In addition, these models have 

been developed in regions with lower levels of particulate matter concentrations than what 

Delhi experiences. In the context of the Indian scenario, the existing literature does not 

provide any such PM2.5 prediction models for India at 1 km × 1 km resolution for a 

significant temporal period, that can be utilized to analyze impacts of ambient air pollution 

on health outcomes.

In this article, we have developed a hybrid model based on ensemble averaging for 

predicting daily average particulate matter (PM2.5) concentrations at a fine spatial resolution 

over the state of Delhi, India from 2010 to 2016. The model draws strength from a variety of 

predictors of ambient air pollution as well as a range of predictive algorithms. Given the 

high spatiotemporal resolution of the particulate matter concentrations, these estimates can 

be used to study both long and short term effects of ambient PM2.5 exposure on health 

outcomes in individuals at a neighborhood level, thus providing more accurate dose response 

relationships at elevated concentrations.

METHODS

Study location and summaries of pollutants:

We are considering the state of Delhi with a population of 19 million for this paper. The 

locations of the ground monitoring stations, along with centroids for climate reanalysis data 

and aerosol optical depth are shown in Fig. 1A while temporal availability of PM10 and 

PM2.5 (measured in μg/m3) across each station are shown in Fig. 1B. Median monthly 

concentrations, interquartile ranges and average variability of PM2.5 at monitoring stations 

over time are shown in Fig 2A and Fig 2B.

Available data:

For prediction purposes, we considered the state of Delhi, which was divided into 1635 grids 

of area 1 sq. km. each. We predicted daily average PM2.5 concentrations in μg/m3 for each 

grid from January 1, 2010 to December 31, 2016. The total number of ground monitoring 

stations under consideration were 24, including two stations from the National Capital 

Region (Gurgaon and Faridabad). Data from both real time and manual monitoring stations 

were included in the analysis. We classified months into seasons as Winter (December, 

January and February), Summer (March to June), Monsoon (July, August) and Fall 

(September to November).
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Pollutants data from monitoring stations:

Data on particulate matter were collected from 24 air pollution monitoring stations in Delhi 

maintained by the Central Pollution Control Board, India and Delhi Pollution Control 

Committee. Twelve monitoring stations provided real time monitoring data while the 

remaining were manual stations. To ensure quality of the pollutants data, the following data 

filters were applied (in order) before use in analysis:

1. Runs of exactly equal concentrations on consecutive days were treated as 

missing.

2. Concentrations of PM2.5 ∉ [20, 1000] and PM10 ∉ [20, 5000] were treated as 

missing.

3. All instances of PM2.5, where PM2.5 > PM10, were treated as missing.

4. Observations of PM2.5 ∉ [μ − 3σ, μ + 3σ] were treated as missing, where μ and σ 
are monthly mean and standard deviations of PM2.5 concentrations.

Meteorological data:

We used daily average global climate reanalysis data at a spatial resolution of 0.125 degrees 

from the European Centre for Medium-Range Weather Forecasts (ECMWF) for 

meteorological variables, including daily ambient and dew-point temperature, wind speed, 

precipitation, cloud cover, evaporation and soil temperature21. Daily boundary layer height 

was obtained from the same reanalysis datasets. Using inverse distance weighted 

interpolation, the meteorological variables were imputed over all grids for each day. We also 

computed daily lagged variables for temperature, relative humidity and wind speed for all 

grids.

Land use data:

We considered a total of 30 layers in the present study each of which represents a land use 

attribute, such as roads, railway tracks, stations and main terminals, bus stops and depots, 

interstate bus terminals, airports, metro stations, petrol and CNG pumps, traffic signals, 

hospitals, cremation grounds, commercial, industrial, and institutional areas, slums, malls 

and markets, industries, and bridges and flyovers. All attributes are stored in individual 

shape files implying every shape file corresponds to a single attribute layer. The shape files 

were obtained from maps prepared by Eicher and Open Street maps (OSMs). We checked 

for accuracy of the layers by overlaying them on Google Earth imageries. We identified and 

digitized runways and taxiways present in domestic and international terminals of Delhi 

airport. Information on the number of solid waste sites was obtained from Delhi municipal 

authorities. We employed satellite imageries to identify and digitize their locations. 

Information regarding location and fuel details of all major power plants in and around Delhi 

was obtained from the department of environment and forests, Govt of Delhi (SoE Delhi, 

2010). Locations of stacks present in these power plants were aerially traced using Google 

Earth. Land use map of Delhi at a spatial resolution of 30m was prepared using Landsat 8 

imagery (captured on 18 May 2016) in Arc GIS 10.4.1 platform. We processed the image 

and applied atmospheric and geo-reference corrections on the Landsat imageries to (1) 

remove the effects of the atmosphere on the reflectance values and (2) remove source 
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department errors such as the curvature, and rotation of the earth (https://www.usgs.gov/

landresources/nli/landsat/using-usgs-landsat-level-1-data-product). An unsupervised 

classification scheme was employed for classifying the image into four land use types (built-

up, vegetation, water, and open spaces). The scheme generates a map by assigning each 

pixel of the Landsat image to a particular class based on its multispectral composition which 

would later be realigned to preordained classification. Information on under-construction 

metro stations and stretches during the study period was obtained from Delhi metro 

authorities and was later manually digitized. The elevation data (at 90 m resolution) of Delhi 

was obtained from Shuttle Radar Topography Mission Global Coverage (available at http://

www.webgis.com/srtm3.html). For measures of population density, we used gridded 

population density from The Gridded Population of the World (GPW, version 4), provided 

by Center for International Earth Science Information Network (CIESIN) for India.

Satellite remote sensing data:

Daily aerosol optical depth (AOD) over one square kilometer grids, processed using the 

MAIAC algorithm22, were obtained from the MODIS instrument of Terra satellite. We used 

the measurements taken in the morning and afternoon over Delhi, for the wavelength of 470 

nanometers. Data cleaning filters were employed to discard potential spurious measurements 

of AOD, specifically correcting for cloud masking and mask adjacency using the AOT_QA 

field in MAIAC data, wherein we removed observations that were categorized as cloudy 

pixels and those surrounded by more than eight cloudy pixels. Further we restricted AOD 

observations to those with uncertainty between 0 and 1 (using the data field 

AOT_Uncertainty within MAIAC data). To counter the sparsity of AOD observations, we 

calibrated the MODIS AOD observations with the Copernicus Atmosphere Monitoring 

Service (CAMS) reanalysis sub-daily (3hourly) surface-level Total Aerosol Optical Depth 

(AOD) at 469 and 550 nm data at 0.125° × 0.125° spatial resolution. A random forest model 

was used for this calibration while accounting for meteorology and land use variables. 

Monthly NDVI values were obtained at a one square kilometer spatial resolution over Delhi 

from MODIS instrument. Monthly data on ultraviolet absorption index (AAI) was obtained 

from the Ozone Monitoring Instrument (OMI) at a spatial resolution of 0.25 degrees.

We used light at night (LAN) satellite observations also as a predictor for air pollution23. 

The data for 2010 and 2011 were obtained from the U.S. Defense Meteorological Satellite 

Program’s (DMSP’s) Operational Linescan System, maintained by the National Oceanic and 

Atmospheric Administration’s (NOAA’s) Earth Observation Group (EOG)24. The LAN data 

for 2012 to 2016 were obtained from Visible Infrared Imaging Radiometer Suite (VIIRS) 

Day/Night Band (DNB), which is also maintained by NOOA’s EOG25. We computed z-

scores to account for the difference in measurement methodologies of the two sources of 

light data before using them in the model. A linear mixed effects model was used to counter 

the sparsity of the data in the 2010–2011 time period.

Fire emissions data:

Information on fire emissions are required to account for agricultural crop residue burning 

and other large fires contributing to ambient air pollution26,27. We incorporated two data 

sources for fire; MODIS Active fire product and the Global Fire Emissions Database 
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(GFED). MODIS Active Fire Collection 6 provided daily fire information with fire reactive 

power, brightness and confidence along with locations of each fire. Carbon emissions in gC/

m2 were extracted from GFED-v4 with information of monthly emissions and daily 

fractions, which were used to obtain daily carbon emissions from fires at a spatial resolution 

of 0.25 degrees. We considered all recorded fires and emissions within the region bounded 

by 26N, 32N, 73.5E, 79.5E, which covers the states of Punjab and Haryana that are sites of 

most agricultural crop burning around the National Capital Region

Statistical Methodology

We implemented a multi-stage modeling approach which can be differentiated into the 

following major steps. Table S1 summarizes the stages of this modeling framework along 

with outcome, predictors and the modeling technique. Each of these major components is 

described in detail subsequently.

Step 1. Inverse distance weighted interpolation of meteorological variables and calibration of 

satellite based AOD with reanalysis based AOD.

Step 2. Calibration between PM2.5 and PM10 from ground monitoring stations to counter the 

sparsity of PM2.5 measurements. This provides PM2.5 observations in addition to those 

obtained from the ground monitoring stations.

Step 3. Using all available PM2.5 observations and predictor variables, training machine 

learning algorithms to predict PM2.5 based on spatiotemporal predictors

Step 4. Combining PM2.5 predictions from base learners in (3) using a generalized additive 

model framework with tensor product smooths over the spatial coordinates to obtain daily 

PM2.5 at 1km×1km grids.

Interpolation of meteorological data:

In order to obtain daily meteorological information at a 1 km × 1 km spatial resolution, we 

used spatial interpolation using inverse distance weighted regression on daily climate 

reanalysis data at 0.125 degree spatial resolution for India. Since our geographical area of 

interest is only the state of Delhi, we used a 0.01 degree by 0.01 degree subset grid with 

latitude and longitude varying between (28.125, 29.125) and (76.125, 77.125) respectively.

Calibration of PM2.5 based on PM10:

We utilized available (PM10, PM2.5) concentration pairs at the monitoring stations to predict 

missing PM2.5 over time using PM10 wherever available (sample size = 2846). Support 

vector regression models29 were used while incorporating meteorological variables 

(including daily temperature, relative humidity, wind speed, precipitation and their one day 

lags), planetary boundary layer (PBL) height, season, days involving festivals (Diwali) or 

major construction and land use variables such as length of roads and public transport stops 

within a 1 km buffer region and commercial markets within a 2 km buffer region. We used a 

logit transformation in order to preserve the constraints on the ratio, which can vary between 

0 and 1. Predicted PM2.5 from this model were obtained for space-time combinations where 

PM10 was available. To adjust for prediction bias, we scaled the output using the slope 
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between observed and predicted concentrations. These scaled predicted concentrations were 

used along with available PM2.5 data from monitoring stations in the subsequent modeling 

stages. A ten fold cross validation was conducted to measure prediction accuracy wherein 

the dataset was randomly split into ten folds and a 9:1 split was used to create the training 

and test datasets. Prediction accuracy was measured using cross-validated prediction R2 and 

root mean squared error (RMSE).

Modeling PM2.5 against spatiotemporal predictors using ensemble averaging:

To understand the association between daily concentrations of PM2.5 and aerosol optical 

depth (AOD) and other variables, we used an ensemble averaging approach using six 

different methodologies, while adjusting for the meteorological factors, land use variables, 

emission inventories and population density. The methods used were generalized additive 

model for big data (GAM)30, elastic net (GLMNET)31, support vector regression (SVR)29, 

random forests (RF)32, neural networks (NN)33 and extreme gradient boosting (XGB)34. 

The choice of each learner was based on the following justifications: generalized additive 

models are semiparametric models that control for nonlinear patterns and variability while 

using penalized splines for avoiding overfitting; elastic nets select a sparse model from the 

entire set of variables used in the prediction; support vector regressions account for complex 

non-linear interactions among the predictors; and tree based models such as random forests, 

neural networks and extreme gradient boosting are efficient at modeling non-linear 

relationships along with a different ensemble method for aggregating results over trees. Due 

to absence of previous literature on such methodologies in high concentration scenarios, we 

adopted an agnostic approach of implementing multiple strategies on the same data. Each of 

the six learners were trained on the training data with an internal tuning step (involving a ten 

fold cross validation) to obtain the tuning parameters for each learner. Ensemble averaged 

predictions were computed using a generalized additive model framework with penalized 

splines of each machine learning prediction serving as the independent variables., which 

prevents overfitting in the presence of potentially correlated predictions from different 

algorithms. The number of observations at each ground monitoring station within each year, 

used in these models are provided in Supplemental Material (Table S4).

Spatial smoothing using tensor products:

In order to spatially smooth the ensemble averaged predictions, we used tensor product 

smoothing over the spatial coordinates according to the following equation:

log(Pred PM(ij)) = a + te(Lat,Lon, by=log(MPMj)) + te(Lat,Lon, by=Month) + te(Lat,Lon, 

by=Year), where Pred PM(ij) denotes the ensemble averaged predicted PM2.5 at location i 

and time j, while te(Lat, Lon) denotes a tensor product smooth using penalized splines over 

latitude and Longitude. We fit tensor product smooths by daily average predicted PM2.5 

concentrations at the monitoring locations (MPMj) as well as month and year, to allow for 

differential smoothing over space and time. The rationale for implementing tensor product 

smooths was to allow for anisotropic penalty along the two directions.
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Cross-validation of predictions:

Overall assessment of prediction accuracy was carried out using 10 fold cross validation on 

available datasets. The complete data was divided into ten random parts with nine parts 

serving as the training set and the excluded part was treated as test set. These parameters 

were used to predict PM2.5 in the test data and prediction performance was measured using 

adjusted R2 from a robust linear regression between the observed and predicted PM2.5 

concentrations. For spatial R2, we obtained the R2 from robust linear regressions between 

the observed and predicted annual averages of PM2.5 concentrations at each monitor in the 

cross-validated dataset. For temporal R2, we subtracted the annual average from the 

predicted and measured PM2.5 at each monitor, and computed the corresponding R2.

RESULTS

Calibration of PM2.5 against PM10 using support vector regression:

A support vector regression model was implemented on 2846 observations, where both 

PM2.5 and PM10 concentrations were available. The model accounted for variables including 

meteorological variables, land use and boundary layer height. The distribution (median and 

inter-quartile range) of the PM ratio measured at the monitoring stations were 0.462 (0.269, 

0.555), 0.295 (0.26, 0.357), 0.526 (0.403, 0.634), 0.52 (0.453, 0.602), 0.463 (0.374, 0.556), 

0.449 (0.339, 0.56) and 0.46 (0.366, 0.545) in the years 2010–2016 respectively. We 

restricted our calibration model to use values of the ratio falling between 0.2 and 0.8. The 

overall cross validated prediction R2 of the calibration model was 0.92, based on a repeated 

10 fold cross validation with the model performance being satisfactory in all years except 

2010 and 2011 (Supplemental Material, Table S2). Summaries of the predicted ratios, 

including median and interquartile ranges across each month from 2010 to 2016 are shown 

in Fig. 2C.

Modeling PM2.5 against spatiotemporal predictors using ensemble averaging:

Using the predictions from the calibration regression along with observations from ground 

monitoring observations, we obtained 17152 observations of PM2.5 for modeling the 

relationship between PM2.5 and spatiotemporal predictors. The sample size breakup across 

each monitoring station and year is provided in Supplemental Material (Table S3). Six 

different learners were implemented to model the relationship between PM2.5 and 

spatiotemporal predictors, which were further combined using a generalized additive model 

with tensor product smoothing. Overall cross-validated R2, spatial and temporal R2 for each 

learner and the ensemble averaged predictions are provided in Table 1A. In addition, the 

spatial and temporal R2 for the ensemble averaged predictions are also provided in Table 1A. 

Annual cross validated prediction bias and root mean squared error are provided in Table 

1B. In addition, we provide the comparison of observed and predicted concentrations at each 

monitoring location along with measures of prediction accuracy in the Supplemental 

Material (Fig. S1).

The final predictions within Delhi after tensor product smoothing under a generalized 

additive model framework is shown in Fig. 3, as monthly averages across the years 2010 to 

2016. To understand differences between spatial regions within Delhi, we used a distance 
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based hierarchical clustering to classify the grids in Delhi into ten clusters (Fig. 4A). Annual 

and monthly average PM2.5 concentrations in these clusters across the seven years is shown 

in Fig. 4B-4C. In addition, we identified important features that discriminate between the 

highest and lowest deciles of polluted grids within each season and year using random forest 

classifiers (Fig. 4D).

DISCUSSION

In this article, we have developed a comprehensive model for assessment of PM2.5 for the 

National Capital Region in India, which to our knowledge, is the first such model for 

predicting ambient air pollution in an Indian setting at a high spatiotemporal resolution. The 

major advantages of this model are two fold. Firstly, this detailed and accurate assessment of 

exposure would be beneficial in studying the effects of air pollution on health in 

epidemiological studies, specifically for cohort studies that have followed individuals to 

monitor health outcomes over time. Secondly, this model would serve as a template for 

developing nationwide prediction models for ambient PM2.5 concentrations and other 

pollutants.

From the calibration regression, we observed a clear seasonal pattern in the ratio of PM2.5 

and PM10 with peaks during January-February and troughs at August-September over the 

years. The peaks may be attributed to the increased PM2.5 levels during winter from 

increased biomass burning and crop-residue burning coupled with meteorological 

conditions. In addition, there was increased variability in the predicted ratios over the years, 

which could be attributed to more prominent geographical differences in 2015 and 2016. 

The subsequent use of these modeled ratios allowed us to circumvent the use of constant 

ratios of PM2.5 and PM10 that do not capture the varying relationship of these pollutants 

with the spatiotemporal variables.

The prediction model highlights several important features of particulate matter 

concentrations in Delhi. Our predictions for PM2.5 concentrations showed high average 

levels across all years along with a temporal increase from 2010 to 2015 (except in few 

regions) followed by a sharp increase during 2016. The annual average predicted 

concentrations in the state was greater than 100 μg/m3 during the entire study period, 

highlighting the dire situation in the National Capital Region. The predictions also show a 

clear impact of the crop residue burning with increasing monthly average concentrations 

during October and November irrespective of the geographical location.

The high spatial variability in this small area is also notable since there is a geographical 

disparity in annual average concentrations putting the densely populated regions, such as 

East Delhi, Central Delhi and Northeast Delhi at increased risk from exposure to elevated 

levels of PM2.5, than regions such as North Delhi and South Delhi (Fig. 4B). We also 

observed the comparatively lower annual levels in the New Delhi region which might be 

attributed to higher vegetation cover compared to neighboring regions. The difference in 

annual average concentrations between the most polluted and least polluted regions ranged 

from 10.4 μg/m3 (in 2014) to 22.5 μg/m3 (in 2012), along with high average concentrations. 
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This gradient in exposure would be relevant for making inferences on the dose response 

relationships comparing populations in these different regions.

To further investigate the features that differentiate regions with high and low ambient air 

pollution, we compared the grids with top and bottom deciles of the seasonal average 

concentrations within each year, using random forest classifiers (Fig. 4D). We observed the 

meteorological variables such as temperature, wind speed, relative humidity and total 

precipitation as being important discriminators irrespective of season and year. Among land 

use features, population density in 2010, change in population density from 2010 to 2015, 

vegetation index and distance from power plants and solid dumps are identified as important 

features across almost the entire period, which indicates the heavier burden of air pollution 

on densely populated regions close to industrial areas and garbage dumps, with lower 

vegetation cover. On the other hand, the percentage of builtup area determines the pollution 

gap mostly in the summer and monsoon seasons while length of roads is detected in fall, 

which may indicate the effects of local sources of pollution such as traffic or construction 

activities are prominent sources specific to season.

In terms of the methodologies used in the ensemble averaging approach, we observed that 

the predictive algorithms outperformed the generalized additive model and the elastic net 

procedure. This can be attributed to the ability of predictive algorithms to account for more 

complex interactions and non-linearity in the relationship with large number of predictors. 

Among machine learning algorithms, tree based models such as random forests and extreme 

gradient boosting outperformed other types of algorithms. Spatial R2 was high across all 

years for the ensemble averaged model, while temporal R2 showed a nonlinear pattern, with 

poor performance in the middle period. This could be attributed to higher between and 

within stations variability in 2012 and 2013. A high spatial R2 is particularly important in 

order to understand the impact of air pollution on spatially resolved health outcomes data. 

We also compared the performance of ensemble averaged predictions (based on six learners) 

to an ensemble using only the top two performers (random forests and extreme gradient 

boosting). We observed a marginal yet consistent increase in prediction accuracy while using 

the full ensemble, with larger differences in fall and winter of 2013 and 2014 (Supplemental 

Material, Table S6), which might indicate the need for multiple algorithms in situations with 

high variablity. Also we evaluated our model performance by fitting a penalized spline 

between the observed and predicted concentrations within each year. We observed that 

linearity holds across all levels of ambient concentrations (Supplemental Material, Fig. S3) 

except in 2014 and 2015 when the linearity fails to hold at observed concentrations beyond 

200 μg/m3 and 300 μg/m3 respectively. In comparisons of cross validated R2 in days with 

average concentrations below and above 100, we observed better performance in days with 

higher concentrations, which might be caused due to the large number of such days during 

the year (Supplemental Material, Table S4 and S5). Given that the majority of population in 

Delhi is exposed to high average annual concentrations, it is important that the model 

performs well at high concentrations.

The Indian air pollution scenario presented unique challenges towards developing such 

spatiotemporal prediction models. Pollution levels and emission patterns are vastly different 

from developed countries with respect to spatial and temporal variability as well as average 
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concentrations. For example, previous models for continental United States and Mexico City 

have reported annual average levels of 4 to 16 μg/m3 (prediction accuracy of 84%) and 19.7 

to 27.2 μg/m3 (prediction accuracy of 72%) respectively (Just et al. 2015, Di et al. 2016). 

Models developed with data from regions with low pollution levels might not be appropriate 

in the Indian scenario. Similar studies from China that report overall levels of 64 to 80 μg/m3 

have achieved cross-validated prediction accuracy of 54 to 64% using techniques such as 

geographically weighted regression and neural networks35,36.

We have demonstrated how similar methodologies, such as linear mixed effects models and 

neural networks performed poorly in this scenario. Further, the number of ground 

monitoring stations and the associated number of daily observations are small thus making 

the data sparse. Hence it is necessary to develop models tailored to the Indian context 

utilizing all relevant data sources, which could be used to better quantify exposure and also 

modify them to apply on other regions of the country. In addition, existing prediction models 

can only be used to study the associations with measures of health obtained at coarse spatial 

and temporal resolution, which may lead to exposure misclassification (Dey et al. 2012). For 

analyzing cohort based health data on individuals followed across time, spatiotemporally 

resolved exposures of ambient air pollution are necessary to estimate the exposure-response 

relationships.

The developed model has multiple novel approaches, especially in the Indian context. We 

have combined publicly available data from varied sources to explain the spatiotemporal 

nature of ambient pollution including meteorology, land use, satellite observations and 

geospatial information. Each type of data contributes towards explaining different features of 

pollution in Delhi and neighboring areas. For example, emissions from the agricultural crop 

residue burning in October and November exacerbates air quality in Delhi each year. 

Existing models for pollution in India have not incorporated these factors in a 

comprehensive manner, while we utilized publicly available satellite based observations to 

account for these factors. The novelty of the developed model, in terms of methodology, lies 

in the ensemble averaging approach. The high average particulate matter concentrations, 

spatial and temporal variability created difficulties in implementing standard statistical 

models such as generalized mixed effects models resulting in poor predictive performance 

(Table 1A). A single technique might not capture the impact of all the variables on the 

pollutant concentrations. To harness the advantages of different predictive algorithms, we 

have implemented a machine learning based approach that combines several algorithms in 

an ensemble averaging framework, thus improving the model performance remarkably. To 

summarize, we have developed a detailed prediction retrospective model of fine particulate 

matter for the Delhi region over 2010 to 2016 that would be utilized to study the effects of 

air pollution exposure on health outcomes in individuals residing in the region.

Limitations:

The prediction model developed in this article is retrospective in nature and relies on 

previously processed satellite observations and land use parameters. Hence we would not be 

able to forecast pollutant concentrations in a future time period using the current model. 

However, the model can be used to predict scenarios in which certain parameters are altered 
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to compute differences in average pollutant levels between scenarios. In case of predictions 

over larger time periods, some of the land use variables would need to be updated since the 

features of the region (such as built-up area and population density) could potentially 

change. With updated variables, this model can be used to obtain predictions during 2000–

2009 based on the satellite observations. The model for Delhi uses a large number of 

variables which might not be available and/or relevant for other parts of the country. In such 

situations, we would need to simplify the model taking into account the peculiarities of 

specific regions. Using the predictions from the developed model for studying effects on 

health would entail matching the location of households to grid cells. This might result in 

exposure misclassification since an individuals exposure depends on factors such as indoor 

air pollution and occupational exposure that are not accounted for in this prediction model. 

Although personal monitoring of pollution would help in reducing this error, it is expensive 

to carry out the exercise in a large population. However, data from individual monitoring on 

a group of subjects may be used to calibrate the ambient predictions to obtain individual 

exposure metrics in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. Daily average PM2.5 at 1km grids over Delhi from 2010 to 2016 via a 

predictive model.

2. Utilizes multiple data types, machine learning algorithms and statistical 

techniques.

3. Resource for studying the long-and short-term effects of PM2.5 on health in 

India.

4. The model be extended to other locations as well as at the national level.
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Fig. 1. The study area and availability of ground monitoring data.
(A) Locations of ground monitoring stations (red triangles), reanalysis grid centroids (green 

dots) and satellite grid centroids (grey dots) over the National Capital Region. (B) 
Availability of daily PM10 and (C) daily PM2.5 concentrations at ground monitoring stations 

over time across the National Capital Region, after application of data cleaning filters.
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Fig. 2. Observed PM2.5 concentrations and modeled ratios.
(A) Monthly median concentrations (solid black squares) and interquartile ranges (vertical 

lines) of PM2.5 over monitoring stations in the National Capital Region across 2010–2016. 

(B) Variability (standard deviations) in PM2.5 concentrations within (black squares) and 

between (dark red triangles) stations over months across 2010–2016. (C) Monthly median 

estimated ratio (solid black squares) and interquartile ranges (vertical lines) of PM2.5: PM10 

over monitoring stations across 2010–2016 obtained from the calibration using a support 

vector regression.
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Fig. 3. Ensemble averaged predictions from 2010–2016.
Monthly averaged predicted PM2.5 concentrations in Delhi from 2010 to 2016 using 

ensemble averaged predictions and tensor product based spatial smoothing.
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Fig 4. Geographical differences in pollution and distinguish features.
(A) Ten spatial clusters within the state of Delhi obtained using distance based hierarchical 

clustering. (B) Annual average PM2.5 concentrations at the ten spatial clusters from 2010 to 

2016. (C) Monthly average PM2.5 concentrations at the ten spatial clusters. Averages 

concentrations were computed by aggregating concentrations in all grids within particular 

regions across years or months. (D) Ten most important features that discriminate the grids 

associated with the top and bottom deciles of predicted ambient air pollution across seasons 

and years.
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Table 1.
Prediction accuracy measures for ensemble averaged model.

(A) Cross-validated overall R2 for learners (generalized additive models (GAM), Elastic Net (GLMNET), 

Support Vector Regression (SVR), Random forests (RF), Neural Networks (NN) and Extreme gradient 

boosting (XGBOOST)) across years, using robust linear regression between observed and predicted daily 

PM2.5 concentrations. In addition, overall, spatial and temporal cross-validated R2 is reported for the ensemble 

averaged (EAVG) predictions. (B) Bias and root mean squared error (RMSE) in ensemble averaged 

predictions of PM2.5 concentrations across years and seasons. Additionally, slope of the predicted against 

observed concentrations according to a robust linear regression is reported.

(A)

YEAR GAM GLMNET SVR RF NN XGBOOST EAVG Spatial Temporal

2010 0.583 0.567 0.779 0.812 0.679 0.954 0.875 0.984 0.847

2011 0.527 0.478 0.68 0.748 0.571 0.769 0.809 0.934 0.798

2012 0.417 0.4 0.655 0.698 0.509 0.707 0.752 0.986 0.7

2013 0.675 0.367 0.648 0.741 0.569 0.713 0.755 0.978 0.671

2014 0.292 0.268 0.525 0.577 0.434 0.565 0.656 0.903 0.622

2015 0.555 0.505 0.893 0.798 0.681 0.826 0.855 0.994 0.83

2016 0.629 0.599 0.806 0.873 0.752 0.888 0.924 0.986 0.917

(B)

Bias RMSE Slope

YEAR Monsoon Fall Summer Winter Monsoon Fall Summer Winter

2010 5.757 8.677 6.384 5.053 25.084 48.464 33.906 46.722 0.995

2011 6.031 8.11 5.692 14.77 29.132 49.397 37.321 65.725 1.071

2012 7.023 14.835 8.535 15.36 40.943 73.091 64.616 67.02 1.006

2013 2.887 5.676 8.668 13.086 51.373 45.912 58.258 66.364 0.971

2014 6.25 8.116 5.062 9.115 40.589 48.964 36.477 53.382 1.013

2015 3.437 3.882 5.929 4.45 25.064 46.516 36.568 56.94 0.953

2016 4.747 4.693 7.214 1.979 28.534 58.698 35.954 50.927 0.965
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