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Abstract

Cerebellar ataxia can be caused by a variety of disorders, including degenerative processes, auto-

immune and paraneoplastic illness as well as by gene mutations inherited in autosomal dominant, 

autosomal recessive or X-linked fashions. As we broaden our knowledge of the causes of 

cerebellar ataxia, we have also vastly increased our ability to treat cerebellar diseases, both 

symptomatically and targeting specific disease types. In this review, we highlight the treatments 

for cerebellar ataxia in a systematic way, to provide guidance for clinicians to treat patients with 

cerebellar ataxia. In addition, we review therapies currently under development for ataxia, which is 

one of the most exciting fields in neurology. Because strong genetic components underlie many 

types of ataxia, identifying the causes and developing individualized treatment for each ataxia 

patient is the key for patient care and research. Therefore, ataxia can also be considered a 

prototypical model for personalized medicine development. The advancement of neuroscience and 

our ever-increasing understanding of the cerebellum has led to many emerging therapies for ataxia, 

bringing with it the hope that soon we will have even more ways to improve the quality of life and 

possibly modify the disease trajectory of patients living with cerebellar ataxia.
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1. Introduction

The cerebellum is responsible for a multitude of motor functions through the coordination of 

movements by prediction and is modulated by sensory feedback. Cerebellar ataxia refers to 

the dysfunction of the cerebellum that leads to problems with gait and balance, eye 

movements, speech, and hand dexterity1. The cerebellum is comprised of two hemispheres 

separated by the vermis. The 10 lobules of the cerebellum are grouped in three lobes; lobules 

I to V make up the anterior lobe of the cerebellum, lobules VI-IX make up the posterior lobe 

and lobule X is the flocculonodular lobe. From functional imaging studies of the cerebellum, 

the anterior lobe is thought to be important for motor control while the posterior lobe is 

more involved in cognitive processing2. Thus, patients with cerebellar ataxia may have a 

variety of motor and non-motor symptoms impacting their daily activities.

The prevalence of ataxia varies depending on ethnic background and geographic region, as 

different populations have founder effects for certain types of hereditary ataxias. Most 

studies have focused on the prevalence of hereditary ataxias. However, some estimates 

suggest that the prevalence of ataxia ranges from 2.7 to 38.35 per 100,0003 A study looking 

at the global distribution of hereditary ataxias found that the most common autosomal 

dominant (AD) cerebellar ataxia is spinocerebellar ataxia typa 3 (SCA3), and the most 

common autosomal recessive (AR) ataxia is Friedreich ataxia4.

Cerebellar dysfunction can be caused by nutritional deficiencies, immune-mediated 

cerebellar degeneration, gene defects inherited in AD, AR or X-linked fashion, as well as 

neurodegenerative conditions. In the work-up of ataxia, it is important to understand the age 

of onset and time course of ataxia, family history, and associated medical conditions and 

signs and symptoms. There are several excellent papers describing the work-up of ataxia5–7, 

and the focus of this paper is not to re-summarize an ataxia work-up but instead to highlight 

current treatments for ataxia as well as those looming on the horizon. Figure 1 summarizes 

current and potential treatments for ataxia.

In order to understand the development of therapy for ataxia, it is important to know how the 

severity of ataxia is measured. There are two rating scales commonly used to measure ataxia 

severity. The Scale for the Assessment and Rating of Ataxia (SARA) score is a 40-point 

scale taking into account gait, stance, and upper and lower extremity motor deficits8. It is 

relatively easy to use in a clinical setting as it is not particularly time consuming. The annual 

rate of SARA score increase has been found to be 2.11 in SCA1, 1.49 in patients with 

SCA2, 1.56 in SCA3 patients and 0.80 in SCA6 patients in a natural history study in 

Europe9. A US natural history study of SCA also showed comparable disease progression 

using SARA10. Another commonly used scale is the International Cooperative Ataxia 

Rating Scale (ICARS), which is a 100-point measure of cerebellar dysfunction taking into 

account eye movement abnormalities, upper and lower extremity coordination deficits, 

speech, stance and gait11. A study of 18 patients with static and progressive cerebellar 

lesions found that the ICARS score can differentiate between the two on certain measures 

and can detect yearly changes in ataxia in the patients with degenerative cerebellar 

diseases12. Although ICARS was developed earlier than the SARA score, the latter is now 

the more commonly used clinical measure for ataxia.
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2a. Symptomatic Treatment of Ataxia

Many medications have been examined in an effort to find symptomatic treatment for ataxia, 

by modulating cerebellar function through changes in ion channel function and/or cerebellar 

physiology. However, most symptomatic treatments have not been tested for an extended 

period of time, and there is a lack of replicate studies. It is also unknown whether these 

medications can have additional disease-modifying effects. Nonetheless, the effects of these 

treatments may provide some symptomatic relief and improve quality of life. Table 1 

summarizes the symptomatic treatments for cerebellar ataxias13–19, a few of which we will 

highlight below. Supplementary table 1 lists medications that have been tested and were 

proven non-effective.

Riluzole has been shown to improve function in patients with ataxia as measured by SARA 

and ICARS scores. It mostly affects axial domains by improving speech and gait. Side 

effects of riluzole include mild liver enzyme increases and transient vertigo but it is 

generally well-tolerated. Although the initial study only observed the effects of riluzole over 

8 weeks, a longer study over 12 months demonstrated continued benefits20,21. Riluzole is 

thought to modulate SK channels, which are enriched in Purkinje cells, thereby partially 

normalizing neuronal firing patterns.

Varenicline is a partial agonist of the alpha-4 beta-2 nicotinic acetylcholine receptor, and 

was studied in 20 SCA3 patients. A randomized, double-blind, placebo-controlled trial of 

varenicline demonstrated improved axial symptoms and rapid alternating movements 

measured by SARA scores. Although relatively well tolerated, varenicline was associated 

with depression and irritability22.

Acetazolamide has been shown to reduce the severity of ataxia in SCA6 patients, who have 

repeat expansions in the CACNA1A gene23. The CACNA1A gene encodes a voltage-

dependent calcium channel, and acetazolamide is thought to be helpful in channelopathies 

because it lowers the pH and may thus change channel properties. An open label trial of 6 

SCA6 patients treated with acetazolamide had improvement in ataxia rating scale scores and 

decreased body sway but the effects were somewhat lessened after 1 year. Similarly, patients 

with episodic ataxia 2, which is also caused by CACNA1A gene mutations, had 

improvement in cerebellar symptoms with acetazolamide24–26. Acetazolamide has also been 

shown to be effective in treating patients with PMM2 congenital disorder of glycosylation 

(PMM2-CDG), which causes a cerebellar syndrome that may be mediated by abnormal 

glycosylation of calcium channels27. PMM2-CDG is inherited in an AR manner. Side effects 

of acetazolamide include low bicarbonate levels and paresthesia.

2b. Neuromodulation of Ataxia

Neuromodulation of the cerebellum has shown promising results for treating cerebellar 

ataxia28. Various studies have used transcranial magnetic stimulation (TMS), transcranial 

direct current stimulation (tDCS), as well as deep brain stimulation (DBS) to test the effects 

on cerebellar ataxia. While DBS involves surgical implantation of electrodes, both TMS and 

tDCS are noninvasive and all have relatively few side effects. TMS can directly induce 

action potentials whereas tDCS can modulate local membrane potentials and neuronal 
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plasticity29. Studies of cerebellar neuromodulation are highlighted in Table 230–40, but we 

will focus on a few tDCS studies in more depth here because tDCS is most studied in 

cerebellar ataxia with a potential for larger-scaled studies in the future.

A case report of two patients with SCA2 showed improvement in SARA score, tremor and 

upper limb dysmetria immediately after cerebellar tDCS41. Nineteen patients with various 

forms of neurodegenerative ataxias received anodal cerebellar tDCS in a double blind, sham-

controlled crossover study35. There was a statistically significant improvement in 1.40 points 

of SARA score and 4.37 points in ICARS score between the sham and stimulation trials. A 

drawback of these studies was that the effect was only tested immediately after stimulation, 

making it unclear the duration of symptomatic improvement in these patients after cessation 

of tDCS.

A follow-up double blind, randomized, sham-controlled crossover study looked at cerebellar 

anodal and spinal cord cathodal tDCS stimulation in 21 patients with degenerative ataxias42. 

This study had a longer stimulation period (2 weeks of stimulation) and had SARA and 

ICARS performed before the stimulation or sham stimulation, immediately after the 2-week 

stimulation, and then 1 and 3 months after the stimulation. There was an improvement in 

SARA and ICARS scores in the stimulation group at all time points post-stimulation when 

compared to pre-stimulation and also when compared to sham. This study provides evidence 

of long-duration responses of ataxia with tDCS to the cerebellar region. The ease of use of 

tDCS and its relatively longer-lasting effects may be a useful adjunct to symptomatic 

medical therapy, especially in those patients who do not experience improvement in ataxia 

from medical therapy.

2c. Exercise as treatment for ataxia

Exercise or physical therapy has been a cornerstone in helping patients with cerebellar 

ataxia. Studies of intensive rehabilitation have shown long-lasting effects physical therapy. A 

study of 42 patients with degenerative ataxia were separated into two groups to receive 

either 4 weeks of intensive rehabilitation or a delayed start of the same rehabilitation 

schedule43. The immediate rehabilitation group had a greater improvement in SARA scores 

compared to the delayed start group at 4 weeks post-rehabilitation. Although the 

improvement was attenuated at 12 and 24 weeks post-rehabilitation, a significant number of 

patients still had improvement compared to baseline, which is notable given the progressive 

worsening of symptoms in degenerative ataxia.

A study of 38 SCA2 patients, randomized into a 24-week neurorehabilitation therapy 

program or no therapy, showed that there was a significant improvement in SARA scores in 

those receiving rehabilitation44. Notably the improvement in SARA scores between the 

therapy and no-therapy groups were in the sub-scores of gait, stance and sitting, and this 

improvement occurred in patients across different disease duration. Another study 

randomized 30 preclinical SCA2 patients into either a neurorehabilitation or control group45. 

While the study did not find differences in SARA scores between the two groups after the 

intervention, there was an improvement in tandem gait, finger-to-nose and heel-shin tasks in 

the rehabilitation group only.
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Of note, a diverse range of physical activity has been shown to be helpful in improving 

cerebellar dysfunction. A study showed that intensive cycling in 20 patients with various 

SCAs led to an improvement in ICARS scores after 4 weeks of cycling46. Patients with 

cerebellar ataxia might be able to engage in diverse exercise and physical therapy, such as 

rock climbing47. Working through rehabilitation on physical functions as basic as 

swallowing may even be helpful in patients with cerebellar ataxia48. These studies highlight 

the long-lasting effects of exercise and physical therapy in improving ataxia, and may point 

to a neuromodulatory effect of exercise or to enhance other brain regions.

3. Disease modifying treatments for ataxia

The cerebellum is thought to be somewhat flexible in its ability to recover from injury and 

some investigators have even coined the phrase “time is cerebellum” to describe the 

abundance of cellular and synaptic plasticity within the cerebellum in ataxia patients, which 

can be enhanced by treatment49, when administered in the early stage of the diseases. We 

will highlight some current treatments that may be disease modifying as well as hopeful 

looming prospects in the next few sections. Perhaps the most important message is that 

identifying the cause of a patient’s cerebellar ataxia can be incredibly important as there are 

a multitude of treatments that can slow down and even halt the progression of ataxia.

3a. Treatment for nutritional and immune-mediated ataxias

Table 3 lists common causes of nutritional and immune-mediated ataxias, which occur on a 

time course of weeks to months50–52. It is critically important to examine serum B12 and B1 

levels and potential auto-immune antibodies in a patient with cerebellar ataxia as these 

causes could potentially be reversed with the appropriate treatment especially early on in the 

disease course. The classic triad of Wernicke encephalopathy is altered mental status, 

ophthalmoplegia and cerebellar ataxia53, and often occurs in the setting of chronic 

alcoholism. Cancer and gastric bypass surgeries can be causes for Wernicke 

encephalopathy54. Prompt thiamine administration is the treatment for Wernicke 

encephalopathy.

The most common cause of vitamin B12 deficiency is pernicious anemia, which is an 

autoimmune atrophic gastritis55. Although the gait dysfunction in vitamin B12 deficiency is 

due to both demyelination of the dorsal columns and central nervous system involvement, 

there have been cases of vitamin B12 deficiency that cause cerebellar degeneration only56. 

Prompt detection of vitamin B12 deficiency in a patient with cerebellar ataxia is critical to 

prevent clinical worsening and may even reverse the symptoms.

Finally, there are several auto-antibodies and paraneoplastic syndromes associated with 

cerebellar ataxia, and the identification of these causes are important in order to administer 

treatment promptly. The most common paraneoplastic autoantibodies are the anti-Yo 

(associated with breast, uterine and ovarian cancers), anti-Hu (associated with small cell 

lung cancer), anti-Tr (associated with Hodgkin’s lymphoma), and anti-CV2 (associated with 

SCLC and thymoma) antibodies. Guidelines on the treatment for paraneoplastic ataxias 

suggest that if treating the underlying cancer does not help, a round of immunotherapy may 

be helpful. Patients who have autoantibodies detected in the serum may receive a spinal tap 
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to further investigate whether these antibodies are present in the cerebrospinal fluid. These 

patients with autoantibodies can be treated with either immunoglobulin therapy (IVIG), 

steroids or other immuno-modulatory agents. More randomized controlled trials need to be 

conducted to examine autoantibody-mediated cerebellar ataxia to determine the optimal 

immunotherapy tailored to ataxia associated with each individual autoantibody.

3b. Treatment for AR ataxias

AR ataxias are comprised of a diverse group of progressive gataxias often resulting from 

dysfunctional metabolic pathways. Most AR ataxias can be categorized in one of three 

subgroups: defective mitochondrial metabolism, dysfunctional lipid metabolism and 

impaired DNA repair58. Some of these AR mutations lead to accumulation of toxic 

downstream metabolites and reduction of these metabolites can ameliorate the symptoms of 

the illness and/or modify the disease course.

Wilson disease, which causes a multitude of neurologic, psychiatric and ophthalmologic 

symptoms including ataxia due to copper accumulation in the brain and liver resulting from 

a mutation in the ATP7B gene that encodes a protein for copper transport. Lifelong 

treatment with oral copper chelators such as penicillamine and trientene may reverse 

symptoms59.

The clinical hallmarks of cerebrotendinous xanthomatosis (CTX) include tendon xanthomas, 

cerebellar ataxia, dementia, cataracts, premature atherosclerosis, and pulmonary 

dysfunction, with elevated cholestenol and bile alcohols found in serum and urine60. 

Supplementation with chenodeoxycholic acid (CDCA) inhibits abnormal bile acid synthesis 

by providing feedback inhibition which is deficient in these patients. A hallmark 1984 study 

showed that in 17 CTX patients given CDCA, several patients had improvement of dementia 

and cerebellar ataxia61. A more recent study in two patients with CTX started on CDCA at 3 

and 5 months showed that the neurologic deficits could be improved but not completely 

reversed, suggesting that there even earlier detection and treatment of CTX may lead to 

normal development62.

Niemann Pick type C (NPC) is caused by a mutation in the NPC1 or NPC2 gene, and the 

adolescent onset forms of NPC usually result in cerebellar dysfunction including ataxia, 

dysarthria, dysmetria and dysphagia, as well as gelastic cataplexy63. On exam, NPC patients 

have characteristic impaired vertical saccades64. Miglustat inhibits the synthesis of 

glycosphingolipids and has been approved for the treatment of NPC. Miglustat improves 

swallowing function and stabilizes other neurologic manifestations in the years following its 

administration in NPC patients65. Other potential treatments for NPC include 2-

hydroxypropyl-beta-cyclodextrins which may delay Purkinje cell loss and slows disease 

progression in patients with NPC66.

Other AR ataxias that are due to nutritional deficiencies may be stabilized or improved with 

correct nutritional supplementation. In a patient with ataxia, dysarthria, vision loss due to 

retinitis pigmentosa, head tremor and areflexia, ataxia with vitamin E deficiency (AVED) 

must be considered. AVED patients have mutations in the alpha tocopherol transfer protein 

(alpha-TTP) lead to reduced intrahepatocyte vitamin E incorporation into very low density 
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lipoproteins. Serum vitamin E levels are very low in AVED patients, and early 

supplementation of vitamin E in these patients can improve cerebellar ataxia67. AR 

cerebellar ataxia type 2 (ARCA2) is caused by a mutation in the ADCK3 gene which results 

in coenzyme Q10 deficiency. Studies show that patients seem to respond to idebenone 

supplementation68.

A success in AR cerebellar ataxia treatment is seen in patients with biotinidase deficiency 

identified on newborn screen, who subsequently received biotin supplementation69. A study 

following 44 patients started on biotin supplementation as infants lived normal adult lives, 

significantly different from the natural history of biotinidase deficiency. Interestingly, biotin 

supplementation seems only to slow or stop disease progression but cannot reverse 

symptoms. A case report described patients with novel mutations in the SLC19A3 gene that 

have recurrent episodes of encephalopathy and at baseline have generalized dystonia, 

epilepsy and bilateral caudate and putaminal hyperintensities had clinical improvement 

during encephalopathic episodes with administration of high doses of biotin and thiamine70.

The most common AR cerebellar ataxia is Friedreich ataxia, accounting for ~25% of all AR 

cerebellar ataxias. Friedreich ataxia is caused by a homozygous GAA trinucleotide repeat in 

intron 1 of the FXN gene on chromosome 9q1371, which reduces expression of the protein 

products, frataxin. Several pre-clinical studies in rodents and cell lines have shown that 

administration of wild-type frataxin either through bone-marrow transplants72, 

administration of antisense oligonucleotides (ASOs)73, or injecting FXN expressing adeno-

associated virus74 can improve some of the symptoms of Friedreich ataxia in preclinical 

models.

Table 4 provides a more comprehensive summary of the different AR cerebellar ataxias and 

their treatments75–84. The majority of the evidence for the treatments of AR cerebellar 

ataxias rely on case reports and open label studies, likely because of the rarity of the 

illnesses. However, it is still important to consider the possibility of AR cerebellar ataxias in 

patients with early onset ataxia with or without sensory neuropathy, since many AR ataxias 

can stabilize or improve if treatments are started early. The potential for gene therapy or 

strategies to enhance FXN expression in the treatment of Friedreich ataxia portends great 

hope for the treatment of AR cerebellar ataxias.

3c. Treatment for AD cerebellar ataxias

In patients presenting with a slowly progressive cerebellar ataxia in middle-age who may 

have a family history of ataxia, the diagnosis of AD ataxias should be aggressively pursued. 

The majority of AD cerebellar ataxias are categorized as SCAs with exceptions such as 

dentatorubro-pallidoluysian atrophy (DRPLA) and episodic ataxias. The most common 

SCAs involve poly-glutamine expansion repeats, which lead to protein misfolding and 

aggregation85, and SCA1, 2, 3, 6, 7, and 17 belong to this group. There are no definitive 

disease-modifying therapies for AD cerebellar ataxias. Nonetheless, we list several relevant 

clinical and preclinical studies as potential therapies for AD cerebellar ataxias.

A randomized, open-label study of valproic acid in 12 SCA3 patients showed improvement 

in SARA scores, with dizziness and loss of appetite as side effects86, with two patients 
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dropping out as a result of these side effects. The possible mechanism of action is thought to 

be inhibition of histone deacetylases to regulate the expression of pathological proteins. 

Proteins carrying poly-glutamine repeats are known to activate the mitochondrial apoptotic 

pathway leading to neuronal death; therefore, mitochondrial dysfunction might be one of the 

shared pathways for SCAs. A retrospective study demonstrated that SCA patients who took 

coenzyme Q10, a co-factor in the mitochondrial respiratory chain, had better SARA scores 

than those who did not. In addition, a dose-dependent effect was found in SCA3 patients87. 

This study suggests coenzyme Q10 may have disease-modifying effects for SCAs, and 

warrants further randomized, placebo-controlled trials.

Citalopram was initially identified in a screen of Food and Drug Administration-approved 

drugs to rescue neuronal dysfunction in an SCA3 C.elegans model. Citalopram, a serotonin 

reuptake inhibitor, was further demonstrated to reduce ataxin-3 neuronal inclusions, 

astrogliosis, as well as improving motor symptoms in SCA3 mouse models88. These 

preclinical animal studies provide strong rationale for future randomized placebo-controlled 

trials for citalopram in SCA3. Excessive glutamate-mediated neuronal transmission leading 

to neuronal toxicity is a major mechanism for neurodegenerative disorders; therefore, 

modulating glutamatergic neuronal transmission could be disease modifying in SCAs. 

Towards this goal, there is an ongoing clinical trial treating SCA patients with a glutamate 

modulator, troriluzole, to examine its effects on slowing disease progression.

As SCAs are monogenetic disorders, therapies specifically through ASO targeting mutated 

genes hold promise as disease modifying therapy. There are several preclinical studies 

showing that knocking down of mutated protein expression by gene therapy can be disease 

modifying therapy in animal models of SCAs. ASOs targeting ATXN2 in a SCA2 mouse 

model improved motor function and Purkinje cell firing89. A similar study in showed 

efficacy of ASOs in reducing ATXN1 protein in a SCA1 mouse model with improvement in 

motor coordination90. ASOs targeting ATXN3 also showed promising results in SCA3 

mouse models91, while knockout of the entire ATXN3 gene is well-tolerated in a SCA3 

mouse model92, which provide some preclinical safety evidence. Other than ASOs, 

intraventricular injections of shRNA silencing mutant ATXN3 have also been shown to 

improve motor symptoms in SCA3 mouse models93. In a SCA6 mouse model, delivery of 

microRNA against the toxic gene product can also improve the motor performance and halt 

Purkinje cell degeneration94.

Table 5 summarizes the potential disease modifying treatments highlighted above, as well as 

other promising preclinical studies not mentioned in the text95–99.

3d. Treatments for idiopathic neurodegenerative ataxias

Multiple system atrophy (MSA) is a common diagnosis in patients with late onset, 

progressive cerebellar ataxia, and is often accompanied by parkinsonism and autonomic 

dysfunction. A recent genetic study found an association between a rare variant of COQ2 
and MSA in East Asian populations100,101. COQ2 encodes for a protein that is essential in 

the synthesis of coenzyme Q10. Interestingly, reduction of coenzyme Q10 levels is observed 

both in the serum93, and in the postmortem cerebellum of MSA patients102. A clinical trial 

of ubiquinol, a form of coenzyme Q10, in the treatment of MSA is currently underway.

Kwei and Kuo Page 8

Neurol Clin. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Other potential treatments for MSA include modulation of the serotonergic system with the 

selective serotonergic reuptake inhibitors, which have been shown to reduce alpha-synuclein 

uptake in neuronal and oligodendroglial cells and thus could be disease-modifying103. A 

small double-blind, placebo controlled study of 19 MSA patients showed that paroxetine, a 

serotonin reuptake inhibitor, treated patients showed better limb agility compared to 

placebo-treated patients104. Another promising potential treatment for MSA are 

myeloperoxidase inhibitors, which have been shown to improve motor function in an MSA 

mouse model and to reduce alpha-synuclein aggregates105. A phase III trial of an irreversible 

myeloperoxidase inhibitor, BHV-3241, is currently underway.

4. Conclusions

The purpose of this paper is to describe the wide range of treatments available for cerebellar 

ataxia and to highlight promising therapies on the horizon. With the recent advances in gene 

therapy and ASO approaches, targeted therapies for ataxia hold the promise of improving 

quality of life for patients with ataxia and possibly even slow or reverse the disease course. 

Moreover, continued improvement of clinical trial design for ataxia will also advance our 

ability to demonstrate therapeutic efficacy.

Several challenges remain to be addressed in the currently burgeoning field of ataxia 

research. First, while most studies rely on SARA or ICARS scores, additional patient-

oriented outcome measures need to be developed to demonstrate improvement in quality of 

life for ataxia patients. Second, as we begin to understand the role of the cerebellum in 

cognitive and emotional processing, non-motor rating scales, such as the cerebellar cognitive 

affective scale106, will need to be implemented to comprehensively assess the aspects of 

patients’ lives affected by cerebellar dysfunction. Third, all clinical rating scales are limited 

by their ability to capture only a moment in time in the clinic and as such the development of 

wearable instruments are needed to more fully describe “real life” motor performance at 

home. Fourth, imaging and fluid biomarkers should be used as part of clinical trials for 

ataxia to test for target engagement and as additional evidence for disease modifying effects.

There are currently a multitude of treatments for ataxia that can be offered, both 

symptomatic therapies that may help regardless of the cause of ataxia as well as potential 

disease-modifying therapies targeting specific types of ataxia. It is not only the time to 

dispel the myth that there is no treatment for ataxia, but in fact there is a reason to be hopeful 

about the current state and future of ataxia treatments.
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Key Points

• A review paper summarizing current treatments for cerebellar ataxia.

• Review categorizing treatments for cerebellar ataxia by symptomatic 

treatment and disease modifying treatments.

• We further separate disease modifying treatments into those for autosomal 

dominant, autosomal recessive and immune-mediated cerebellar ataxias.

• We discuss preclinical and clinical trials currently underway for the treatment 

of cerebellar ataxia.
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Synopsis

Cerebellar ataxia can be caused by a variety of disorders, including degenerative 

processes, auto-immune and paraneoplastic illness as well as by gene mutations inherited 

in autosomal dominant, autosomal recessive or X-linked fashions. In this review, we 

highlight the treatments for cerebellar ataxia in a systematic way, to provide guidance for 

clinicians to treat patients with cerebellar ataxia. In addition, we review therapies 

currently under development for ataxia, which is one of the most exciting fields in 

neurology.

Kwei and Kuo Page 17

Neurol Clin. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Summary of current and potential treatments for ataxia.
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Table 1:

Symptomatic treatment for ataxia

Treatment Ataxia type Evidence References

Riluzole SCA, FA Randomized, double-blind, placebo-controlled 
trial

(Ristori et al., 2010; Romano et al., 2015)

Varenicline SCA3 A randomized, double-blind, placebo-controlled 
trail

(Zesiewicz et al., 2012)

Paroxetine MSA A randomized, double-blind, placebo-controlled 
study

(Friess et al., 2006)

Aminopyridine EA2 A randomized, double-blind, placebo-controlled, 
crossover study

(Strupp et al., 2011)

SCA6, ADCA Observational studies (Tsunemi et al., 2010)

Amantadine (IV) MSA A short-term, open label study (Youn et al., 2012)

Buspirone MSA-C Open label studies (Heo et al., 2008)

Acetazolamide SCA6, EA Open label studies and case reports (Baloh and Winder, 1991; Griggs et al., 1978; 
Harno et al., 2004) (Yabeet al., 2001)

PMM2-CDG A single-blind, randomized withdrawal trial (Martinez-Monseny etal.,2019)

Citalopram FA Case series (2 patients) (Rohretal., 1999)

Chlorzoxazone SCA1, SCA2 Rodent studies (Egorova et al., 2016) (Bushart et al., 2018)

EA2: episodic ataxia type 2, FA: Friedreich ataxia, MSA: multiple system atrophy, SCA: spinocerebellar ataxia, PMM2-CDG: 
phosphomannomutase congenital disorder of glycosylation
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Table 2:

Neuromodulation and physical exercise for ataxia

Treatment Ataxia type Evidence References

Physical merapy SCA7, SCA2, FA A randomized, open label study (llg et al., 2009; Tercero-Pérez et al., 2019; 
Velázquez-Pérez et al., 2019)

Transcranial 
magnetic stimulation

SCA1, SCA6, SCA7 A randomized, sham-controlled 
study and case reports

(Kawamura et al., 2018; Shiga et al., 2002; Shimizu 
et al., 1999)

Posterior circulation 
stroke

A randomized, double-blind trial (Kim et al., 2014)

Transcranial direct 
current stimulation

SCA, MSA, FA A randomized, double-blind, sham-
controlled study and case report

(Benussi et al., 2015, 2018; Grimaldi and Manto, 
2013)

Deep brain 
stimulation

SCA Case report (Hashimoto et al., 2018)

FXTAS Case report (dos Santos Ghilardi et al., 2015)

Cerebellar stroke Case report (Teixeira et al., 2015; Weiss et al., 2015)

FA: Friedreich ataxia, FXTAS: Fragile X-associated tremor/ataxia syndrome, MSA: multiple system atrophy, SCA: spinocerebellar ataxia
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Table 3:

Treatment for immune-mediated and nutritional ataxias.

Treatment Ataxia type Evidence References

IVIG Opsoclonus myoclonus ataxia 
syndrome

A randomized, open label 
study

(de Alarcon et al., 2018)

Gluten-free diet, IVIG, 
steroids

Anti-DGP, anti-gliadin cerebellar 
ataxias

Open label (Nanri et al., 2016)

IVIG, steroids Anti-GAD, anti-TPO Open label (Nanri et al., 2016)

Thiamine Wernicke's encephalopathy Case reports (Chataway and Hardman, 1995; Sinha et 
al., 2019)

Vitamin B12 Pernicious anemia, dietary deficiency Case reports (Chakrabarty et al., 2014; Stabler, 2013)

Anti-DGP: anti-deamidated gliadin peptide, anti-GAD: anti-glutamic acid decarboxylase antibody, anti-TPO: anti-thyroperoxidase antibody, IVIG: 
intravenous immunoglobulin
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Table 4:

Disease modifying therapies for autosomal recessive ataxias

Ataxia type Treatment Evidence Mechanism of action References

Wilson disease Copper chelators Observational studies Blockade of intestinal 
copper absorption

(Aggarwal and Bhatt, 
2018)

Niemann-Pick Disease Miglustat A prospective 
randomized control 
studies

Inhibition of 
glycosphingolipid 
synthesis

(Pineda et al., 2018)

Niemann-Pick Disease Intrathecal 2-
hydroxypropyl-β-
cyclodextrins

An open label, 
observational study

Unclear (Ory et al., 2017)

Ataxia Telangiectasia Glucocorticoids An prospective, cohort 
study

Unclear, possible 
restoration of ATM gene 
expression

(Menotta et al., 2017; 
Zannolli et al., 2012)

Cerebrotendinous 
xanthomatosis

Chenodeoxycholic acid 
supplementation

An open label, 
observational study

Replace missing bile 
acids; lipid metabolism 
deficit

(Berginer et al., 1984; 
Nie et al., 2014; Pierre 
et al., 2008)

Ataxia with vitamin E 
deficiency

Vitamin E An open label, 
observational study

Replacement therapy (Gabsi et al., 2001)

Riboflavin transporter 
deficiency neuronopathy 
(SLC52A2 gene mutation)

Riboflavin An open label, 
observational study

Supplementation to boost 
absorption

(Foley et al., 2014; 
Guissart et al., 2016)

Autosomal recessive 
cerebellar ataxia 2

Ubidecarenone An open label, 
observational study

Replacement therapy (Mignot et al., 2013)

Abetalipoproteinemia Low-fat diet, essential 
fatty acid 
supplementation

A case series Replacement therapy (Chardon et al., 2009; 
Lee and Hegele, 2014)

Biotinidase deficiency Biotin A case series Replacement therapy (Wolf, 2017)

SLC19A3 gene mutation Biotin, thiamine A case series Replacement therapy (Debs et al., 2010)

CoQ10, CoQ4 deficiency Coenzyme Q10 A case series Replacement therapy (Caglayan et al., 2019)

Refsum disease Phytanic acid restriction, 
lipid apheresis

A case report and 2 
case series

Toxic substrate reduction (Baldwin et al., 2010; 
Gibberd et al., 1979; 
Zolotov et al., 2012)

Friedreich ataxia Frataxin-expressing 
adeno-associated virus

A preclinical, rodent 
study

Frataxin replacement (Piguet et al., 2018)

Friedreich ataxia Allogenic stem cell 
transplantation

A preclinical, rodent 
study

Increasing frataxin levels (Kemp et al., 2018)

Friedreich ataxia ASO targeting triplet 
expansion in frataxin

A preclinical, rodent 
study

Increasing frataxin 
expression

(Li et al., 2018)

CoQ4: Coenzyme Q4, CoQ10: Coenzyme Q10
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Table 5:

Disease modifying therapy in autosomal dominant ataxias

Treatment Ataxia type Evidence Mechanism of action References

Valproic acid SCA3 A randomized, open-label, 
doseescalation

Histone deacetylase inhibition (Lei et al., 2016)

Coenzyme Q10 SCA 1, 
SCA3

An observational study Enhancing mitochondrial 
respiratory chain

(Lo et al., 2015)

Troriluzole 
(BHV4157)

SCA1, 
SCA2, 
SCA3, 
SCA6, 
SCA7, 
SCA8, 
SCA10

An ongoing phase III, 
randomized, double-blind, 
placebo-controlled study

Modulation of glutamate 
neurotransmission

ClinicalTrials.gov Identifier: 
NCT03701399

Citalopram SCA3 A preclinical, rodent study Reduction of ATXN3 neuronal 
inclusions and astrogliosis

(Teixeira-Castro et al., 2015)

ASO targeting 
ATXN1

SCA1 A preclinical, rodent study Downregulation of ATXN1 (Friedrich et al., 2018)

ASO targeting 
ATXN2

SCA2 A preclinical, rodent study Downregulation of ATXN2 (Scoles et al., 2017)

ASO vitreal 
injections

SCA7 A preclinical, rodent study Downregulation of ATXN7 (Niu et al., 2018)

ASO targeting 
ATXN3

SCA3 A preclinical, rodent study Downregulation of ATXN3 (Toonen et al., 2017) (Moore et 
al., 2017)

shRNA silencing 
ATXN3

SCA3 A preclinical, rodent study Downregulation of ATXN3 (Nóbrega et al., 2013, 2019)

RNAi targeting 
ATXN7

SCA7 A preclinical, rodent study Reduction of WT and mutant 
ATXN7

(Ramachandran et al., 2014)

MicroRNA blocking 
IRES driven 
translation 
CACNA1A second 
cistern

SCA6 A preclinical, rodent study Selective downregulation of 
toxic gene product

(Miyazaki et al., 2016)

Gluten-free diet SCA35 A case report Toxic substrate reduction (Lin et al., 2019)

ASO: antisense oligonucleotide, SCA: spinocerebellar ataxia
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