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Editorial summary

DIVERS uses replicate sampling and spike-in sequences to quantify temporal and spatial 

variations and noise in microbial samples.

Metagenomic sequencing has enabled detailed investigation of diverse microbial communities, but 

understanding their spatiotemporal variability remains an important challenge. Here we present 

DIVERS, a method based on replicate sampling and spike-in sequencing. The method quantifies 

the contributions of temporal dynamics, spatial sampling variability, and technical noise to the 

variances and covariances of absolute bacterial abundances. We applied DIVERS to investigate a 

high-resolution time series of the human gut microbiome and a spatial survey of a soil bacterial 

community in Manhattan’s Central Park. Our analysis showed that in the gut, technical noise 

dominated the abundance variability for nearly half of the detected taxa. DIVERS also revealed 

substantial spatial heterogeneity of gut microbiota, and high temporal covariances of taxa within 

the Bacteroidetes phylum. In the soil community, spatial variability primarily contributed to 

abundance variance at short time scales (weeks), while temporal variability dominated at longer 

time scales (several months).

Introduction

Metagenomic sequencing is widely used to explore patterns of bacterial abundances and the 

spectrum of functions carried out by diverse microbial communities1–4. Given rapid 
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advancements in sequencing technologies, research efforts have now moved beyond static 

descriptions of communities towards understanding their complex dynamics5–8. However, 

quantifying the sources of variability in longitudinal microbiome studies represents a key 

challenge in the analysis of these ecosystems. Technical sources of variability may 

fundamentally confound the interpretation of microbiome sequencing studies. Moreover, 

separating spatial sampling variability from temporal dynamics is important for 

understanding the underlying ecological behavior of individual bacterial taxa 

(Supplementary Fig. 1). Comprehensive quantification and analysis of these sources of 

variability also requires measurements of absolute bacterial abundances to correct for 

possible compositional artifacts associated with relative abundances9, 10.

Results

To address these key challenges, we have developed Decomposition of Variance Using 

Replicate Sampling (DIVERS), a broadly applicable method for metagenomic sequencing 

studies. DIVERS is a principled mathematical approach that utilizes the laws of total 

variance and covariance to separate the contributions of time, spatial sampling location, and 

technical noise to measured abundance variances for individual taxa and covariances for 

pairs of taxa:

V ar(Xi) = V arTES |TE(Xi |S, T )
Temporal

+ ETV arS |TE(Xi |S, T )
Spatial sampling

+ ETES |TV ar(Xi |S, T )
Technical

# (A)

Cov(Xi, Xj) = CovT E(Xi |T ), E(Xj |T )
Temporal

+ ETCovS |T E(Xi |S, T ), E(Xj |S, T )
Spatial sampling

+ ETES |TCov(Xi, Xj |S, T )
Technical

. # (B)

In equations (A) and (B), Xi and Xj denote the abundances of bacterial taxa i and j, S and T 
are space- and time-associated random variables capturing the respective spatial and 

temporal processes affecting the abundances of taxa i and j, and E, Var, and Cov denote the 

expectation, variance, and covariance of random variables, respectively.

Naïve estimation of the terms in equations (A) and (B) requires extensive spatial sampling 

across the environment at every time point of a longitudinal study, and multiple technical 

replicates taken at every spatial location. However, such an experimental sampling approach 

can quickly become prohibitively laborious and expensive. To circumvent these difficulties, 

DIVERS uses a novel set of unbiased statistical estimators for each of the six terms in 

equations (A) and (B), along with a workflow to enable their exact calculation from minimal 

experimental measurements (Supplementary Note, Online Methods). DIVERS requires only 

two samples obtained from randomly chosen spatial locations at each time point of a 

longitudinal microbiome study, but can be generalized to accommodate more complex and 

unbalanced study designs (Supplementary Note). One of the two spatial replicates is then 

split in half to obtain two technical replicates, and bacterial absolute abundance 

measurements on the resulting three samples are performed using a spike-in procedure 
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during sample processing11, 12 (Fig. 1, Supplementary Note, Online Methods). The key idea 

behind this approach is that bacterial taxa experiencing genuine temporal fluctuations should 

also exhibit large abundance covariances between spatial replicates collected across time 

points. In contrast, spatial variability, quantified by differences in abundances between the 

two random spatial locations, and technical noise will decrease temporal covariances 

(Supplementary Note).

We first assessed the performance of DIVERS on synthetic data, where the underlying 

temporal, spatial sampling, and technical contributions to bacterial abundance variances 

were known. To that end, we performed stochastic simulations of bacterial community 

dynamics that explicitly incorporated spatial abundance heterogeneity, as well as technical 

noise associated with experimental measurement error (Online Methods). Confirming our 

theoretical derivations, DIVERS was able to accurately quantify each of the three variability 

sources for all simulated species in the community (r.m.s. error = 0.02) (Supplementary Fig. 

2, Supplementary Note). Computational simulations also demonstrated that DIVERS 

compared favorably, both in terms of speed and accuracy, to existing approaches such as the 

Gaussian process variance decomposition model, a method recently applied to a large human 

microbiome cohort5 (Supplementary Fig. 3, Online Methods).

To demonstrate the utility of DIVERS in microbiome studies, we applied the approach to 

high-resolution time series profiling of the human fecal microbiome. Although fecal samples 

do not capture the full complexity of microbiota across the gastrointestinal tract13, DIVERS 

can be used to disentangle the effects of spatial sampling location and time across samples, 

an issue that is currently not well understood but fundamental to the interpretation of fecal 

microbiome analyses. Utilizing the DIVERS experimental sampling protocol, we performed 

16S rRNA sequencing of fecal samples collected over the course of three weeks from a 

healthy male individual (Fig. 1, Online Methods). We first verified that our spike-in strain 

was not found in the human gut microbiome (Supplementary Fig. 4a). We also confirmed 

the accuracy of our spike-in approach to estimate fecal bacterial loads (∝ total bacterial 

DNA per mg of sample) using serial dilutions of input fecal matter (Supplementary Fig. 4c, 

Online Methods). Moreover, technical replicates from fecal samples collected over the time 

series showed good reproducibility (Pearson’s r = 0.9) (Supplementary Fig. 4d). We next 

characterized total baseline bacterial abundance variation in the human gut microbiome 

using DIVERS. Consistent with previous results9, we found that total bacterial abundances 

fluctuated substantially across samples collected on different days (coefficient of variation = 

~0.5) (Fig. 2a). The observed variability was dominated by daily temporal changes, with 

bacterial loads remaining relatively constant across different spatial locations on each day 

(Fig. 2b).

Using measurements of bacterial loads, we calculated the absolute abundances of all 

operational taxonomic units (OTUs) and used DIVERS to decompose the contributions to 

the total abundance variances of individual OTUs (Online Methods and Supplementary 

Note). When OTUs were grouped by average abundance, variance profiles exhibited two 

regimes, with a transition occurring ~10−4 in absolute abundances (Fig. 1c). In relative 

abundances, this transition corresponded to a value of ~0.01% (Supplementary Fig. 5). 

Notably, dynamical behavior of OTUs below this abundance cutoff primarily reflected 
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technical noise consistent with Poissonian sampling variability. Nearly half (~43%) of all 

OTUs detected in the fecal samples exhibited such noise-driven behavior, demonstrating that 

DIVERS provides a principled solution for identifying technical artifacts to be removed 

from subsequent analyses (Supplementary Fig. 6b,c). In contrast, the variability of OTUs 

above this cutoff largely reflected true temporal changes (Fig. 2c and Supplementary Fig. 

6a). Differences across spatial sampling locations also contributed a substantial fraction to 

total variability (on average ~20% for OTUs with mean absolute abundance > 10−4), 

highlighting significant spatial heterogeneity of fecal samples (Fig. 2c, Supplementary Fig. 

7).

In order to further experimentally validate the developed workflow and the variance 

decomposition model, we performed a set of control experiments that specifically eliminated 

either temporal or spatial variability from fecal samples (Online Methods). First, we 

collected fecal samples from ten independent spatial locations of the same stool specimen. 

This procedure effectively simulated five consecutive time points of the DIVERS protocol, 

but without any temporal contribution to microbiota variability. Second, to remove spatial 

variability, we carried out eight consecutive days of sampling with spatial replicates that 

were homogenized on each day before sequencing (Online Methods). Reassuringly, the 

model correctly predicted no temporal or spatial contributions to OTU abundance variability 

when the corresponding signals were removed from the data (Supplementary Fig. 8).

The observed patterns of variability in the human gut microbiome may be influenced by 

factors specific to 16S rRNA library preparation and sequencing, such as differential 16S 

rRNA copy number, 16S primer and PCR biases, and OTU clustering approaches14, 15. We 

therefore carried out whole-metagenome shotgun sequencing (WMGS) of the same fecal 

samples and estimated species absolute abundances in each sample (Online Methods). 

Applying the DIVERS variance decomposition model to WMGS species abundances, we 

obtained results highly similar to those obtained using 16S rRNA sequencing (Fig. 2d, 

Supplementary Fig. 9). Specifically, the behavior of over half of all detected species was 

predominantly explained by technical noise, with spatial sampling variability contributing 

~20% to the total variance for abundant species (mean absolute abundance > 10−5). This 

demonstrates that overall patterns of individual taxa variability uncovered by DIVERS are 

robust and the method is applicable to another rapidly expanding sequencing methodology.

Based on the DIVERS variance decomposition, we identified several abundant OTUs whose 

time series were primarily shaped by either temporal (OTU 12, Genus: Bifidobacterium and 

OTU 25, Genus: Lachnospiracea incertae sedis) or spatial variation (OTU 13, Genus: 

Clostridium IV and OTU 122, Genus: Terrisporobacter) (Fig. 3a,b). Thus, in addition to 

revealing OTUs dominated by technical noise, DIVERS demonstrates substantial temporal 

and spatial variability contributing to the abundance changes of individual fecal bacteria.

Fluctuations in bacterial abundances often result from the collective behavior of multiple 

different taxa, whose interactions are reflected in correlated abundance changes16. DIVERS 

can also be used to quantify the factors contributing to abundance correlations between pairs 

of OTUs in a microbial community (Online Methods and Supplementary Note). Applying 

this analysis to human fecal samples, we found that the majority of pairwise abundance 
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correlations were due to temporal sources, with relatively smaller contributions arising from 

spatial sampling location and technical noise (Fig. 4a and Supplementary Fig. 10a,b). 

Consistent with previous results9, we also found that total correlations based on absolute 

abundance measurements were generally larger than correlations calculated using relative 

abundances, an effect primarily caused by the variance in bacterial loads across samples 

(Supplementary Fig. 10c,d and Supplementary Note).

Next, we examined factors contributing to the correlations of OTU abundances within and 

between the four most prevalent gut bacterial phyla. Interestingly, the Bacteroidetes 
exhibited significantly larger intra-phyla temporal abundance correlations compared to the 

rest of the community (p < 10−10, Wilcoxon rank sum test) (Fig. 4b, Supplementary Fig. 11). 

This result was also observed at the family level, and was not due to differences in 16S 

rRNA sequence similarity across taxa (Supplementary Fig. 12, Supplementary Fig. 13). The 

coordinated temporal changes of the Bacteroidetes may reflect fluctuations in the availability 

of dietary polysaccharides on each day that are specifically metabolized by these 

bacteria17, 18, as well as previously observed cross-feeding interactions between these 

taxa19, 20. In addition, our analysis revealed several interesting examples of OTU pairs with 

positive and negative correlation contributions from temporal and spatial factors (Fig. 4c,d). 

For example, OTU 12 (blue) and OTU 5 (pink) display substantial negative temporal 

correlation (Fig. 4d, panel 1) independent of spatial locations. In contrast, OTU 50 (blue) 

and OTU 60 (pink) display substantial positive temporal correlation (Fig. 4d, panel 3). The 

substantial positive spatial correlation between OTU 13 and OTU 33 (Fig. 4d, panel 2) is 

reflected by their similar abundance profiles at two independent spatial locations; dashed 

lines of different colors represent the two OTUs at one location, and solid lines of different 

colors represent the two OTUs at the other location. These examples highlight the diversity 

of bacterial dynamics, and demonstrate the ability of DIVERS to disentangle factors 

contributing to the abundance correlations between different taxa.

The DIVERS variance decomposition approach is not limited to the human gut microbiome, 

and can be used to investigate the contributions to bacterial abundance variability in diverse 

ecological communities. To demonstrate this, we performed an analysis of spatial variation 

of a soil microbial community in Manhattan’s Central Park in New York City. Urban 

microbiomes, including soil communities in Central Park, have been previously shown to 

exhibit substantial microbial diversity21. To explore spatial abundance variability, we 

utilized a modified protocol that inverted the hierarchy of spatial and temporal sampling 

replicates (Supplementary Note). Specifically, we collected soil samples from twenty-eight 

sites spread uniformly around a small man-made pond in the northwest section of Central 

Park (Fig. 5a, Supplementary Fig. 14, Supplementary Table 3, Online Methods). Samples 

were collected from identical locations on three different days, two of which were one week 

apart and the third over four months later. This experimental design allowed us to compare 

overall patterns of spatial and temporal variation at the timescales of one week and several 

months. Following the DIVERS protocol, a single time point from each spatial location was 

subjected to two independent rounds of sample preparation and sequencing (Fig. 5a), and a 

spike-in approach was used to estimate bacterial loads in each soil sample (Fig. 5b,c and 

Supplementary Fig. 4b, Online Methods).

Ji et al. Page 5

Nat Methods. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similar to the human gut, DIVERS revealed pervasive technical noise in OTUs with low 

abundance (log10 mean absolute abundance < −4.5). Spatial sampling location was the major 

source of variability when comparing time points separated by one week (Fig. 5b, 

Supplementary Fig. 15). However, when comparing time points separated by four months, 

temporal variability predominated, demonstrating the ability of DIVERS to quantify 

differences in contributions to abundance variability at various timescales in the community 

(Fig. 5c). Applying the DIVERS covariance decomposition model to soil bacteria, we 

observed a relatively low degree of abundance correlations between all OTU pairs, as well as 

within and between different bacterial phyla (Supplementary Fig. 16). These results indicate 

relatively weak patterns of co-occurrences between soil bacteria22, but significant spatial and 

temporal abundance variability of individual taxa22–24.

Discussion

While current sequencing technologies make it possible to profile bacterial communities at 

high temporal resolution, novel approaches are required for the proper interpretation and in-

depth analyses of collected data. The pervasive contributions of technical and spatial factors 

to the bacterial abundance variability revealed in our analysis underscores the need for 

principled approaches like DIVERS. Future studies can employ the DIVERS hierarchical 

sample collection and analysis framework to quantify and minimize the biases due to 

technical noise. Importantly, researchers can use DIVERS to estimate noise contributions for 

species of interest, instead of relying on arbitrary abundance cutoffs to consider data for 

individual species. When applying DIVERS in future studies it will be important to 

understand how the contribution of various factors to bacterial abundance fluctuations vary 

at different spatial and temporal scales. Identifying and understanding unusual patterns of 

spatial and temporal variances and co-variances may also serve as biomarkers of disease and 

perturbed microbiota states.

Another crucial challenge for future studies is understanding microbiota variances and 

variance contributions in absolute rather than relative terms. This will minimize potential 

biases due to compositional nature of many current metagenomic datasets. In the present 

study we used a microbial spike-in technique with a single species to evaluate factors 

contributing to absolute bacterial abundance variability. Multiple other approaches, such as 

measurement of microbial DNA content11, quantitative PCR25, and flow cytometry9, can 

also be used with DIVERS to evaluate changes in absolute bacterial abundances. Comparing 

the performance of these techniques, and future improvements in the spike-in technology 

(e.g. optimization of spike-in amounts, use of multiple spike-in species, automated weighing 

of samples) will minimize technical noise associated with the spike-in process, improve 

accuracy, and allow more efficient utilization of sequencing coverage.

Although we focus on human gut and soil microbial communities, DIVERS can be readily 

applied to explore patterns of variation and technical noise in any bacterial ecosystem across 

different hosts and environments (Supplementary Note, online tutorial of DIVERS is 

available at https://github.com/hym0405/DIVERS). Moreover, given the flexibility of the 

developed quantitative framework, it can be easily extended to other sequencing-based 
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applications, such as the characterization of human immune cell repertoires26 and gene 

expression changes in tumors27.

Online Methods

Ethical review

This study was approved and conducted under Columbia University Medical Center 

Institutional Review Board protocol AAAR0753. Written informed consent was obtained 

from the subject in the study, a healthy male adult.

Fecal sample collection and storage

Fecal samples were collected daily over the course of twenty days, with two additional 

samples taken on days 27 and 48 of the study. After defecation, inverted sterile 200 μL 

pipette tips (Rainin RT-L200F) were used to core out a small sample from the stool 

specimen, which was placed immediately in a sterile cryovial (Sarstedt 72.694.106). 

Samples were then immediately placed in a −20 °C freezer and transferred to a −80 °C 

freezer for long-term storage.

Replicate fecal sampling experimental protocol

To enable decomposition of gut bacterial abundance variability into temporal, spatial and 

technical contributions, a replicate sampling approach was utilized. Specifically, on each day 

of the time series, two fecal samples were collected from random spatial locations of the 

same stool specimen. For one of these samples, two technical replicates were prepared in 

parallel by splitting the individual fecal core. Thus, a total of three samples were processed 

for each day of the time series: two technical replicates from a single spatial location 

(denoted samples X and Y) and a second spatial replicate (denoted sample Z). To further 

characterize technical noise, a single fecal sample was also subjected to 12 independent 

rounds of sample processing and sequencing. Metadata associated with all fecal samples are 

provided in Supplementary Table 1. Theoretical details associated with the DIVERS 

approach are described in the Supplementary Note.

Soil site description, sample collection and storage

Soil samples were collected in June and October of 2018 from The Pool in Central Park, 

Manhattan (approximately 40.795oN, 73.960oW), a man-made body of water located in the 

northwest area of the park. Soil cores were collected on two days exactly one week apart, 

and a third day roughly four months after the initial sampling time point, from twenty-eight 

sites located on the periphery of the water’s edge. The average distance between adjacent 

sites was ~8 meters. Photographs were taken at each site to ensure sampling accuracy at the 

same location from different time points (Supplementary Fig. 14). Following soil collection, 

samples were transferred to a −80 °C freezer for long-term storage.

Replicate soil sampling experimental protocol

Similar to our fecal sampling protocol, a replicate sampling approach was utilized to collect 

soil bacteria. For a given pair of time points, technical replicates (denoted samples X and Y) 
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were prepared from a single sample collected from one of the two time points by splitting 

the individual soil core. The time points for which technical replicates were prepared were 

alternated between neighboring spatial sampling sites. Following the DIVERS protocol, a 

single measurement was made from samples collected the remaining time point (denoted 

sample Z). Metadata associated with all soil samples are provided in Supplementary Table 3. 

Due to technical error associated with sample preparation, site 25 was excluded from any 

further downstream analyses. Theoretical details associated with the DIVERS approach are 

described in the Supplementary Note.

Spike-in strain for calculation of bacterial absolute abundances

A spike-in approach was utilized during sample processing to allow for calculation of total 

bacterial abundances per mass of fecal or soil matter. Sporosarcina pasteurii (ATCC 11859), 

an environmental bacterium that was confirmed to be absent in our fecal and soil samples, 

was grown to saturation in NH4-YE medium (ATCC medium 1376). It was then 

concentrated by centrifugation, resuspended in ~0.1X volume phosphate buffered saline 

(PBS) with 20% glycerol, and stored in cryovials at −80 °C for subsequent use during 

genomic DNA extraction.

Sample genomic DNA extraction

Genomic DNA (gDNA) extraction was performed using a custom liquid handling protocol 

based on the Qiagen MagAttract PowerMicrobiome DNA/RNA Kit (Qiagen 27500–4-EP) 

adapted for lower volumes. Briefly, a 96 well plate (Axygen P-DW-20-C) was loaded with 1 

mL of 0.1 mm Zirconia Silica beads (Biospec 11079101Z) using a loading device (Biospec 

702L). During sample processing, appropriate negative controls were run on each plate (i.e. 

water control). 10 uL of thawed and concentrated spike-in strain was added to each well; for 

soil samples, the spike-in strain was diluted 1:25. 10–500 mg of each sample (average 45.9 

mg, standard deviation 14.7 mg for fecal samples; average 298.5 mg, standard deviation 62.8 

mg for soil samples) was added to the plate using a sterile plastic spatula, and the weight 

added for each sample was determined via an analytical balance. 750 μL of lysis solution 

was then added to each well (90 mL master mix, 9 mL 1M Tris HCl pH 7.5, 9 mL 0.5M 

EDTA pH 8.0, 11.25 mL 10% SDS, 22.5 mL Qiagen lysis reagent, 38.25 mL nuclease free 

water). The plate was centrifuged down for 1 min at 4500xg and a bead sealing mat was 

affixed to the plate (Axygen AM-2ML-RD). The plate was then placed on a bead beater 

(Biospec 1001) and subjected to bead beating for 5 min followed by 10 min for cooling. 

This bead beating cycle was repeated, for a total of 10 min of bead beating. The plate was 

centrifuged down for 5 min at 4500xg and 200uL of supernatant was transferred to a V-

bottom microplate. 35 μL of Qiagen inhibitor removal solution was added to each well and 

mixed by vortexing, incubated 4 °C for 5 min, and the plate was again centrifuged down for 

5 min at 4500xg. 100 μL of supernatant was removed from the plate and placed in a round-

bottom plate (Corning 3795). The plate was then placed on a robotic liquid handler (Biomek 

4000) for magnetic bead purification of the supernatant per the manufacturers 

recommendations but at a scaled volume; magnetic beads in binding solution were mixed in 

each well, and subjected to 3 washes with wash solution and elution in 100 uL of nuclease 

free water into a new plate.
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16S rRNA amplicon sequencing

16S sequencing of the V4 region was performed utilizing a custom protocol and a dual 

indexing scheme adapted from Kozich et al1. Briefly, dual indexing sequencing primers 

were adapted from the previous study, but we utilized Illumina Nextera barcode sequences 

and altered 16S primers to match updated 505f and 806rB primers (see Table S2 for 

sequences). A 20 μL PCR amplification was set up in a 96 well skirted PCR microplate: 1 

μM forward 5XX barcoded primer, 1 μM reverse 7XX barcoded primer, 1 μL prepared 

gDNA, 10 uL NEBNext Q5 Hot Start HiFi Master Mix (NEB M0543L), 0.2X final 

concentration SYBR Green I. A quantiative PCR amplification (98°C 30s; cycle: 98°C 20s, 

55°C 20s, 65°C 60s, 65°C 5m) was performed and cycling was stopped during exponential 

amplification (typically 12–20 cycles) and the reaction was advanced to the final extension 

step.

The resulting PCRs were quantified utilizing a SYBR Green I dsDNA assay; 2 μL of PCR 

product was added to 198 μL of TE with 1X final concentration SYBR Green I and 

fluorescence was quantified on a microplate reader. Samples were pooled based on this 

quantification on a robotic liquid handler (Biomek 4000). The resulting ~390 bp amplicon 

from the pool was then gel-purified utilizing a 2% E-gel (Invitrogen) and Wizard SV gel 

extraction kit.

Final libraries were then quantified by Qubit dsDNA HS assay and sequenced on the 

Illumina MiSeq platform (V2 500 or 300 cycle kit) according to the manufacturers 

instructions with modifications. Specifically, the library was loaded at 10 pM with 20% 

PhiX spike-in, and custom sequencing primers were spiked into the MiSeq reagent cartridge 

(6 uL of 100 μM stock; well 12: read1, well 13: index1, well 14: read2).

Sequence analysis and OTU clustering

Resulting sequence data was analyzed using USEARCH1 version 9.2.64. Specifically, raw 

reads were merged using the –fastq_mergepairs command (for 2×250 reads, the options –

fastq_maxdiffs 10 –fastq_maxdiffpct 10 were utilized). Merged sequences were filtered 

using the –fastq_filter command with options –fastq_maxee 1.0 and –fastq_minlen 240. 

Resulting sequences were dereplicated (–derep_fulllength), clustered into OTUs (–

cluster_otus) and the merged reads were searched against OTUs sequences (–

usearch_global) at 97% identity. Taxonomic assignments of OTUs were made using the 

RDP classifier2.

Whole-metagenome shotgun sequencing

The same genomic DNA utilized for 16S rRNA sequencing was subjected to metagenomic 

shotgun sequencing following a published protocol for low-volume Nextera library 

preparation3. Barcoded samples were pooled and sequencing was performed on the Illumina 

HiSeq platform (2×150 reads). Coverage was 4.25 ± 2.08 million reads (average ± s.d.) per 

sample.
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Abundance estimation from metagenomic sequencing

We used Kraken4 to assign taxonomies to individual short reads, using a database of 

complete NCBI RefSeq bacterial genomes as well as the genome of Sporosarcina pasteurii, 
our spike-in strain. To estimate species level abundances, the fraction of total reads directly 

assigned to each reference genome was normalized by the total assembly length of that 

genome. Normalized read abundances were then summed over all reference genomes 

belonging to a given species. These summed abundances were then renormalized such that 

the total abundance of all detected species was equal to one.

Calculation of absolute taxa abundances

Bacterial load in each sample was calculated using the following formula:

Ri =
C0

C0 + ρiW i

where, Ri is the sequenced relative abundance of the spike-in strain in sample i, C0 is the 

constant amount of spike-in strain (units of total DNA copies) added to each sample, Wi is 

the weight of the fecal or soil sample i (mg), and ρi is the bacterial load per fecal/soil mass 

(DNA copies/mg). Solving for ρi,

ρi =
C0 1 − Ri

RiW i

where we have measured Ri and Wi experimentally. Note that relative changes in ρi are 

independent of the constant C0. We therefore scaled the bacterial loads within fecal or soil 

samples to a mean of unity. Relative abundance profiles (with the spike-in strain excluded) 

were then multiplied by this scaled quantity to obtain absolute OTU or species abundances 

in arbitrary units that were used for the analyses.

Assessment of the DIVERS spike-in sequencing approach to estimate absolute bacterial 
abundances

To assess the accuracy of the DIVERS spike-in approach in estimating absolute abundances, 

we performed a spike-in dilution series. Specifically, two fecal samples from different 

individuals were homogenized in 5X volume sterile PBS by vortexing, and passed through a 

40 micron sterile filter. The fecal filtrate was then serially diluted 1:2 in sterile PBS to 

generate samples with exponentially decreasing fecal matter. Constant volumes (100 uL) of 

the undiluted and diluted samples were then subjected to the DIVERS spike-in sequencing 

approach as described previously.

Based on the above formula used to calculate bacterial loads, we derived a single 

relationship that described the expected behavior of sequenced spike-in strain abundances 

across the dilution series:
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R0 1 − Ri
Ri 1 − R0

= 2−i

where R0 is the sequenced relative abundance of the spike-in strain in the original, undiluted 

fecal sample, and Ri is the relative abundance of the spike-in strain in the ith sample of the 

dilution series (i.e. sample i = 1 contains one half of the input fecal matter of the original 

sample). We show excellent agreement between expected and observed behavior in 

Supplementary Fig. 4c.

Variance decomposition of taxa abundances and bacterial loads

DIVERS utilizes the replicate sampling and sequencing protocol described above to 

decompose measured bacterial abundance variances. Let X denote the abundance of an 

individual species or OTU. Using the law of total variance, the variance of X can be written 

as a sum of three components representing temporal, spatial, and technical sources of 

variability:

V ar(X) = V arTES |TE X |S, T
Temporal

+ ETV arS |TE X |S, T
Spatial sampling

+ ETES TV ar(X |S, T )
Technical

#
(1)

where, S and T are space and time-associated random variables capturing the spatial and 

temporal processes affecting the abundance of X across samples. Following the notation in 

Fig. 1, each of the terms in equation (1) is estimated as follows (see Supplementary Note for 

full derivations):

V arTES TE(X |S, T )
Temporal

= Cov(X, Z) #
(2)

ETV arS TE(X |S, T )
Spatial sampling

= Cov(X − Z, Y ) #
(3)

ETES |TV ar(X |S, T )
Technical

= 1
2V ar(X − Y ) # (4)

where X, Z and Y, Z denote pairs of spatial replicate measurements of either bacterial load 

or individual OTU/species abundances. As described earlier, spatial replicates are obtained 

from two independent spatial locations in the environment at every time point. In contrast, X 
and Y denote technical replicates that are measured from the same spatial location.

Covariance decomposition of taxa abundances

Using the law of total covariance, the covariance between the abundances of any two taxa i 
and j, denoted Xi and Xj, can also be written as a sum of temporal, spatial and technical 

contributions:
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Cov(Xi, Xj) = CovT E(Xi |T ), E(Xj |T )
Temporal

+ ETCovS T E(Xi |S, T ), E(Xj |S, T )
Spatial sampling

+ ETES TCov(Xi, Xj |S, T )
Technical

# (5)

Each of the terms in (5) is estimated using the replicate sampling and sequencing protocol as 

follows (see Supplementary Note for full derivations):

CovT E Xi |T , E Xj |T
Temporal

= Cov(Xi, Zj) #
(6)

ETCovS T E Xi |S, T , E Xj |S, T
Spatial sampling

= Cov(Xi − Zi, Y j) #
(7)

ETES |TCov(Xi, Xj |S, T
Technical

= 1
2Cov(Xi − Y i, Xj − Y j) # (8)

where, Xi, Zi and Yi, Zi denote spatial replicate measurements of the abundance of taxa i, 
and Xi, Yi denote technical replicates. To obtain temporal, spatial and technical correlations 

shown in Fig. 4, we normalize each covariance contribution by the respective standard 

deviations of individual taxa:

Cor(Xi, Xj) = CovT E Xi |T , E Xj |T
σXiσXj
Temporal

+ ETCovS T E Xi |S, T , E Xj |S, T
σXiσXj

Spatial sampling

+ ETES TCov(Xi, Xj |S, T )
σXiσXj
Technical

#
(9)

Variances and covariances of taxa abundances were calculated using data obtained across the 

twenty consecutive days of fecal sampling and twenty-seven soil sites. The variance 

decomposition of bacterial loads also included samples taken from days 27 and 48 of the 

times series. To minimize artifacts due to technical noise, only OTUs with a log10 mean 

absolute abundance >−4 and >−3.5 were included in the covariance decomposition analysis 

of fecal and soil samples respectively. These cutoffs was chosen based on the observed 

variance profiles of individual OTUs. To compare contributions across gut bacterial phyla, 

16S rRNA sequence-based phylogenetic distances were calculated using the pairwise2 

module of Biopython.

Two component variance and covariance decompositions

In certain cases, it may be useful to separate technical from non-technical (biological) 

sources of variability in microbiome studies. DIVERS can also perform a two component 

variance and covariance decomposition using the laws of total variance and covariance:
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V ar(Xi) = V arBE Xi |B
Biological

+ EBV ar Xi |B
Technical

#
(10)

Cov(Xi, Xj) = CovB E Xi |B , E Xj |B
Biological

+ EBCov(Xi, Xj |B)
Technical

#
(11)

Note here that B is a random variable that now simultaneously captures the temporal and 

spatial factors affecting the abundance of taxon i.

Each term in equation (10) can be written as follows:

V arBE X |B
Biological

= Cov(X, Y ) #
(12)

EBV ar X |B
Technical

= 1
2V ar(X − Y ) # (13)

Terms in equation (11) can be written as:

CovB E Xi |B , E Xj |B
Biologicall

= Cov(Xi, Y j) #
(14)

EBCov(Xi, Xj |B)
Technical

= 1
2Cov(Xi − Y i, Xj − Y j) # (15)

As before, X and Y reflect technical measurements of the same biological sample. Not that 

the biological sources of variance and covariance now reflect both temporal and spatial 

factors. However, this interpretation is subject to change depending on the exact study 

design of experiments. See the Supplementary Note for full derivations and more in-depth 

discussion of the interpretation of each of the terms in equations (10) and (11).

Stochastic simulations of microbiota dynamics

To assess the performance of the DIVERS variance decomposition model, we carried out 

stochastic simulations of bacterial dynamics and measurement noise. We considered a 

community of interacting species on a 2D lattice, where at each time point, species were 

allowed to increase their abundance through birth, decrease their abundance through death, 

or migrate randomly to a neighboring location. These dynamics were governed by the 

following set of reactions:

Nx, y
i b i x, y Nx, y

i + 1 # (16)
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Nx, y
i d i x, y Nx, y

i − 1 # (17)

Nx, y
i ν i x, y Nx, y

i − 1 # (18)

Nx ± 1, y ± 1
i ν i x, y Nx ± 1, y ± 1

i + 1 # (19)

where Nx, y
i  represents the abundance of species i at grid location (x,y), and b i

x, y, d i
x, y, 

and ν i x, y are the respective per-capita birth rates, death rates and migration rates of species 

i at location (x,y). Migration rates for each species were chosen to be independent of spatial 

location. Per-capita birth and death rates were given by the following density-dependent 

logistic equation5:

μ i x, y = ri 1 − Nx, y
i + ∑i ≠ jAijNx, y

j

Kx, y
i # (20)

b i
x, y =

μ i x, y if μ i x, y > 0
0 if μ i x, y < 0

# (21)

d i
x, y =

μ i x, y if μ i x, y < 0
0 if μ i x, y > 0

# (22)

where ri is the intrinsic growth rate of species i, Kx, y
i  is the carrying capacity of species i at 

location (x,y), and A is a matrix encoding interactions between community members 

(elements of A may be both positive or negative). To incorporate environmental stochasticity 

into our model, we multiplied species abundances by a Gaussian random variable at each 

time step: N t + Δt x, y
i = N t x, y

i ζ i , with ζ i ∼ N(1, ϵ) . Finally, to simulate technical noise 

associated with experimental measurement error6, 7, we modeled final observed abundances 

as a Poisson random variable Xx, y
i  ∼ Poiss Nx, y

i  with mean and variance equal to Nx, y
i .

Simulations were carried out using the Gillespie algorithm on a 10 × 10 lattice with 

continuous boundary conditions. The following parameters were used for simulations: 

nspecies = 10, Ki ~ unif(100,500), νi ~ unif(0.5,2), ri ~ unif(0.2,0.5), Aij ~ unif(−0.2,0.5), ϵ = 

3 * 10−4. The true temporal abundance variance σT
2 i

 for each species was calculated 

empirically as: σT
2 i = 1

T − 1 ∑t ⟨N t i ⟩ − N i 2
, where ⟨N t i ⟩ is the average abundance of 

species i at time t across spatial locations, N i  is the average abundance of species i over all 

time points and all spatial locations, and T is the length of the simulation. Similarly, the 
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spatial abundance variance of each species was calculated empirically as: 

⟨σS
2 ⟩T

i = 1
T ∑t

1
S − 1 ∑x, y N t x, y

i − ⟨N t i ⟩ 2
, where S is the number of considered spatial 

locations in the environment. Finally, technical variance was calculated empirically as 

⟨σN
2 ⟩S, T

i = 1
T ∑t

1
S ∑x, y

1
N − 1 ∑n X t x, y

i − N t x, y
i 2 = N i  (Supplementary Note).

Taking X t x, y
i  and Y t x, y

i  to be technical replicates draw from the same spatial location at 

each time point t, and Z t x, y
i  to be a single technical replicate drawn from a different spatial 

location, we then used equations (2–4) of the DIVERS variance decomposition model to 

estimate the temporal, spatial sampling and technical abundance variances of each species in 

the simluated community. In Supplementary Fig. 2, we compare these estimated variances 

using DIVERS to the quantities calculated empirically as described above.

Comparison of DIVERS to the Gaussian process variance decomposition model

Using synthetic data, we compared the performance of DIVERS to a recently described 

approach wherein a Gaussian process8 was used to model variability in measured bacteral 

abundances9.

We first simulated a time series of bacterial abundances using a generative statistical model, 

in which the true contibutions of temporal, spatial and technical contributions were inputs 

into the simulation. Specifically, average bacterial abundances across spatial locations in the 

environment at each time point {⟨xT=1⟩,⟨xT=2⟩…⟨xT=L⟩} were first drawn from a gamma 

distribution10 with mean equal to x and variance σT
2 . Note that the parameter σT

2  is the true 

temporal variance that DIVERS and the Gaussian process model attempt to estimate. To 

model spatial abundance heterogeneity at any given time point t, we defined an additional 

gamma distribution with an average abundance equal to ⟨xT=t⟩, with variance equal to 

σS
2 T = t . This spatial abundance variance at each time point was itself drawn from a 

distribution with mean ⟨σS
2 ⟩T . Note again that the quantity ⟨σS

2 ⟩T  is exactly the spatial 

abundance variance that both models estimate. We then generated a synthetic time series 

wherein we sampled twice from each of the spatial abundance distributions defined at every 

time point to simulate abundances at two different spatial locations 

xT = t, S = s1, xT = t, S = s2 . Finally, for a given time point t and spatial location s, we 

modeled technical variability associated with experimental measurement error using a 

Poisson random variable31 with mean and variance equal to xT=t,S=s. The true technical 

variability ⟨σN
2 ⟩S, T  is then given by x, which is equal to the technical variance at a given 

time point and spatial location, averaged over all time points and spatial locations. We 

sampled two technical replicates from each spatial location 

xT = t, S = s, N = n1, xT = t, S = s, N = n2  to represent two sequenced abundances from 

location s. Notably, the specific choice of distributions to model temporal, spatial, and 

technical variances is arbitrary.

We then used the DIVERS variance decomposition model to estimate the temporal, spatial, 

and technical contributions to simulated abundance variances. We used a simulation length 
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of L = 20, the number of time points for which human fecal data was collected in this study. 

We also used the Gaussian process decomposition procedure to estimate the corresponding 

temporal, spatial, and technical variance contributions in simulations using publicly 

available code provided by the study of Lloyd-Price et. al.9. In the referenced study, the 

Gaussian process procedure was applied to a large cohort of individuals with sparsely 

sampled time points, while our simulations reflected a single, densely sampled time series. 

We therefore modified several of the terms in the Gaussian process covariance function used 

by Lloyd-Price et. al. Specifically, we set the interindividual variability contribution to zero 

and treated the “biological variablity” in the covariance function utlized in Lloyd-Price et. al. 

as the spatial sampling variablity of interest. Other terms remained unchanged. All MCMC 

sampling parameters used in the Gaussian process inference procedure were taken directly 

from Lloyd-Price et. al.9

Removal of temporal or spatial variability from fecal samples

We conducted two sets of control experiments to remove either temporal or spatial 

variability of OTU abundances from fecal samples. Specifically, to eliminate temporal 

contributions, we re-sampled a single stool specimen ten times total to simulate five 

consecutive days of time series sampling. To eliminate spatial variability, replicate sampling 

was conducted for eight consecutive days; on each day, fecal samples obtained from random 

spatial locations were homogenized together by combining fecal samples, and then 

mechanically homogenizing in 1X PBS with a P200 pipette tip. The resulting homogenized 

sample was then split into technical triplicates and processed following the normal DIVERS 

protocol.

Code availability

MATLAB scripts to perform all variance and covariance decomposition analyses from 

original OTU abundance tables are available on GitHub at https://github.com/brianwji/

DIVERS. Implementation of DIVERS in R is available on GitHub at https://github.com/

hym0405/DIVERS.

Data availability

Sequencing data is available at NCBI SRA under PRJNA541083.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. DIVERS conceptual workflow.
(a) Illustration of the DIVERS workflow applied to the human fecal microbiome. Samples 

are collected from two random spatial locations (X and Y from the purple site, Z from the 

blue site, as shown on the left side of the figure) on each day of sampling and two technical 

replicates (X and Y) are prepared from one of these spatial locations. The resulting three 

samples (X, Y, and Z) are subjected to a custom spike-in procedure to estimate absolute 

bacterial abundances. (b) The DIVERS variance decomposition model is then applied to 

abundance profiles of each taxa to quantify contributions of temporal variability, spatial 

sampling heterogeneity and technical noise to total abundance variability.
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Figure 2 |. Variance decomposition of gut bacterial abundances using DIVERS.
(a) Temporal profiles of bacterial loads (∝ total bacterial DNA per mg of sample) in the 

human gut microbiome (for definition of X, Y and Z see Fig. 1a). Gray line shows the 

average of spatial replicates. Bacterial loads are reported in arbitrary units and normalized to 

a mean of one (Online Methods). (b) Variance fraction of the bacterial load attributed to 

technical (N, purple), spatial sampling (S, blue), and temporal (T, red) factors as calculated 

by the DIVERS variance decomposition model. The averages were computed using 1000 

permutations of the X/Y/Z labels. Error bars represent SEM. (c) Variance decomposition of 

individual OTU abundances. Absolute OTU abundances were obtained by multiplying 

relative abundance profiles by the bacterial load in each sample and are reported in arbitrary 
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units (Online Methods). n = 433 OTUs were binned by their mean abundance across all 

samples, and stacked bars show the average variance contribution of technical, spatial 

sampling, and temporal sources to OTUs within each bin. Error bars represent the standard 

error of the mean (SEM). (d) Variance decomposition for n = 3619 individual bacterial 

species based on species abundances obtained by shotgun metagenomic sequencing and 

species profiling with Kraken28 (Online Methods).
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Figure 3 |. Identifying individual taxa with high temporal or spatial sampling variance.
(a) Identification of specific OTUs with either high temporal variance (red points, variance 

fraction > 0.8) or high spatial sampling variance (blue points variance fraction > 0.6) 

contributions. Only abundant OTUs (mean absolute abundance > 10−4) are shown. (b) Time 

series of individual OTUs, corresponding to filled points in a, whose abundance variation is 

predominantly attributed to temporal (red) or spatial sources (blue). Gray lines correspond to 

abundances of technical replicates (X,Y) obtained from the same spatial location, and 

colored lines correspond to abundances from the second spatial replicate (Z).
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Figure 4 |. Decomposition of contributions to pairwise OTU abundance correlations in the 
human gut microbiome.
(a) Boxplots of total, temporal, spatial, and technical correlations for all pairs of abundant 

OTUs (average absolute abundance > 10−4). Boxes denote the median and interquartile 

ranges, with maximum whisker lengths three times the interquartile range. (b) Temporal 

correlations of OTU abundances within and between different phyla; colors reflect average 

temporal correlations between pairs of OTUs from the indicated phyla. Data are shown for 

all highly abundant OTUs (mean absolute abundance >10−4) from the Actinobacteria (n = 

10), Bacteroidetes (n=15), Firmicutes (n=103), and Proteobacteria (n=5). (c) Temporal and 

spatial correlations for all pairs of abundant OTUs (average absolute abundance > 10−4). 

Colored points (1–3) indicate pairs of OTUs with temporal profiles shown in d. (d) 

Temporal abundance profiles for pairs of OTUs highlighted in c. Pairs exhibit (from left to 

right): 1) Substantial negative temporal (ρT = −0.63, p = 4×10−4), 2) substantial positive 

spatial (ρS = 0.85, p = 3×10−4), and 3) substantial positive temporal (ρT = 0.90, p < 10−4) 

correlations. For every OTU pair, blue and pink solid lines show abundances of each OTU 

measured from the same spatial location (Z). Blue and pink dashed lines show the average 

between technical replicates (1/2(X+Y)) of each OTU measured from the second spatial 

location. See online methods Eq. 9 for definition of the temporal correlation; p values were 

estimated by generating 104 random abundance series for the pairs of OTUs with known 

temporal variances, and then using these time series to compute the temporal covariances.
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Figure 5 |. Decomposition of contributions to the variance of soil bacterial abundances.
(a) Illustration of the DIVERS sampling protocol applied to a Central Park soil microbial 

community. Samples were collected one week and four months apart from twenty-eight 

spatial sites spread uniformly around a small pond in the northwest area of the park. At each 

site i, two technical replicates were collected using samples from one time point (Xi and Yi), 

whereas a single measurement was made at the other time point (Zi) (b,c) DIVERS variance 

decomposition of n = 24667 individual OTU abundances (left panels) and n = 27 bacterial 

loads (right panels). Left panels: OTUs were binned by their mean abundance across all 

samples, and stacked bars show the average variance contribution of technical, spatial 

sampling, and temporal sources to OTUs within each bin. Right panels: variance 

contribution of technical, spatial sampling, and temporal sources to bacterial load. Error bars 

represent the SEM. Temporal variability reflects average changes in the community at the 

two time scales (1 week in b, 4 months in c).
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