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Abstract

Smoking is one of the leading preventable threats to human health and a major risk factor for lung 

cancer, upper aero-digestive cancer, and chronic obstructive pulmonary disease. Estimating and 

forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking 

epidemics and also provide a basis for more accurate mortality and life expectancy projection. 

Peto et al. (1992) proposed a method to estimate the SAF using the lung cancer mortality rate as 

an indicator of exposure to smoking in the population of interest. Here we use the same method to 

estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong 

and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the 

basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 

countries simultaneously. This gives forecasts as well as predictive distributions that can be used to 

find uncertainty intervals for any quantity of interest. We assess the model using out-of-sample 

predictive validation, and find that it provides good forecasts and well calibrated forecast intervals, 

comparing favorably with other methods.
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1. Introduction.

Smoking is known to have adverse impacts on health and is one of the leading preventable 

causes of death (Peto et al., 1992; Bongaarts, 2014; Mons and Brenner, 2017). It is a major 

risk factor for lung cancer, chronic obstructive pulmonary disease (COPD), respiratory 

diseases, and vascular diseases, and tobacco use causes approximately 6 million deaths per 

year (Britton, 2017). For instance, tobacco use causes more than 480,000 deaths per year in 
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the United States, accounting for about 20% of the total deaths of US adults, even though 

smoking prevalence in United States has declined from 42% in the 1960s to 14% in 2018 

(Mons and Brenner, 2017).

The smoking attributable fraction (SAF) is the proportion by which mortality would be 

reduced if the population were not exposed to smoking. It is defined as

SAF =
nS
nD

,

where nS is the number of smokers who died because of their smoking habit and nD is the 

total number of people who died. It can be shown that this is equivalent to

SAF = p r − 1
p r − 1 + 1, (1.1)

where p is the underlying prevalence of smoking in the population and r is the risk of dying 

of smokers divided by the risk of dying of nonsmokers in the population (Rosen, 2013).

Estimating and forecasting the SAF of mortality is essential for assessing how the smoking 

epidemic influences mortality measures from the past to the future. First of all, nonlinear 

patterns of increase in life expectancy over time are partially due to the smoking epidemic. 

Bongaarts (2006) used the SAF to calculate the non-smoking life expectancy, which turned 

out to evolve in a more linear fashion than overall life expectancy (including smoking 

effects). Janssen, van Wissen and Kunst (2013) used a similar technique to calculate the non-

smoking attributable mortality, and showed that its decline is more linear than that of overall 

mortality.

Second, smoking partly accounts for regional variations in mortality. In most developed 

regions in the world including Western Europe, North America and some East Asian 

countries, the smoking epidemic among males started earlier than elsewhere, in the first half 

of the 20th century. The adverse effect of the smoking epidemic accumulated for several 

decades, leading to SAF peaking in these countries around the 1980s. With the continuous 

decline of male smoking prevalence in these countries due to anti-smoking movements and 

tobacco control, years of life lost due to smoking began to decrease in recent decades. In 

contrast, many developing countries are currently in the early stage of the smoking 

epidemic, with high and increasing smoking prevalence among males, even though tobacco 

control policies are in place.

Smoking also accounts for some subnational differences in mortality. For example, Fenelon 

and Preston (2012) found that smoking accounts for the southern mortality disadvantage 

relative to other regions of the United States. They showed that smoking explained 65% of 

the subnational variation in male mortality in 2004.

Third, changes in smoking mortality largely account for changes in the between-gender 

differences in mortality. The gap in mortality between males and females has tended to first 

widen and then narrow in most developed countries, and reduced between-gender 
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differences in smoking largely explain the current closing of the between-gender mortality 

gap (Pampel, 2006; Preston and Wang, 2006). Indeed, in these countries the female smoking 

epidemic usually started one or two decades later than the male epidemic, and thereafter 

followed a similar pattern. In mid- to low-income countries, female smoking-related 

mortality remains low but still follows a similar rising-peaking-falling trend to the male one. 

The SAF for males and females clearly follows the same general increasing-peaking-

decreasing trend but with different times of onset, times-to-peak and maximum values (see 

Figure 1).

Therefore, estimating and forecasting the SAF can help to improve mortality forecasts by 

taking the nonlinearity of mortality decline together with between-country and between-

gender differentials into account (Bongaarts, 2006; Janssen, van Wissen and Kunst, 2013; 

Stoeldraijer et al., 2015). Here we propose a new Bayesian hierarchical model to project 

SAF that captures the observed increasing-peaking-declining trend so that it could be used 

for making better mortality forecasts.

Estimating the SAF is not easy for several reasons (Bongaarts, 2014; Tachfouti et al., 2014). 

First, the smoking habits of individuals can differ in terms of smoking intensity, smoking 

history, types of tobacco used, as well as firsthand or second-hand smoking, so that 

estimating the prevalence of smoking (p in Eq. 1.1) based on smoking behavior data is not 

straightforward. Secondly, to estimate the relative risk of smoking (r in Eq. 1.1) requires 

accurate cohort data. Such data are challenging to collect because smoking is not a direct 

killer but rather has a lifelong impact, with deaths occurring mostly at older ages. The 

American Cancer Society’s Cancer Prevention Study II (CPS-II), which began in 1982, is so 

far the largest study that collects such data (Tachfouti et al., 2014). Thirdly, the quality of 

registration and survey data varies across countries and between genders, which makes 

estimation and comparison of SAF across countries difficult.

Three categories of methods have been proposed to estimate SAF. The first is prevalence-

based analysis in cohort studies (SAMMEC) (Levin, 1953). This uses estimated smoking 

prevalence from surveys and relative risk from CPS-II. The second method is prevalence-

based analysis in case-control studies. This method is similar to the first one, except that the 

relative risk is estimated from a case-control study. It has been used for India (Gajalakshmi 

et al., 2003), Hong Kong (Lam et al., 2001), and China (Niu et al., 1998). The main 

drawback of prevalence-based methods is the scarcity of reliable historical data on smoking 

prevalence, especially for developing countries.

The third method, which overcomes this limitation, is an indirect method. It is called the 

Peto-Lopez method and was first proposed by Peto et al. (1992). This method estimates the 

proportion of the population exposed to smoking using lung cancer mortality data, since 

most lung cancer deaths are due to smoking in developed countries. According to Centers 

for Disease Control and Prevention (2019), cigarette smoking is associated with more than 

80% of lung cancer deaths in the United States. Simonato et al. (2001) also concluded by 

case-control studies in 6 developed European countries that smoking is associated with over 

90% of lung cancer cases. We use this method to estimate the SAF and we describe the 

procedure in Section 2.3.
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Another indirect method, the PGW method of Preston, Glei and Wilmoth (2009), also uses 

lung cancer mortality rate as an indicator of the cumulative hazard of smoking. Instead of 

using relative risks from the CPS-II as the Peto-Lopez method does, the PGW method 

adopts a regression-based procedure. We discuss these two methods in Section 5.1. More 

comparisons among different estimation methods of SAF can be found in Pérez-Ríos and 

Montes (2008), Tachfouti et al. (2014), Kong et al. (2016), and Peters, Mackenbach and 

Nusselder (2016).

Figure 1 plots the estimated all-age SAF (ASAF) of males and females for the United States 

from 1950 to 2015. It can be seen that the evolution of SAF over time follows a remarkably 

strong pattern, first rising and then falling. Qualitatively very similar patterns were found in 

most countries that we studied, although in countries with less good data, higher levels of 

measurement error can be seen. It seems intuitive to expect that such a regular pattern could 

be used to obtain good forecasts. Here we describe our method for doing this. It turns out 

that, indeed, good forecasts can be obtained, thanks to the strong and consistent pattern of 

SAF over time. Here we propose a new probabilistic projection method for the SAF using a 

Bayesian hierarchical model. Our method will provide estimates and projections of the SAF 

for both genders jointly for more than 60 countries.

The paper is organized as follows. The data, the detailed SAF calculation based on the Peto-

Lopez method, and the proposed Bayesian hierarchical model are described in Section 2. An 

out-of-sample validation experiment is reported in Section 3. We then discuss general 

estimation and forecasting results for all the countries considered in this work, with detailed 

case studies for four countries chosen from North America, South America, Asia, and 

Europe in Section 4. We conclude with a discussion in Section 5.

2. Method.

2.1 Notation.

We use the symbol y to denote the estimated (observed) all-age smoking attributable fraction 

(ASAF), which is defined as the smoking attributable fraction for all age groups combined, 

and we use the symbol h to denote the true (unobserved) ASAF. All of these quantities are 

indexed by country c, gender s, and year t. The quantities of interest are the unobserved true 

past and present ASAF together with their future projections. Here the estimation time 

period is 1950–2015 and the projection time period is 2015–2050. Section 2.3 describes the 

estimation procedure for ASAF using the Peto-Lopez method for all available countries. A 

Bayesian hierarchical model will be used to model the estimated ASAF. In the Bayesian 

hierarchical model, the country-specific parameter vector determining the time evolution 

pattern of ASAF for country c and gender s is denoted by θc,s, and the global parameters by 

ψ.

2.2. Data.

We use the annual death counts by country, age group, gender, and cause of death from the 

WHO Mortality Database (World Health Organization, 2017) which covers data from 1950 

to 2015 for more than 130 countries and regions around the world. This dataset comprises 
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death counts registered in national vital registration systems and is coded under the rules of 

the International Classification of Diseases (ICD). There are 5 raw datasets available by the 

most recent update on 11 April 2018. The first three datasets are labeled as ICD versions 7, 

8, and 9 respectively, and the last two are labeled as ICD version 10.

Each version of ICD codes causes of death differently and a summary of the codes used for 

estimating ASAF in Section 2.3 is given in Table 1. For each country, the death counts data 

can differ by geographical coverage, number of years available and age group breakdown. 

Some countries such as China only have data from selected regions, and these countries will 

not be included here.

We use the quinquennial population by five-year age groups from the 2017 Revision of the 

World Population Prospects (United Nations, 2017) for each country, gender and age group. 

Since this dataset provides population estimates at five-year intervals, we use linear 

interpolation to obtain annual population estimates for each five-year age group.

2.3. ASAF Estimation.

We apply the original Peto-Lopez indirect method to estimate ASAF for male and female 

separately. This method uses the lung cancer mortality rate as an indicator of the 

accumulated hazard of smoking to estimate the proportion of population exposed to 

smoking. As commented in Peto et al. (1992), it is very rare to observe lung cancer cases 

among nonsmokers in developed countries, even in areas with pollution sources such as 

radon and asbestos. The original papers (Peto et al., 1992, 1994, 2006) applied the method to 

developed countries only, especially in Western Europe and North America. With the shift of 

global smoking pattern, and diffusion of smoking in middle- and low-income countries, this 

method has been extended to less developed countries (Ezzati and Lopez, 2003, 2004; 

Pampel, 2006).

For estimating ASAF using the Peto-Lopez method, we need first to estimate age- and 

cause-of-death-specific SAF. The age groups used for estimation are 0–34, 35–59, 60–64, 

65–69, 70–74, 75–79, and 80+. For each age group, annual death counts of the following 

nine categories of causes of death are obtained from the five raw datasets of WHO Mortality 

Database: lung cancer, upper aero-digestive cancer, other cancers, COPD, other respiratory 

diseases, vascular diseases, liver cirrhosis, non-medical causes, and all other medical causes. 

A detailed list of codes from ICD 7, 8, 9, and 10 for these nine categories is provided in 

Table 1.

The ICD categorizes death count data according to availability using socalled sublists, which 

can be one of A-list or several others; see Table 1. The sublists we use are those satisfying 

the minimum requirements for ASAF calculation. More specifically, for ICD 7 and 8, only 

countries whose ICD sublist is A-list are used. For ICD 9, only those countries whose ICD 

sublist is 09A-, 09B-, or 09N-list are used. For ICD 10, countries whose ICD sublist is one 

of 101-, 103-, 104-, 10M-list are used. In addition, we only calculate age-specific SAF for 

countries whose age group breakdown is finer than the following age group breakdown: 0–

34, 35–39, 40–44, 45–49, 50–54, 55–59, 6064, 65–69, 70–74, 75+. This corresponds to the 

age group format number 00, 01, 02, 03, 04 in the raw datasets.
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To estimate the proportion of a population exposed to smoking, i.e., p in Eq. 1.1, the method 

compares the observed lung cancer mortality rate with the lung cancer mortality rate of 

smokers estimated from CPS-II. The estimated proportion, indexed by country c, age group 

a, gender s, and year t, is estimated by

pc, a, s, t =
dc, a, s, t − da, sS

da, sS − da, sN S ,

where dc,a,s,t is the observed country-age-gender-year-specific lung cancer mortality rate, 

and da, s
S  and da, s

N S are age-gender-specific lung cancer mortality rates for smokers and 

nonsmokers from the CPS-II respectively. Here the observed lung cancer mortality rate 

dc,a,s,t is the observed lung cancer death count divided by the population estimated from the 

2017 Revision of the World Population Prospects for country c, age group a, gender s, and 

year t.

The Peto-Lopez method uses the CPS-II to estimate the relative risk of dying for each cause 

of death for smokers and nonsmokers, i.e., r in Eq. 1.1. Specifically, the Cochran-Mantel-

Haenszel method is used to estimate the relative risk for age group 35–59 by combining five 

sub-age groups (35–39, 40–44, 45–49, 50–54, 55–59). The relative risk is indexed by cause-

of-death k, age group a, and gender s. Here k takes integer values 1–9 corresponding to the 

nine categories mentioned above.

The excess mortality rate attributable to smoking is denoted by erk,a,s for cause-of-death k, 

age group a, and gender s. For lung cancer, the excess mortality rate attributable to smoking 

is calculated as er1,a,s = r1,a,s − 1. For all other categories except liver cirrhosis (k = 7) and 

non-medical causes (k = 8), the excess risk is discounted by 50%, i.e., erk,a,s = 0.5(rk,a,s −1) 

for k = 2, 3, 4, 5, 6, 9, so as to control for confounding factors. The excess risks for liver 

cirrhosis and non-medical causes are set to 0, i.e., er7,a,s = er8,a,s = 0. The country-cause-age-

gender-year-specific SAF, denoted by yc,k,a,s,t, is then

yc, k, a, s, t =
pc, a, s, t × erk, a, s

pc, a, s, t × erk, a, s + 1 .

Any estimated negative values are set to zero.

Since the hazard due to smoking is accumulated across years and mostly causes deaths at 

older ages, the fraction of deaths due to smoking for ages 0–34 is typically very small and is 

set to 0. In addition, the SAF for ages 80+ is set to the same value as that for ages 75–79 

since smoking data are unreliable for very old ages. Finally, the country-gender-year-specific 

ASAF, denoted by yc,s,t, is a weighted average of the age-specific smoking attributable 

fractions yc,k,a,s,t. Thus

yc, s, t = ∑
a

∑
k

yc, k, a, s, t × dc, k, a, s, t,
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where dc,k,a,s,t is the country-cause-age-gender-year-specific mortality rate.

We chose the Peto-Lopez method to estimate the ASAF because it has been validated and 

widely used (Preston, Glei and Wilmoth, 2009; Bongaarts, 2014; Tachfouti et al., 2014; 

Kong et al., 2016). Also, the data required for the estimation are cause- and age-specific 

death counts and population, which are provided with high quality by the WHO Mortality 

Database and the 2017 Revision of the World Population Prospects.

There are some variants of the Peto-Lopez method, which also assume that the lung cancer 

mortality rate is a good indicator for measuring smoking exposure. Some of the 

modifications include using different relative risk estimation instead of the CPS-II to extend 

the method to developing countries (Ezzati and Lopez, 2003) or using a regression-based 

approach (Preston, Glei and Wilmoth, 2009). Section 5.1 contains more detailed discussion 

and comparison of these methods.

2.4. Model.

We develop a four-level Bayesian hierarchical framework to model male and female ASAF 

jointly for multiple regions simultaneously.

Random walk with drift for the true ASAF.—The observed ASAF data show a strong 

and consistent pattern of increasing, then leveling, and then declining again for both genders 

(Stoeldraijer et al., 2015) (see Figure 1 for the example of United States). This pattern can be 

captured by the following five-parameter double logistic curve:

g t θ = k
1 + exp −a1 t − 1950 − a2

− k
1 + exp −a3 t − 1950 − a2 − a4

, (2.1)

where t is the year of observation and θ is the double-logistic parameter vector, θ = (a1, a2, 
a3, a4, k).

Models based on the double logistic curve have been used quite widely for human 

population measures such as life expectancy and total fertility rates (Marchetti, Meyer and 

Ausubel, 1996; Raftery et al., 2013; Alkema et al., 2011)). Due to its natural scientific 

interpretability, the double logistic curve has also been used in other scientific fields such as 

hematology (Head and McCarty, 1987; Head et al., 2004), phenology (Yang et al., 2012), 

and agricultural science (Shabani et al., 2018). This function has also been used to describe 

social change, diffusion, and substitution processes (Grübler, Nakićenović and Victor, 1999; 

Fokas, 2007; Kucharavy and De Guio, 2011).

Most developed countries have had male smoking prevalence that started before 1950, and 

peaked around the 1950s or 1960s when the adverse impacts of smoking on health became 

known and tobacco control measures started being put in place. This led to a peak in 

smoking-related mortality a generation or so later, followed by a continuous decline since 

then. Pampel (2005) argued that the smoking epidemic involves diffusion from males to 

females, and from more developed countries to less developed ones. Hence, the strong 

increasing-peaking-decreasing trend of ASAF observed in most countries is a consequence 
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of the smoking epidemic diffusion process, and the double logistic curve can naturally 

describe its dynamics.

For the five-parameter double logistic function in Eq. 2.1, a2 controls the first (left) 

inflection point of the curve and a4 controls the distance between the first (left) and the 

second (right) inflection points. The rates of change at these inflection points are controlled 

by a1 and a3 respectively. The parameter k is an upper bound for the maximum value of the 

curve. See the upper panel of Figure 2 for an illustration.

To represent this and also take account of the observed pattern of variability, we model 

changes in the true ASAF between adjacent time points using a random walk with drift 

given by the difference between the double logistic curve at the two points. This takes the 

form

ℎc, s, t = ℎc, s, t − 1 + g t θc, s − g t − 1 θc, s + εc, s, tℎ , (2.2)

where g(·|θc,s) (i.e., Eq. 2.1) quantifies the expected change of the true ASAF governed by 

the country- and gender-specific parameters θc, s = a1
c, s, a2

c, s, a3
c, s, a4

c, s, kc, s , and εc, s, tℎ  are 

independent Gaussian noises. This random walk with drift model is designed to capture the 

variability of the true ASAF and allows the uncertainty of the forecast to increase when 

projecting further into the future.

Male-female joint model.—Since the female smoking epidemic usually starts one to two 

decades after the male one, the start of the increase in the female ASAF is also later than that 

of the male ASAF. For most countries, the observed female ASAF is still in the increasing or 

leveling phase up to 2015. However, as the smoking epidemic diffuses from the male to the 

female population, it is reasonable to assume that the female ASAF will follow the same 

trend of increasing-leveling-declining as that of the male ASAF. This has already been 

observed for several countries with early smoking epidemics, such as the United Kingdom, 

Denmark, and Japan (Pampel, 2005; Peto et al., 2006; Janssen, van Wissen and Kunst, 2013; 

Bongaarts, 2014; Stoeldraijer et al., 2015). For these countries, the female ASAF follows the 

same trend as that of the male ASAF, but differs mainly in terms of the rate of increase or 

decrease, the number of years taken to reach the peak, and the peak ASAF value.

For males, we need only estimate the rate of decline of the ASAF. For females, especially 

for those countries whose observed ASAF data have not levelled yet, one needs first to 

determine the time and value of leveling. By modeling male and female data jointly, the 

lower panel of Figure 2 shows that for countries whose male and female ASAF both passed 

the leveling period, the difference between the years of maximum of male and female is 

approximately the same as the difference in the a2 parameter estimated from Eq. 2.1. The a2 

parameter represents the time point where the speed of the increasing part of the double 

logistic curve begins to slow down.

The difference between the times-to-peak of male and female ASAF also differs among 

countries. For example, the time-to-peak of the female ASAF in the United States is about 

15 years later than that of the male ASAF, while the time-to-peak of the ASAF happened at 
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about the same time for both genders in Hong Kong. To incorporate these observations, we 

model the difference between male and female country-specific a2
c using a Gaussian 

distribution:

a2
c, f = a2

c, m + Δa2
c , Δa2

c Δa2, σΔa2
2 N Δa2, σΔa2

2 , (2.3)

where a2
c, m and a2

c, f are the country- and gender-specific values of a2, and Δa2
c  is the country-

specific difference between these two parameters with prior mean Δa2 and variance σΔa2
2 .

Moreover, since there are very few countries whose female ASAF have begun to decline by 

2015, while the male ASAF has been declining for many years in most countries, we set the 

same global parameters for the gender-specific parameters a4
c, m and a4

c, f for each country, 

namely,

a4
c, m, a4

c, f a4, σa4
2 ind N a4, σa4

2 . (2.4)

Except for a4
c, the other four country-specific parameters of the double logistic curve are 

conditioned on their own gender-specific global parameters.

Measurement error model for observed ASAF.—The observed country-gender-year-

specific ASAF yc,s,t are modeled based on the true (unobserved) ASAF hc,s,t by 

incorporating measurement error due to the variability of data quality across different 

countries:

yc, s, t ℎc, s, t, σc2 indN ℎc, t, s, σc2 . (2.5)

We assume that the variance of the observed ASAF for each country is time-and gender-

invariant based on exploratory analyses that indicate that the data quality is consistent across 

time and between genders within the same country.

Summary of model.—We combine the Bayesian hierarchical model and measurement 

error model into a four-level Bayesian hierarchical model. We model the observed ASAF 

estimates using the measurement error model in Level 1, conditional on the true 

(unobserved) ASAF data which are modeled with a random walk with drift in Level 2, 

conditional on the country-specific parameters. Country-specific parameters are modeled in 

Level 3, where parameters for male and female ASAF are modelled jointly conditional on 

the global parameters, whose prior distributions are specified in Level 4.

The overall model is specified as follows:

Level 1: yc, s, t |ℎc, s, t N ℎc, s, t, σc2 ;
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Level 2: ℎc, s, t0, c = g t0, c |θc, s + εc, s, t0, c
ℎ ,

ℎc, s, t = ℎc, s, t − 1 + g t |θc, s − g t − 1|θc, s + εc, s, tℎ for t > t0, c,
εc, s, tℎ indN 0, σℎ

2 ;

Level 3: θc, s f ⋅ |ψ ,
σc2 Lognormal v, p2 ;

Level 4: ψ, v, p2, σℎ
2 π ⋅ .

Here, t0,c is the year of the first available ASAF data for country c, g denotes the five-

parameter double logistic curve in Eq. 2.1, f denotes the conditional distribution of the 

country-specific parameters θc,s, and π denotes the hyperpriors for the global parameters 

ψ,ν,ρ2, σℎ
2. The country-specific parameters θc, s = a1

c, s, a2
c, s, a3

c, s, a4
c, s, kc, s  are gender-

specific and the interaction between male and female parameters are governed by Eq. 2.3 

and 2.4. The global parameters 

ψ = a1
m, a2

m, a3
m, a4, km, a1

f, a3
f, kf, Δa2, σa2

m2 , σa4
2 , σkm2 , σkf

2 , σΔa2
2  are also gender-specific 

except for Δa2, σΔa2
2 , a4, σa4

2 . More information about the specification of the full model is 

given in the Appendix A.

Estimation and prediction.—Statistical analysis of the model is carried out in two 

phases, estimation and prediction. The goal of the estimation phase is to obtain the joint 

posterior distribution of the true ASAF hc,s,t during the estimation period 1950–2015 and the 

country-specific parameters for the underlying double-logistic curve. The aim of the 

prediction phase is to forecast the future ASAF of both genders for the prediction period 

2015–2050 based on the observed ASAF for over 60 countries whose male ASAF data are 

classifed as clear-pattern (see Section 2.5 for the definition of clear-pattern).

The functional form of the prior distribution π(·) is assessed using results from non-linear 

least squares estimation based on clear-pattern countries (see Section 2.5 for details). 

Specifically, the priors for a1
m, a2

m, a3
m, a4, km, σa2

m2 , σa4
2 , σkm2 , σa2

m2 , σa4
2 , σkm2  are based on 

non-linear least squares results from the male ASAF of over 60 clear-pattern countries, the 

prior for a1
f is estimated based on non-linear least squares results from the female ASAF of 

52 clear-pattern countries, the priors for a3
f, kf, σa3

f
2

. are set to the same priors as their 

counterparts for males, while the priors for Δa2, σΔa2
2  are estimated based on 19 countries 

for which both male and female ASAF have passed the leveling stage by 2015. The priors 

for ν,ρ2, σℎ
2 are estimated by pooling male and female ASAF from all clear-pattern 

countries. A complete specification of the model is given in the Appendix A.

2.5. ASAF Categorization.

We categorize estimated ASAF for 127 countries and regions into two categories according 

to the data availability and quality: clear-pattern and non-clear-pattern. On one hand, the 
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Peto-Lopez method is not guaranteed to produce reliable ASAF estimates for some less 

developed countries because of poor data quality. On the other hand, modeling only with 

clear-pattern countries can improve estimation and projection accuracy without introducing 

too much random noise.

The classification is based on non-linear least squares estimation of the following model for 

each country and gender separately:

yt = g t θ + εt,

where g(t|θ) is as in Eq. 2.1 and εt are independent standard Gaussian errors. Its fit to the 

data in a given country provides an indication of data quality for that country.

Our categorization is based on the number of observations, maximum of observed values, 

and the R2 value of the non-linear least squares fit. Due to the differences between the 

diffusion processes of smoking in the male and female populations (Pampel, 2006), we use 

different criteria for male and female data. For male data, we require that (1) the number of 

available annual observations up to 2015 be greater than 10; (2) at least one of the 

observations be greater than 0.05; and (3) that the R2 value be greater than 0.5.

For female data, since the smoking epidemic in general started one to two decades later than 

the male one, the onset and the value of the ASAF is later and smaller than that of the male 

epidemic (Pampel, 2005; Preston and Wang, 2006). The criteria for female data are that (1) 

the number of observations up to 2015 be greater than 10; (2) at least one of the observations 

be greater than 0.01; and (3) that the R2 value be greater than 0.6.

By these rules, there are over 60 countries whose male data are classifed as clear-pattern (2 

in Africa, 16 in the Americas, 9 in Asia, 40 in Europe and 2 in Oceania), and 52 countries 

whose female data are classified as clear-pattern (12 in the Americas, 7 in Asia, 31 in 

Europe and 2 in Oceania).

2.6. Estimation.

Estimation is based on the male and female ASAF data from over 60 countries whose male 

ASAF is classified as clear-pattern for the period 1950–2015. The reason why we chose 

clear-pattern ASAF data is that non-clear-pattern data either have too few observations, very 

low values, or their shapes are not identifiable.

We used the Rstan package (Version 2.18.2) in R to obtain the joint posterior distributions of 

the parameters of interest (Carpenter et al., 2017). Rstan uses a No-U-turn sampler, which is 

an adaptive variant of Hamiltonian Monte Carlo (Neal, 2011; Hoffman and Gelman, 2014). 

We ran 3 chains with different initial values, each of length 10,000 iterations with a burn-in 

of 2,000 without thining. This yielded a final, approximately independent sample of size 

8,000 for each chain. We monitored convergence by inspecting trace plots and using 

standard convergence diagnostics.
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We also conducted a sensitivity analysis on the hyperparameters that specify the priors π(·) 

for the global parameters ψ, and concluded that the proposed model is not sensitive to the 

choice of hyperparameters. More information about the convergence diagnostics and the 

sensitivity analysis is given in the Supplementary Materials.

2.7. Projection.

We produce projections of future ASAF for the period 2015–2050 for over 60 countries 

whose male ASAF is classified as clear-pattern. The prediction of future ASAF for each 

country is based on past and present ASAF. We sample from the joint posterior distribution 

of the country-specific parameters θc,s and of the past, and present true ASAF hc,s,t. We then 

use Eq. 2.2 and 2.5 to generate a sample of trajectories of future true and observed ASAF 

respectively from their joint posterior predictive distribution. It is possible that the quantity 

generated by Eq. 2.2 and Eq. 2.5 is negative, and we set such values to zero. This yields a 

sample from the joint posterior predictive distribution of the future ASAF for over 60 

countries, for both genders, taking account of uncertainty about the past observations as well 

as the future evolution. We include the plots of ASAF projections for over 60 countries and 

both genders in the Supplementary Materials.

3. Results.

We assess the predictive performance of our model using out-of-sample predictive 

validation.

3.1. Study Design.

The data we used for out-of-sample validation cover the period 1950–2015. We assess the 

quality of our model based on different choices of estimation and validation data from the 

observed data. Since the trend of increasing-leveling-declining pattern plays an important 

role for estimation and projection, assessing how the model works when only part of the 

trend has been observed is crucial. We consider different choices for estimation and 

validation periods, namely (1) 1950–2000 for estimation and 2000–2015 for validation; (2) 

1950–2005 for estimation and 2005–2015 and for validation; and (3) 1950–2010 for 

estimation, 2010–2015 for validation. The countries used for validation in each time-split 

scenario are required to be clear-pattern countries based on the male ASAF, to contain more 

than 10 observations in the estimation period, and to have at least one observation in the 

prediction period. This results in 63, 66 and 66 countries used for validation under choices 

(1), (2) and (3), respectively.

Since we are making probabilistic projections, our evaluation is based on both accuracy of 

point prediction and calibration of prediction intervals. Our goal is not only to produce 

accurate point predictions, but also to account for variability of future predictions based on 

historic data, especially for those countries whose data in the estimation period reveal only 

part of the pattern. If the proposed model works well, we would expect the point predictor to 

have small gender-specific mean absolute error (MAE), which is defined as
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MAEs = 1
N ∑

c ∈ C
∑

t ∈ Tc
yc, s, t − yc, s, t , (3.1)

where C is the set of countries considered in the validation, Tc is the set of country-year 

combinations used for validation, yc, s, t is the posterior median of the predictive distribution 

of ASAF at year t for country c and gender s, and N is the total number of data used for 

validation.

We wish the prediction to be well calibrated and sharp, i.e., the coverage of the prediction 

interval to be close to the nominal level with its half-width as short as possible. Thus, we 

include the empirical coverage and the half-width of the prediction interval in the validation. 

To assess the overall predictive performance, we also calculate the gender-specific 

continuous ranked probability score (CRPS) (Gneiting and Raftery, 2007), which is defined 

as

CRPSs = 1
C ∑

c ∈ C

1
Tc

∑
t ∈ Tc

∫
−∞

∞
Fc, s, t y − 1 yc, s, t ≤ y 2dy , (3.2)

where Fc,s,t(y) is the predictive distribution of the future ASAF for country c, gender s, and 

time t, and 1(·) is equal to 1 if the condition in the parenthesis is satisfied and 0 otherwise. 

CRPS is a summary statistic measuring the quality of the probabilistic forecast, which 

evaluates model calibration and sharpness simultaneously. The smaller the CRPS, the closer 

the predictive distribution to the true data-generating distribution.

3.2. Out-of-sample Validation Results.

To our knowledge, no other method is available in the literature to produce probabilistic 

forecasts for male and female ASAF for developed and developing countries jointly. 

Janssen, van Wissen and Kunst (2013) and Stoeldraijer et al. (2015) developed methods for 

projection of age-specific SAF and age-standardized SAF, and their methods are based on 

age-period-cohort analysis, which cannot be trivially extended to ASAF. See Section 5.2 for 

more discussion of their procedures and comparison to the present ones.

As benchmarks against which to compare our method, we consider four other forecast 

procedures. The first one is the persistence forecast, which takes the last observed value as 

the forecast for the prediction period. The second method is the Bayesian thin plate 

regression spline method (Wood, 2003), implemented in the mgcv package (Version 1.8–27) 

in R. The third method is the Bayesian structural time series model (Harvey, 1990; Durbin 

and Koopman, 2012), implemented in the bsts package (Version 0.8.0) in R. Here we choose 

to use two state components — local linear trend and autocorrelation with lag 1 — to build 

the structural time series model. Our fourth comparison method is a non-hierarchical version 

of our proposed model, namely our proposed model without Level 4 (i.e., the global 

parameters). This is included to see whether the hierarchical structure is necessary.

We summarize the validation results in Table 2 for males and females separately. This shows 

the MAE, the coverage and half-width of the prediction intervals, and the continuous ranked 
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probability score (CRPS). For males, our method improved the prediction accuracy for all 

three scenarios over the persistence forecast. For forecasting one and two five-year periods 

ahead, our method improved the MAE by 30% and 21% respectively. Since most male 

ASAF series had passed the peak by 2005 and had experienced declines for several years, 

the double logistic curve captures this trend well. For predictions three five-year periods into 

the future, during which the male ASAF series for some countries were just reaching the 

peak, our method still improved the MAE by 6%. For females, we observed similar 

improvements. Our method decreased the MAE by 22%, 17%, and 27% for predictions one, 

two, and, three five-year periods ahead compared to those of the persistence forecast.

Also, compared with other probabilistic forecast methods, our method produced shorter 

prediction intervals with empirical coverages close to the nominal level for one and two five-

year predictions, while it produced predictive intervals with reasonably close to nomial for 

the three five-year predictions for the male ASAF. On the other hand, since most female 

ASAF series have not yet reached the peak, capturing the variability of future female ASAF 

is essential. The coverage of our method is close to the nominal level, indicating that our 

method is well calibrated.

Overall, our proposed BHM yielded the smallest CRPS among all methods in most cases for 

both the male and female epidemics. Among all five methods compared in the validation 

exercise, the Bayesian spline method was worst in terms of forecast accuracy, and tended to 

underestimate the variability of future values. The Bayesian structural time series model 

produced predictive interval close to the nominal level with slightly larger average half-

width than our method. However, a significant drawback of the persistence forecast, the 

Bayesian spline method, and the Bayesian structural time series model is that they tend to 

produce unrealistic forecasts when all the observed data are before the peak, since they do 

not incorporate the increasing-peaking-decreasing information in the model. The left panel 

of Figure 3 indicates that the Bayesian thin plate spline method projected a monotonically 

increasing ASAF for United States female based on data before 2000, where the entire 

prediction interval missed the observed data after 2000. The right panel of Figure 3 shows 

that the Bayesian structural time series model did cover the data but with an unrealistically 

wide prediction interval.

The Bayesian model without the global level parameters produced results similar to those 

from our BHM for projecting short term male ASAF. When forecasting three five-year 

periods ahead, or the female ASAF, in both of which cases the peak has often not been 

reached, the Bayesian model without the global level parameters was worse in accuracy and 

CRPS. This indicates that the hierarchical structure did indeed improve the overall forecast 

when only part of the trend has been observed, by sharing information among all the 

countries.

Table 3 gives validation results for subgroups of countries, categorized by membership of 

the Organization for Economic Cooperation and Development (OECD). Most of the 

countries in the OECD are regarded as developed countries with high GDP and human 

development index (HDI). For male ASAF, our BHM improved most of the forecasts for 

OECD countries, especially the longer term projections. For OECD countries, the 
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increasingpeaking-decreasing pattern is clearer and stronger, which fits with our modeling 

well. In contrast, our BHM performed less well among non-OECD countries.

Figure 4 shows validation results for the male ASAF of four countries or regions for 

predictions three five-year periods ahead. We see that our method works quite well for the 

United States and Hong Kong, and the prediction interval captures the variability of the male 

ASAF of Chile. Figure 5 shows the results from Scenario (1) where most female ASAF of 

countries among the examples have not reached the peak by the year 2000. We see that the 

posterior median of the predictive distribution captures the general trend of future female 

ASAF of the United States, the Netherlands, and Chile reasonably well. For countries or 

regions like Hong Kong whose female ASAF already passed the peak, our method also 

accurately estimates the rate of decline.

4. Case Studies.

Probabilistic forecasts of ASAF to 2050 are given in the Supplementary Materials for over 

60 countries. Broadly, the patterns in the OECD countries are similar, with male ASAF 

having declined from about 30% in the 1990s to around 15% in 2015, with further declines 

projected to 2050, reaching around 5%. The patterns vary more for females in OECD, and 

for both males and females in non-OECD countries because they are currently at different 

stages of the epidemic.

We now give four cases studies which illustrate various aspects of the proposed method for 

estimating and forecasting ASAF.

4.1. United States.

The annual ASAF for both male and female for the time period 1950–2015 is shown in 

Figure 1. The very clear pattern is due to the high quality of the data, reflecting the fact that 

the United States has one of the the best vital registration systems in the world.

The smoking epidemic in the male population in the United States started in the earlier 

1900s, and there was a substantial decrease of smoking prevalence and lung cancer mortality 

rate after the 1950s. Smoking prevalence among US male adults was approximately 60% in 

1950s, and went down to about 20% in the 1990s, and the general decline is still continuing 

(Burns et al., 1997; Islami, Torre and Jemal, 2015). The observed ASAF levelled around the 

1990s and declined afterwards. We forecast that by 2050, the median observed ASAF for US 

males will be around 4.3% (with 95% prediction interval [0.0%, 8.3%]). Because the 

measurement error for the US is tiny, the projected true ASAF (long dashed line for 

posterior mean and dotted line for 95% predictive interval in Figure 6) for US males is 

almost equal to that of the observed ASAF.

The female smoking epidemic started two decades later than the male one and the maximum 

prevalence was around 30% in the 1960s, and then declined to about 20% in the 1990s 

(Burns et al., 1997). The pattern of smoking prevalence among US females is similar to that 

for males, but around 20 years behind (Burns et al., 1997; Islami, Torre and Jemal, 2015). 

The female ASAF started to rise around the 1960s and reached its peak of 23% around 2005. 
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We forecast that by 2050, the median observed ASAF for US females will be around 2.7% 

(with 95% prediction interval [0.0%, 9.3%]). Similarly, the projected US female true ASAF 

follows closely with that of the observed ASAF. Figure 6 shows the historical records of the 

observed male and female ASAF during the time period 1950–2015, along with projections 

up to 2050 with posterior median and prediction intervals.

4.2. The Netherlands.

The Netherlands is a high-income western Europe country whose smoking epidemic started 

relatively early. Smoking prevalence reached 90% in the 1950s and dropped to 30% in the 

2010s. The male observed ASAF in Netherlands passed its maximum ASAF around the 

1990s and we project that it will go down to around 5.7% (with 95% prediction interval 

[1.4%, 9.7%]) in 2050.

For females, smoking prevalence is also relatively high, and reached its peak of about 40% 

in the 1970s and dropped to 24% in the 2010s (Stoeldraijer et al., 2015). The female ASAF 

in Netherlands is among the few that is already experiencing the leveling stage. By our 

projection, the median year-to-peak for the female ASAF will be around 2020, which is 

about 30 years after the male peak, and will reach 16.6% (with 95% prediction interval 

[12.4%, 18.5%]). By 2050, the median observed female ASAF will be 4.7% (with 95% 

prediction interval [0.0%, 19.3%]). Similarly to the case of US, the projected true ASAF 

follows that of the observed ASAF closely, due to the small measurement error. Figure 7 

shows the historical records of the observed male and female ASAF during time period 

1950–2015, and projections are given up to 2050 with posterior median and prediction 

intervals for both observed and true ASAF.

4.3. Hong Kong.

Hong Kong has an advanced smoking epidemic, but had a decrease in male smoking 

prevalence from about 40% in the 1980s to 22% in 2000. A decline has also been observed 

in female smoking prevalence, from 5.6% to 3.3% (Au et al., 2004). Like Japan, Singapore, 

and South Korea, both male and female ASAF have passed the leveling stage and have been 

declining for two decades. Unlike in most western developed countries, the time trend of the 

ASAF has been almost identical for males and females in Hong Kong, with similar times of 

onset and times-to-peak. Au et al. (2004) showed that the time trends of lung cancer 

incidence were similar for both genders.

By our projection, the observed ASAF will reach 9.7% for males (with 95% prediction 

interval [4.9%, 14.3%]) and 4.1% for females (with 95% prediction interval [0.0%, 8.1%]) 

by 2050. Compared with US and the Netherlands, the projected true ASAF of Hong Kong 

will have narrower predictor intervals than those of the observed ASAF due to larger 

measurement error exhibited in the historical data. However, the difference becomes less and 

less since the majority uncertainty of the future ASAF will be account mainly by the 

variance from the random walk model of the true ASAF.

As discussed by Lam et al. (2001), Hong Kong may be a good indicator for the future 

development of the smoking epidemic and its impact on mortality in mainland China and 

other developing countries. Figure 8 shows the historical records of the observed male and 
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female ASAF during time period 1950–2015, along with projections up to 2050 with 

posterior median and prediction intervals.

4.4. Chile.

Chile is one of the South America countries that have clear-pattern ASAF data for both 

males and females. It also has relatively high smoking prevalence. A decline in prevalence 

among males and females has been observed in recent years but is modest compared to the 

decline in the United States (Islami, Torre and Jemal, 2015). Also, female smoking 

prevalence is far behind that of males.

Our method projects that the male ASAF will decline gradually. By 2050, the projected 

median observed ASAF for the male population will be 4.3% (with 95% prediction interval 

[0.0%, 9.1%]). For females, we expect an increase for another 10 years with the median 

observed ASAF reaching the maximum 7.6% (with 95% prediction interval [2.0%, 11.8%]) 

by 2030. By 2050, the median observed female ASAF be 5.36% (with 95% prediction 

interval [0.0%, 15.2%]); see Figure 9. Similarly to Hong Kong, Chile also has larger 

measurement error and the pattern is less clear, so that the projected true ASAF has wider 

predictive intervals compared with previous cases and the difference between true and 

observed projections also appears in the short term.

5. Discussion.

5.1. Comparison between SAF Estimation Methods.

In Section 1, we briefly described three categories of estimation methods for SAF. 

Prevalence-based methods depend heavily on smoking prevalence history. Since the lag 

between smoking prevalence and SAF is usually around two or three decades, in order to use 

smoking prevalence to estimate and predict SAF, especially for those countries whose onset 

of SAF is before 1950, one needs data at least back to the 1920s or 1930s. However, such 

smoking prevalence history is not available for most countries, and reconstruction of such 

data is challenging. Ng et al. (2014) provided estimates of smoking prevalence for many 

countries only from 1980 onwards.

Insufficient historical data is a major obstacle to using smoking prevalence for estimation 

and projection of SAF, and with currently available historical data, the predictive power 

using smoking prevalence data is not very high. In addition, smoking prevalence only 

reveals one aspect of the smoking epidemic, which cannot capture other aspects such as 

smoking intensity and duration and thus has been argued to be a poor indicator of the 

smoking exposure of the population (Shibuya, Inoue and Lopez, 2005; Luo et al., 2018). 

Prevalence-based estimation and projection have generally been applied only to specific 

countries on an individual basis, and examples include Taiwan (Wen et al., 2005) and the 

United States (Ma et al., 2018).

There are two main indirect methods used widely in the literature, which both use the lung 

cancer mortality rate as an indicator for the accumulated hazard of smoking. The first one is 

the Peto-Lopez method which we have used here. This has been widely used in the 
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demographic literature, in part because its data requirements are relatively modest. It has 

been validated in many studies (Preston, Glei and Wilmoth, 2009; Kong et al., 2016).

One drawback of the Peto-Lopez method is that it uses the CPS-II to estimate the relative 

risk. Since the CPS-II was conducted in 1982 with volunteer participants only from the 

United States and most of them were middle-class, the CPS-II might not be fully 

representative and may potentially underestimate lung cancer mortality in nonsmokers 

(Tachfouti et al., 2014). Moreover, the Peto-Lopez method assumes that the relative risk is 

constant over time and homogeneous across nations. Mehta and Preston (2012), Teng et al. 

(2017), and Lariscy, Hummer and Rogers (2018) have shown that the risks from smoking are 

changing over time. Also, in China and India, the lung cancer mortality rate among 

nonsmokers is higher than that of the developed countries such as that in the CPS-II (Liu et 

al., 1998; Gajalakshmi et al., 2003). Another issue is that the original Peto-Lopez paper 

reduced the smoking excess risk of each cause-of-death except lung cancer by 50% to 

control for other confounders. As stated in their paper, this reduction is somewhat arbitrary. 

To avoid some of these issues, here we have used only data from clear-pattern countries, 

which avoids some countries for which the Peto-Lopez method may not give good estimates.

Some variants of the Peto-Lopez method have been proposed. For example, Ezzati and 

Lopez (2003) reduced the correction factor for excess risk from 50% to 30% for all countries 

and extended this method to less developed countries by estimating the non-smoker lung 

cancer mortality rate based on household use of coal in poorly-vented stoves. They also 

provided an analysis of uncertainty. Mackenbach et al. (2004) used a simplified version 

which only used the all-cause relative risk in the CPS-II study and avoided calculations for 

the nine disease categories separately. Janssen, van Wissen and Kunst (2013) used this 

version to calculate age-specific SAF to partition mortality into smoking and non-smoking 

attributable parts, and projected them separately.

Muszyńska, Fihel and Janssen (2014) and Stoeldraijer et al. (2015) used the same method to 

calculate an age-standardized SAF, whose purposes are to compare the role of smoking in 

different regions of Poland, and to estimate and compare smoking attributable fraction of 

mortality among England & Wales, Denmark and the Netherlands, respectively. While age-

standardization is used mainly to compare SAF among different populations, ASAF 

provides the all-cause SAF with all age-groups aggregated and is the main quantity reported 

in the iterature, e.g., Peto et al. (1992, 1994, 2006); Preston, Glei and Wilmoth (2009).

Based on these concerns about the Peto-Lopez method, Preston, Glei and Wilmoth (2009) 

and Preston, Glei and Wilmoth (2011) came up with the PGW method, which used a 

regression-based method to connect lung cancer mortality rate with other causes of death 

mortality rate instead of using the CPS-II. The PGW method avoids the relative risk problem 

faced by the Peto-Lopez method and provides estimates of uncentainty. However, its authors 

stated that the Peto-Lopez method might work better for countries where the cause-of-death 

structure is very different from that observed in developed countries, such as tropical African 

countries. They also pointed out that both methods would not work well for countries whose 

lung cancer mortality rate is also influenced largely by some other factors such as air 
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pollution. As discussed by Preston, Glei and Wilmoth (2009), the PGW method produces 

similar estimates to the Peto-Lopez method in general for both males and females.

5.2. Projection Methodology.

To our knowledge, there are only two other methods available for projecting SAF based on 

the Peto-Lopez method. Janssen, van Wissen and Kunst (2013) proposed the first method to 

forecast age-specific SAF and to our knowledge it has so far been applied only to the 

Netherlands. For projecting male age-specific SAF, a constant decline rate (−1.5%) based on 

the current trend of all-age combined SAF is applied for each age group. For females, it first 

estimates the time-to-peak and value of peak of female SAF. It uses age-period-cohort 

(APC) analysis to find the cohort with the highest lung cancer mortality rate and then adds 

68, which is the average age of dying from lung cancer, to that cohort to estimate the year 

which the all-age combined female SAF would reach the maximum. Then the difference 

between year-to-peak of male and female SAF with all ages combined is estimated and 

applied to get the time-to-peak and thus the age-specific female SAF. Finally, the rate of 

decline of female age-specific SAF is set to the same as that of the male.

The other method proposed for projecting SAF is to first estimate and project lung cancer 

mortality rate by considering the cohort effect, and use it to calculate the age-specific SAF. 

Stoeldraijer et al. (2015) used an APC model to estimate and forecast the lung cancer 

mortality rate of three countries: England & Wales, Denmark, and the Netherlands. For 

female data, they first estimated the time-to-peak for each age group by assuming that the 

time-to-peak of age-specific lung cancer mortality rate for females is when it reaches the 

corresponding rate for males. By assuming that the female lung cancer mortality will follow 

the same increasing-leveling-declining time trend as that for males for each age group, the 

authors argued that their method could provide long-term projections of lung cancer 

mortality rate, while previous work which only used historic trends in APC analysis could 

only provide short-term projections.

APC analysis is widely used, but it is also plagued by the unidentifiability issue resulting 

from the perfect linear relationship between the three effects. To resolve this requires extra 

constraints on the parameter space, many of which are not desirable (Luo, 2013; Smith and 

Wakefield, 2016). Also, projection of the future lung cancer mortality rate also requires the 

projection of age, period, and cohort effects, which introduces additional projection error, 

even more so for young cohorts for which historical data are not available.

Another way to resolve the unidentifiability issue in APC analysis is by introducing cohort 

explanatory variables (Smith and Wakefield, 2016). Cohort smoking history is one such 

powerful tool for estimating and projecting mortality. Preston and Wang (2006) and Wang 

and Preston (2009) used the average year of smoking before 40 of a cohort as a covariate to 

explain the mortality differences between genders and forecasted mortality of United States 

for both genders up to 2035. Shibuya, Inoue and Lopez (2005) and Luo et al. (2018) used 

APC anlaysis with selected smoking covariates such as cigarette tar exposure to estimate and 

project the lung cancer mortality rate. Cohort smoking history is a powerful tool, but it 

requires additional data (Burns et al., 1997) that are not available for many of the countries 

we considered.
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5.3. China and India.

According to Reitsma et al. (2017), China and India are the two countries that have seen the 

largest percentage increase in smoking prevalence. As a result, the ASAF for these two 

countries is important for understanding and projecting the world trend of the effect of 

smoking on mortality since the diffusion of the smoking epidemic from developed countries 

to developing countries has already started.

Parascandola and Xiao (2019) found that smoking-related health issues in China have 

increased over the past two decades, and the trend resembles the early pattern observed in 

high income countries such as the US and Japan. Smoking prevalence among Chinese men 

has remained high (around 60%) since the 1980s, with a modest decrease to 52% by 2015. 

Smokers born after 1970 tended to start smoking earlier and more intensely than those born 

before 1970.

Chen et al. (2015) analyzed two nationwide prospective cohort studies on smoking 

conducted in China during 1991–99 and 2006–14. They found that the excess risk among 

smokers almost doubled over the 15-year period. They reported that the SAF of males aged 

40–79 increased from 11% in the first study to 18% in the second study, and they predicted 

that it would be over 20% in the mid-2010s.

In contrast, female smoking prevalence decreased from 7% in the 1980s to 3% in 2015 

(Parascandola and Xiao, 2019). However, second-hand smoking remains high among 

Chinese females. Zheng et al. (2018) estimated that 65% of Chinese female non-smokers 

were exposed to second hand smoking in 2012. Nonetheless, the SAF for Chinese females 

aged 40–79 years was around 3% in 2006–14.

There are also substantial geographic differences in smoking prevalence. In big cities like 

Beijing and Shanghai, smoking control measures have developed more rapidly than in other 

areas.

India has become the country with the second largest cigarette consumption in the world, 

after China. Smoking, including manufactured cigarettes, bidis, and chewing tobacco is one 

of the major causes of death for middle-aged Indians. Mishra et al. (2016) estimated that 

smoking prevalence among male Indians aged 15–69 years declined modestly from 27% in 

1998 to 24% in 2010, while smoking prevalence among young adults aged 15–29 years rose.

We have not included these two countries in our analysis for the following two reasons. 

Firstly, we do not have enough data to estimate the ASAF for China and India. Even though 

there are some records of lung cancer death count data in the WHO Mortality Database for 

China (World Health Organization, 2017), these are only regional data and so could be 

biased. India has a reasonably good vital registration system but it also has lung cancer 

mortality data only for selected regions and locations.

Secondly, as pointed out by Preston, Glei and Wilmoth (2009), neither the Peto-Lopez 

original method nor the PGW method will provide reliable estimates of SAF for countries 

like China since smoking is not the only major factor that can cause lung cancer. The main 

assumptions of the Peto-Lopez and PGW methods are that lung cancer mortality is primarily 
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caused by smoking and that the lung cancer mortailty rate is very low among nonsmokers. 

Therefore, as proposed by Ezzati and Lopez (2003) and others, some extra covariates such 

as household use of coal in poorly-vented stoves are used to adjust the estimates. 

Incorporating China and India in the joint model could be feasible in the future if better 

ASAF estimation methods and related data become available.

5.4. Decision-making and covariates.

A main purpose of our method is to help improve mortality forecasts. One could also ask 

whether our approach could be used directly for policy-making. One possible use would be 

to provide a baseline forecast of what would happen with a continuation of current trends in 

general health, development and tobacco control measures. This could help to assess the 

effectiveness of additional policies in accelerating the decline of smoking-related mortality. 

This could be done retrospectively, by considering a time point in the past at which a new 

tobacco control policy was introduced, and then comparing the probabilistic forecast based 

on data up to that point with what actually happened.

To do this prospectively would require the addition of covariates to the model. This is 

challenging, and would be a good topic for further research. A difficulty with forecasting 

using covariates is that the covariates themselves need to be forecast, and the covariates can 

be harder to forecast than the quantity being forecast. This is especially the case when, as 

here, the quantity being forecast has a strong time trend, and thus may well itself be easier to 

forecast than the covariates. In this situation, adding covariates can lead to forecasts that are 

noisier. This is one reason why, after decades of research, the majority of demographic 

studies do not use covariates in forecasting demographic quantities.
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APPENDIX A:: FULL BAYESIAN HIERARCHICAL MODEL

The details of the four-layer Bayesian Hierarchical model described in Section 2.4 are as 

follows. Here Nl
u a, b  represents a normal distribution with mean a and variance b truncated 

at interval [l, u] (l(u) is omitted if it takes value −∞ (∞)). Gamma(a, b) represents a Gamma 

distribution with shape a and rate b. Lognormal(a, b) represents a log-normal distribution 

with parameters a, b. InvGamma(a, b) represents a inverse-Gamma distribution with shape a 
and scale b.

Level 1: yc, s, t |ℎc, s, t N ℎc, s, t, σc2 ;
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Level 2: ℎc, s, t0 = g t0 |θc, s + εc, s, t0
ℎ ,

ℎc, s, t = ℎc, s, t − 1 + g t |θc, s − g t − 1|θc, s + εc, s, tℎ for t > t0,
εc, s, tℎ indN 0, σℎ

2 ;

Level 3: a1
c, m Gamma 2, 2/a1

m , a1
c, f Gamma 2, 2/a1

f ,

a2
c, m N65 a2

m, σa2
m2 , a2

c, f = a2
c, m + Δa2

c ,

a3
c, m Gamma 2, 2/a3

m , Δa2
c N Δa2, σΔa2

2 ,

a4
c, m N0

100 a4, σa4
2 , a3

c, f Gamma 2, 2/a3
f ,

kc, m N0 km, σkm2 , a4
c, f N0

100 a4, σa4
2 ,

σc2 Lognormal v, ρ2 , kc, f N0 kf, σkf
2 ;

Level 4: a1
m Gamma αa1

m, βa1
m , a1

f Gamma αa1
f, βa1

f ,

a2
m N αa2

m, βa1
m , Δa2 N αΔa2, βΔa2 ,

a3
m N αa3

m, βa3
m , a3

f Gamma αa3
f, βa3

f ,

a4 N αa4, βa4 , kf N αkf, βkf ,

km N αkm, βkm , σΔa2
2 InvGamma ασΔa2

2 , βσΔa2
2 ,

σa2
m2 InvGamma ασa2

m2 , βσa2
m2 , σkf

2 InvGamma ασkf
2 , βσkf

2 ,

σa4
2 InvGamma ασa4

2 , βσa4
2 , v N αv, βv ,

σkm2 InvGamma ασkm2 , βσkm2 , ρ2 InvGamma αρ2, βρ2 ,

σℎ
2 InvGamma ασℎ

2, βσℎ
2 ,

where αa1
m = 1.477, βa1

m = 9.423, αa2
m = 24.362, βa2

m = 12.488, αa3
m = 1.031, βa3

m = 7.378, 

αa4 = 38.362, βa4 = 19.058, αkm = 0.362, βkm = 0.255, ασa2
m2 = 2, βσa2

m2 = 12.4882, ασa4
2 = 2, 

βσa4
2 = 19.0582, ασkm2 = 2, βσkm2 = 0.2552, αa1

f = 2.093, βa1
f = 16.302, αΔa2 = 12.080, 

βΔa2 = 11.140, αa3
f = 1.031, βa3

f = 7.378, αkf = 0.362, βkf = 0.255, ασΔa2
2 = 2, βσΔa2

2 = 112, 

ασkf
2 = 2, βσkf

2 = 0.2552, αν = −10.414,βν = 1.1862, αρ2 = 2, βρ2 = 1.1862, ασℎ
2 = 2, 

βσℎ
2 = 0.012.
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Fig 1. 
United States: All-age smoking attributable fractions of mortality for males and females 

from 1950 to 2015, estimated using the Peto-Lopez method.
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Fig 2. 
Upper: The five-parameter double logistic curve. a2 controls the left inflection point, a4 

controls the distance between left and right inflections points, a1,a3 determine the rate of 

change at left and right inflection points, and k approximates the maximum value. Lower: 

The difference of country-specific a2
m and a2

f plotted against the difference between the 

country-specific peaks for males and females. The peak and a2 are estimated from the 

countries whose male and female ASAF have all passed the maximum by 2015, according to 

the results of the non-linear least squares estimation. The solid line is the 45 degree line.
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Fig 3. 
Forecast of US female ASAF based on data before 2000 using Bayesian spline method (left) 

and Bayesian structural time series method (right). Observed ASAF values are represented 

by black dots. The solid lines and dashed lines represent the posterior median and the 95% 

predictive interval, respectively.
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Fig 4. 
Validation of male all-age smoking attributable fraction for the United States, Netherlands, 

Hong Kong, and Chile. Past observed ASAF values are shown by black dots for 1950–2000 

and by black squares for 2000–2015. The posterior median for 2000–2015 is shown by the 

solid line, and the 80% and 95% prediction intervals are shown by the dotted and dashed 

lines respectively.
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Fig 5. 
Validation of female all-age smoking attributable fraction for the United States, Netherlands, 

Hong Kong, and Chile. Past observed ASAF values are hown by black dots for 1950–2000 

and by black squares for 2000–2015. The posterior median for 2000–2015 is shown by the 

solid line, and the 80% and 95% prediction intervals are shown by the dotted and dashed 

lines respectively.
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Fig 6. 
United States: The left and right panels show the projection of ASAF up to 2050 under the 

proposed model for male and female respectively. The solid and long dashed lines show the 

posterior median of projected observed ASAF and true ASAF respectively. The dashed and 

dotted lines represent 95% prediction intervals for observed ASAF and true ASAF 

respectively.
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Fig 7. 
Netherlands: The left and right panels show the projection of ASAF up to 2050 under the 

proposed model for male and female respectively. The solid and long dashed lines show the 

posterior median of projected observed ASAF and true ASAF respectively. The dashed and 

dotted lines represent 95% prediction intervals for observed ASAF and true ASAF 

respectively.
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Fig 8. 
Hong Kong: The left and right panels show the projection of ASAF up to 2050 under the 

proposed model for male and female respectively. The solid and long dashed lines show the 

posterior median of projected observed ASAF and true ASAF respectively. The dashed and 

dotted lines represent 95% prediction intervals for observed ASAF and true ASAF 

respectively.
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Fig 9. 
Chile: The left and right panels show the projection of ASAF up to 2050 under the proposed 

model for male and female respectively. The solid and long dashed lines show the posterior 

median of projected observed ASAF and true ASAF respectively. The dashed and dotted 

lines represent 95% prediction intervals for observed ASAF and true ASAF respectively.
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Table 1

ICD codes for different cause of death categories across versions.

Causes ICD-7 (A-list) ICD-8 (A-list) ICD-9 (09A, 09B)

Lung Cancer A050 A051 B101

Upper Aero-digestive Cancer A044, A045, A040 A045, A046, A050 B08, B090, B100

Other Cancer rest of A044-A059 rest of A045-A060 rest of B08-B14

COPD A092, A093 A093 B323, B324, B325

Other Respiratory rest of A087-A097 rest of A089-A096 rest of B31-B32

Vascular Disease A079-A086 A080-A088 B25-B30

Liver Cirrhosis A105 A102 A347

Other non-med A138-A150 A138-A150 B47-B56

Other medical rest rest rest

All causes A000 A000 B00

Causes ICD-9 (09N) ICD-10 (101) ICD-10 (103, 104, 10M)

Lung Cancer B101 1034 C33-C34

Upper Aero-digestive Cancer B08, B090, B100 1027, 1028, 1033 C00-C15, C32

Other Cancer rest of CH02 rest of 1027–1046 rest of C00-C97

COPD B323, B324, B325 1076 J40-J47

Other Respiratory rest of CH08 rest of 1072 J00-J99

Vascular Disease CH07 1064 I00-I99

Liver Cirrhosis S347 1080 K74, K70

Other non-med CH17 1095 V00-Y89

Other medical rest rest rest

All causes B00 1000 AAA
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Table 2

Predictive validation results for all-age smoking attributable fraction (ASAF). The first and second columns 

indicate the estimation and validation periods. The “Gender” and “n” columns indicate the gender and the 

number of countries used for the validation. In the “Model” column, “Bayes” represents the Bayesian 

hierarchcial model with measurement error and random walk with drift, “Bayes(S)” represents the same model 

as “Bayes” without the global parameters, “Persistence” represents the persistence forecast, “Spline” 

represents the Bayesian thin plate regression spline method, and “BSTS” represents the Bayesian structural 

time series method. The “MAE” column contains the mean absolute prediction error defined by Eq. 3.1. The 

“Coverage” columns show the proportion of validation observations contained in the 80%, 90%, 95% 

prediction intervals with their average half-widths in parentheses. The “CRPS” column contains the 

continuous ranked probability score defined by Eq. 3.2.

Training Test n Gender Model MAE
Coverage

CRPS
80% 90% 95%

1950–2010 2010–2015 66

Male

Persistence 0.010 - - - -

Bayes 0.007 0.78 (0.011) 0.86 (0.014) 0.90 (0.017) 0.00523

Bayes(S) 0.007 0.86 (0.014) 0.94 (0.018) 0.97 (0.022) 0.00505

Spline 0.008 0.58 (0.009) 0.65 (0.011) 0.72 (0.013) 0.00648

BSTS 0.008 0.85 (0.015) 0.94 (0.020) 0.94 (0.025) 0.00570

Female

Persistence 0.009 - - - -

Bayes 0.007 0.83 (0.012) 0.93 (0.015) 0.96 (0.018) 0.00507

Bayes(S) 0.008 0.88 (0.014) 0.94 (0.018) 0.97 (0.022) 0.00538

Spline 0.010 0.42 (0.007) 0.52 (0.009) 0.61 (0.011) 0.00763

BSTS 0.008 0.80 (0.013) 0.89 (0.016) 0.94 (0.020) 0.00562

1950–2005 2005–2015 66

Male

Persistence 0.014 - - - -

Bayes 0.011 0.72 (0.014) 0.83 (0.018) 0.89 (0.022) 0.00797

Bayes(S) 0.010 0.85 (0.020) 0.93 (0.027) 0.97 (0.033) 0.00795

Spline 0.014 0.54 (0.014) 0.65 (0.018) 0.72 (0.021) 0.01096

BSTS 0.013 0.83 (0.026) 0.90 (0.035) 0.95 (0.043) 0.00989

Female

Persistence 0.012 - - - -

Bayes 0.010 0.80 (0.015) 0.90 (0.020) 0.92 (0.025) 0.00721

Bayes(S) 0.011 0.88 (0.021) 0.93 (0.028) 0.95 (0.035) 0.00808

Spline 0.014 0.44 (0.011) 0.51 (0.014) 0.58 (0.016) 0.01133

BSTS 0.011 0.77 (0.017) 0.88 (0.023) 0.93 (0.029) 0.00802

1950–2000 2000–2015 63

Male

Persistence 0.017 - - - -

Bayes 0.016 0.65 (0.020) 0.76 (0.026) 0.84 (0.031) 0.01214

Bayes(S) 0.018 0.84 (0.031) 0.92 (0.042) 0.95 (0.052) 0.01278

Spline 0.018 0.59 (0.019) 0.69 (0.024) 0.76 (0.029) 0.01335

BSTS 0.016 0.85 (0.039) 0.93 (0.053) 0.98 (0.068) 0.01281

Female

Persistence 0.015 - - - -

Bayes 0.011 0.81 (0.021) 0.90 (0.029) 0.95 (0.037) 0.00817

Bayes(S) 0.012 0.88 (0.027) 0.96 (0.039) 0.98 (0.050) 0.00887

Spline 0.016 0.48 (0.014) 0.59 (0.018) 0.70 (0.022) 0.01151
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Training Test n Gender Model MAE
Coverage

CRPS
80% 90% 95%

BSTS 0.012 0.79 (0.022) 0.89 (0.030) 0.94 (0.039) 0.00831
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Table 3

Predictive validation results for all-age smoking attributable fraction (ASAF) for categories of countries. The 

“OECD” column represents whether the countries in the subgroup belong to the OECD. The number of 

countries in the subgroup used for the validation is in parentheses. All the other columns are the same as those 

in Table 2.

Training Test Gender OECD Model MAE
Coverage

CRPS
80% 90% 95%

1950–2010 2010–2015

Male

Y(34)

Persistence 0.011 - - - -

Bayes 0.006 0.81 (0.011) 0.90 (0.014) 0.95 (0.016) 0.00448

Bayes(S) 0.006 0.88 (0.013) 0.94 (0.017) 0.99 (0.021) 0.00459

Spline 0.007 0.60 (0.008) 0.67 (0.010) 0.73 (0.012) 0.00565

BSTS 0.007 0.86 (0.014) 0.95 (0.018) 0.98 (0.022) 0.00529

N(32)

Persistence 0.008 - - - -

Bayes 0.009 0.75 (0.011) 0.81 (0.015) 0.84 (0.018) 0.00601

Bayes(S) 0.008 0.85 (0.015) 0.92 (0.019) 0.94 (0.023) 0.00554

Spline 0.010 0.56 (0.010) 0.63 (0.012) 0.70 (0.015) 0.00736

BSTS 0.009 0.86 (0.017) 0.95 (0.023) 0.98 (0.028) 0.00629

Female

Y(34)

Persistence 0.009 - - - -

Bayes 0.007 0.82 (0.011) 0.92 (0.015) 0.94 (0.018) 0.00505

Bayes(S) 0.008 0.86 (0.013) 0.93 (0.017) 0.96 (0.021) 0.00560

Spline 0.010 0.42 (0.007) 0.51 (0.008) 0.58 (0.010) 0.00762

BSTS 0.009 0.78 (0.012) 0.85 (0.015) 0.91 (0.019) 0.00616

N(32)

Persistence 0.008 - - - -

Bayes 0.008 0.83 (0.012) 0.95 (0.015) 0.95 (0.018) 0.00507

Bayes(S) 0.007 0.89 (0.015) 0.95 (0.019) 0.98 (0.023) 0.00516

Spline 0.011 0.42 (0.008) 0.54 (0.010) 0.63 (0.012) 0.00764

BSTS 0.007 0.82 (0.013) 0.89 (0.017) 0.94 (0.021) 0.00506

1950–2005 2005–2015

Male

Y(34)

Persistence 0.016 - - - -

Bayes 0.010 0.73 (0.014) 0.85 (0.018) 0.90 (0.021) 0.00676

Bayes(S) 0.010 0.84 (0.019) 0.93 (0.025) 0.97 (0.032) 0.00717

Spline 0.013 0.52 (0.012) 0.61 (0.015) 0.69 (0.018) 0.01008

BSTS 0.012 0.85 (0.028) 0.91 (0.039) 0.97 (0.049) 0.01000

N(32)

Persistence 0.011 - - - -

Bayes 0.012 0.70 (0.014) 0.81 (0.019) 0.88 (0.022) 0.00928

Bayes(S) 0.011 0.87 (0.021) 0.93 (0.029) 0.96 (0.035) 0.00879

Spline 0.015 0.57 (0.016) 0.68 (0.020) 0.76 (0.024) 0.01189

BSTS 0.013 0.83 (0.026) 0.90 (0.035) 0.95 (0.043) 0.00989

Female Y(34)

Persistence 0.012 - - - -

Bayes 0.009 0.82 (0.015) 0.92 (0.020) 0.95 (0.025) 0.00669

Bayes(S) 0.010 0.88 (0.019) 0.95 (0.025) 0.96 (0.032) 0.00736

Spline 0.012 0.38 (0.008) 0.45 (0.011) 0.52 (0.013) 0.00945

BSTS 0.012 0.82 (0.019) 0.90 (0.026) 0.92 (0.033) 0.00851
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Training Test Gender OECD Model MAE
Coverage

CRPS
80% 90% 95%

N(32)

Persistence 0.013 - - - -

Bayes 0.011 0.78 (0.015) 0.88 (0.020) 0.90 (0.025) 0.00780

Bayes(S) 0.012 0.88 (0.023) 0.91 (0.031) 0.93 (0.039) 0.00885

Spline 0.017 0.51 (0.013) 0.58 (0.017) 0.66 (0.020) 0.01333

BSTS 0.011 0.77 (0.017) 0.88 (0.023) 0.93 (0.029) 0.00802

1950–2000 2000–2015

Male

Y(33)

Persistence 0.018 - - - -

Bayes 0.014 0.67 (0.020) 0.79 (0.026) 0.88 (0.032) 0.01063

Bayes(S) 0.017 0.83 (0.030) 0.90 (0.040) 0.95 (0.050) 0.01221

Spline 0.017 0.58 (0.015) 0.68 (0.020) 0.74 (0.023) 0.01338

BSTS 0.018 0.88 (0.035) 0.93 (0.047) 0.97 (0.060) 0.01308

N(30)

Persistence 0.017 - - - -

Bayes 0.019 0.63 (0.020) 0.72 (0.026) 0.80 (0.031) 0.01377

Bayes(S) 0.018 0.86 (0.032) 0.93 (0.042) 0.95 (0.053) 0.01341

Spline 0.018 0.60 (0.022) 0.71 (0.029) 0.79 (0.034) 0.01331

BSTS 0.016 0.85 (0.045) 0.94 (0.063) 0.98 (0.082) 0.01308

Female

Y(33)

Persistence 0.016 - - - -

Bayes 0.011 0.80 (0.021) 0.89 (0.029) 0.95 (0.037) 0.00817

Bayes(S) 0.013 0.84 (0.028) 0.94 (0.038) 0.97 (0.048) 0.00981

Spline 0.016 0.41 (0.012) 0.54 (0.015) 0.62 (0.018) 0.01230

BSTS 0.011 0.73 (0.016) 0.86 (0.022) 0.92 (0.027) 0.00777

N(30)

Persistence 0.013 - - - -

Bayes 0.010 0.82 (0.017) 0.92 (0.023) 0.95 (0.030) 0.00699

Bayes(S) 0.010 0.93 (0.028) 0.98 (0.040) 0.99 (0.052) 0.00784

Spline 0.016 0.56 (0.017) 0.66 (0.022) 0.79 (0.026) 0.01066

BSTS 0.010 0.86 (0.022) 0.94 (0.030) 0.95 (0.039) 0.00735
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