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Monocyte rolling, adhesion, and transmigration across the endothelium are mediated by specific in-
teractions between surface adhesion molecules. This process is fundamental to innate immunity and to
inflammatory disease, including atherosclerosis, where monocyte egress into the intimal space is
central to formation of fatty plaques. Monocytes are a heterogeneous population of three distinct
subsets of cells, all of which play different roles in atherosclerosis progression. However, it is not well
understood how interactions between different monocyte subsets and the endothelium are regulated.
Furthermore, it is appreciated that endothelial adhesion molecules are heavily N-glycosylated, but
beyond regulating protein trafficking to the cell surface, whether and if so how these N-glycans
contribute to monocyte recruitment is not known. This review discusses how changes in endothelial
N-glycosylation may impact vascular and monocytic inflammation. It will also discuss how regulating
N-glycoforms on the endothelial surface may allow for the recruitment of specific monocyte subsets
to sites of inflammation, and how further understanding in this area may lead to the development
of glyco-specific therapeutics in the treatment of cardiovascular disease. (Am J Pathol 2020, 190:
947e957; https://doi.org/10.1016/j.ajpath.2020.01.006)
Supported by NIH T32 fellowship HL007918 (K.R.-M.).
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The endothelium, via a myriad of mechanisms, orchestrates
vascular homeostasis to maintain a healthy luminal surface.
Perturbation of these mechanisms, as occurs by chronic
exposure of the endothelial cell layer to hyperlipidemia, hy-
perglycemia, pro-oxidant and inflammatory stimuli, or tur-
bulent blood flow, results in endothelial dysfunction. The
latter is an established feature of vascular inflammatory dis-
ease, including atherosclerosis, a chronic disease that leads to
the buildup of fat-filled plaques in the vessel wall.1e3 A
dysfunctional endothelium is characterized by various
biochemical, morphologic, molecular, and functional
changes. Cardinal among these is a more adhesive endothelial
surface, which, in turn, is key to the recruitment and extrav-
asation of monocytes into the subendothelial space.2 Circu-
lating monocytes are captured onto the endothelium via a
process of rolling, firm adhesion, and ultimately migration
through the endothelium to the intima, after which they can
differentiate into macrophages and form fatty plaque
formation.
stigative Pathology. Published by Elsevier Inc
Specific binding between adhesion molecules expressed
on the surface of the leukocyte and endothelium is the
established mechanism by which monocytes roll, adhere,
and transmigrate across the endothelium. These adhesion
molecules, their respective cognate receptors, and their roles
in the adhesion cascade are known and how their function is
controlled is also largely understood. On the endothelial
side, the most appreciated mechanism involves regulation of
surface adhesion molecule expression levels. Proin-
flammatory stimuli induce signaling cascades, typically via
NF-kB, that either up-regulate gene, protein, and then sur-
face expression, and/or mobilize preformed intracellular
stores of adhesion molecules to the cell surface, where they
can interact with circulating leukocytes.4,5 Strategies that
target and inhibit endothelial adhesion molecule function,
although effective in cell and preclinical models, have not
. All rights reserved.
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translated to the clinic.6 Furthermore, much of our knowl-
edge of endothelial adhesion molecule function, and how
they bind with their cognate receptors on the monocyte, was
elucidated at a time when both monocyte and vascular
endothelial heterogeneity were not as appreciated as they are
now. For example, monocytes exist in at least three distinct
subtypes, each with varying functions in disease pathogen-
esis.7,8 Moreover, the mechanisms governing endothelial
responses to inflammation vary, depending on the vascular
bed in which these cells reside.1,9 These newer insights
collectively highlight, in our opinion, a poorly understood
aspect of monocyte-endothelial interactions (namely, are
there different mechanisms that regulate how different
monocyte subsets adhere to the endothelium, and in a
manner that allows vascular bed and/or disease selectivity?).
If so, how do these mechanisms change during the transition
from innate immune responses to inflammatory disease?

This review discusses the concept of an endothelial zip
code (ie, that there are molecular and/or biochemical sig-
natures across vascular beds that control the homing of
monocyte subsets to specific endothelial surfaces).1,9,10 This
discussion is focused on endothelial adhesion molecule N-
glycosylation, a post-translational modification that remains
a relatively underexplored facet of the mechanisms regu-
lating adhesion molecule function. Studies have shown that
N-glycosylation of these proteins is a regulated process
during inflammation, with this regulation varying depending
on the vascular bed of origin or disease process (eg, car-
diovascular, metabolic, or cancer).11,12 Regulation in this
context does not refer to the binary, presence or absence of
N-glycosylation per se, as is the case with other post-
translational modifications (eg, phosphorylation), but
instead refers to the changing composition of sugars within
the N-glycan structure. Within this framework, we discuss
the current understanding, hypotheses, and questions
regarding how inflammation regulates endothelial
N-glycosylation, giving rise to different N-glycoforms of
the same adhesion molecule(s), and subsequently an endo-
thelial N-glycan zip code that is critical to selective
recruitment of monocyte subsets. This review also discusses
how specific adhesion molecule N-glycoforms may offer
new targets to therapeutically modulate monocyte-
endothelial interactions in inflammatory disease, but not
innate immune processes.
Monocytes Are Not All Created Equal

Monocytes are myeloid-derived cells integral to the innate
immune system and make up 5% to 10% of total circulating
leukocytes in healthy adults. Once mature and released from
the bone marrow, they circulate for several days before
undergoing cell death or infiltrating injured tissues, where
they differentiate into macrophages and dendritic cells to
resolve inflammation.13 Human monocytes are categorized
into three different subsets based on surface expression of
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the lipopolysaccharide receptor CD14 and the Fcg receptor
III CD16. In healthy adults, approximately 90% of circu-
lating human monocytes are classical monocytes (CD14þþ/
CD16�) with the remaining approximately 10% comprising
nonclassical (CD14þ/CD16þþ) and intermediate (CD14þþ/
CD16þ) monocytes.7,14

Of the three subsets, classical monocytes are considered
anti-inflammatory due to having the highest production
levels of IL-10.15 They have high expression of genes
encoding phagocytic, antimicrobial, and wound healing
activities, highlighting their importance in tissue repair.16e18

Nonclassical monocytes express genes associated with
cytoskeletal rearrangement, allowing for their patrolling
behavior along the endothelium to survey tissues.19,20 They
also have little secretory activity, only triggered by viruses
or nucleic acids.16 Intermediate monocytes fall on a middle
ground between the classical and nonclassical types. They
have the greatest inflammatory potential and are the greatest
producers of reactive oxygen species, for example.16,18,21,22

They harbor the highest expression of major histocompati-
bility complex-II (human leukocyte antigen-DR), which, in
turn, gives them a strong capability of inducing CD4þ T-cell
proliferation.15,20 In contrast, some studies have demon-
strated that intermediate monocytes are robust producers of
the anti-inflammatory cytokine, IL-10.23,24 This speaks to
the true intermediate nature of these monocytes; however, in
the context of disease, it seems that the proinflammatory
function of intermediate monocytes dominates any anti-
inflammatory capabilities, as will be discussed further in
this review.
Monocyte Subsets in Cardiovascular Disease

Monocytes are key contributors to atherosclerotic plaque
development, as they differentiate into macrophages in the
intima that provide foci for foam cell formation.25,26 As
monocytes contribute to both initial lesion formation and
lesion advancement,27e31 understanding the dynamics of
monocyte adhesion to endothelial cells remains an important
question in understanding the proinflammatory mechanisms
underlying atherogenesis.
Specific monocyte subsets are associated with distinct

stages and disease outcomes. Multiple studies have
demonstrated that circulating intermediate monocytes
correlate with more advanced atherosclerosis and peripheral
artery disease, and independently predict adverse cardiac
events in at-risk patients.21,32e36 Results from the HOM
SWEET HOMe32 and the CARE FOR HOMe37 studies
show positive correlations between the levels of interme-
diate monocyte subsets with disease severity, prevalence of
adverse cardiac events, and cardiac-related mortality in pa-
tients at risk for cardiovascular disease and in chronic kid-
ney disease patients. In both of these studies, large cohorts
of patients at increased cardiovascular risk were followed up
for 3 to 4 years, and after adjustments for confounders, both
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studies found that intermediate monocytes were the only
subset to independently correlate with cardiovascular events
in these at-risk patient populations.32,34,37 These data may
be explained by selective recruitment of nonclassical/inter-
mediate CD16þ monocytes, over classical CD16� mono-
cytes, to inflamed endothelial cells. An important
consideration in understanding how monocytes adhere is
their relative cell numbers; greater numbers increase prob-
ability of adhesion by the law of mass action. Indeed, in
atherosclerosis, total monocyte numbers are increased, but
relative distribution between classical and nonclassical is
shifted; CD16þ monocytes can expand to approximately
20% to 30% of the total monocyte population, whereas
CD16� monocyte levels can decrease to approximately 70%
to 80%.32,34,38e40 In addition to cell number, the affinity and
avidity of adhesive interactions also regulate how different
monocyte subsets bind to the endothelium. Supporting this
concept are experiments that demonstrate, on a per cell
basis, CD16þ monocyte adherence to tumor necrosis factor
(TNF)-a stimulated endothelial cells is stronger compared
with CD16� monocytes.41e43 However, the mechanism(s)
regulating CD16þ versus CD16� adhesion remain(s)
unclear.

Models of Leukocyte Adhesion

The endothelial adhesion molecules and their cognate
leukocyte receptors that mediate adhesion have been iden-
tified44e50 (Table 1). Broadly speaking, there are four
models by which interactions between these receptors are
regulated. The specific mechanisms vary by the tissue,
leukocyte type, and disease; however; the general paradigms
remain similar.51 These models include i) leukocyte cell
number, ii) platelet bridging and chemokine-based recruit-
ment, iii) receptor density (or amount per cell) and location
on the cell surface, and iv) binding affinity and avidity be-
tween cognate receptors51e56 (Figure 1). Selected examples
underlining these models include lymphocyte
functioneassociated antigen 1 (LFA-1), which can exist in
conformation-dependent low-, intermediate-, or high-
affinity states that correlate with binding affinity to inter-
cellular adhesion molecule 1 (ICAM-1); the high-affinity
state increases binding to ICAM-1 by approximately
10,000-fold compared with the low-affinity state.57 Another
well-characterized example is leukocyte P-selectin
Table 1 Major Endothelial Adhesion Molecules and Cognate Monocyte

Endothelial adhesion molecule Monocyte recept

Intercellular adhesion molecule 1 Lymphocyte fun
Macrophage-1 a

Vascular cell adhesion molecule 1 Very late antige
Platelet endothelial cell adhesion molecule Platelet endothe
Mucosal addressin cell adhesion molecule 1 Integrin a4b7
E-selectin and P-selectin P-selectin glyco
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glycoprotein ligand-1 and its post-translational modification
with sialyl-Lewis X sugars that provide the actual ligands
for endothelial E-selectins or P-selectins; blocking the
sialyl-Lewis X structure alone, without changing P-selectin
glycoprotein ligand-1 expression, is sufficient to attenuate
adhesion.58e60

How these models apply to the mechanisms controlling
how different monocyte subsets adhere to endothelial cells
remains unclear. This is an interesting question, especially
because both CD16� and CD16þ monocytes express similar
ligands for endothelial adhesion molecules. Comparison of
receptor expression between monocyte subsets isolated from
healthy volunteers shows that that nonclassic monocytes
express the lowest levels of CD11b, whereas intermediate
and classical monocytes express higher and similar
levels.7,20 Circulating monocytes isolated from cardiovas-
cular disease patients show that all three subsets express
similar levels of CD11b,33 suggesting receptor density per
cell changes with disease. Recent studies show that, using
the same cell number, adhesion of CD16þ and CD16�

monocytes to TNF-aetreated endothelial cells is similar.43

This suggests that adhesion of CD16þ versus CD16�

monocytes would be largely proportional to their relative
cell numbers. Although this is clearly important, CD16�

monocytes comprise more of the total monocytes in disease,
for example; this does not appear to be the sole mechanism
regulating adhesion. For example, CD16þ monocyte adhe-
sion to TNF-aetreated endothelial cells decreased only
approximately twofold to threefold, despite lowering their
cell numbers by 10-fold relative to CD16� monocytes to
model physiological ratios.43 Moreover, a mechanism for
regulating monocyte subset adhesion based solely on rela-
tive cell number would not allow for fine control over the
timing and location of where each monocyte adheres.
Recent data, discussed below, extend the models outlined in
Figure 1 and demonstrate that N-glycosylation of endothe-
lial adhesion molecules regulates which monocyte subset
they interact with.

Sweetening Proteins by N-Glycosylation

There are two major types of protein glycosylation: N
linked and O linked. O-glycosylation involves adding
galactose, N-acetylglucosamine (GlcNAc), and N-ace-
tylgalactosamine (GalNAc) structures to serine and
Receptors for Cell Rolling, Adhesion, and Transmigration

or

ctioneassociated antigen 1
ntigen
n-4
lial cell adhesion molecule

protein ligand-1
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Figure 1 General mechanisms that regulate leukocyte (L)eendothelial interactions. A: An increase in cell number will increase the probability of binding
via the laws of mass action. B: Platelet (P) bridging and chemokine secretion by the endothelium to recruit leukocytes. Circulating platelets can adhere to the
activated endothelium and either release chemokines that will recruit leukocytes to the cell or physically form a bridge and capture circulating leukocytes.
Furthermore, damaged endothelial cells (ECs) can release chemokines to recruit leukocytes, and leukocytes crawling along the endothelium can also release
chemokines that will recruit more leukocytes.55 C: Receptor density. During inflammation, either leukocyte or endothelial ligands on the cell surface that
facilitate binding may increase. D: Potential mechanisms that regulate affinity and avidity for binding between adhesion molecules. These include post-
translational modifications, change in receptor confirmation, localization on the cell surface, and/or binding and clustering with other surface, cytosolic,
or matrix proteins.
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threonine residues of proteins.61,62 The focus herein will
be on N-glycosylation, which is a cotranslational or post-
translational modification occurring in the endoplasmic
reticulum and Golgi. N-glycosylation only occurs on
proteins expressed on the cell surface or secreted from the
cell and involves the addition of a tetradecasaccharide
onto asparagine (Asn) residues within the consensus
sequence (N-X-S/T, where XsPro).63 During processing
through the endoplasmic reticulum and Golgi, this tetra-
decasaccharide is remodeled, resulting in the sequential
formation of high mannose (HM), hybrid, and then finally
fully processed complex N-glycoforms. The latter can be
large, significantly increasing the molecular weight of
proteins and endowing tremendous structural diversity.
Figure 2 shows the broad classifications and general
structures of these N-glycans, with the enzymes that
catalyze the multistep process listed.63

N-glycosylation is essential for proper protein folding,
transport to the cell surface, function, and cell-to-cell
communication. It is generally thought that proteins un-
dergoing N-glycosylation will not be expressed on the cell
surface unless they are fully processed to the complex
form. Hypoglycosylated proteins fail quality check
950
mechanisms in the endoplasmic reticulum, resulting in
degradation and recycling.64,65 However, recent evidence
suggests that proteins harboring hypoglycosylated (ie,
HM or hybrid) N-glycans can, in fact, be expressed on the
cell surface or secreted from the cell, as part of normal
cell functions.66,67 For example, the stress-independent
activation of the transcription factor XBP1, a marker of
the unfolded protein response, increases surface HM N-
glycans in HEK293 and HeLa cells by altering the tran-
script levels of key N-glycan processing genes, demon-
strating a mechanism in which transcription factor
activation alters the N-glycome without requiring chang-
ing expression of the proteins harboring the N-glycans.66

Furthermore, hypoglycosylated N-glycoprotein expression
may change in the inflamed endothelium (discussed
below),66,68,69 and in diseases like cancer and
lupus.12,70e73 Therefore, there may in fact be mechanisms
that during inflammation regulate adhesion molecule N-
glycosylation, presumably to mediate specific functions.66

However, the precise nature of these hypoglycosylated
N-glycans, the proteins on which they reside, and the
understanding of how they regulate protein function in
physiology and the transition to pathology remain limited.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Broad classification of N-glycan structures. A tetradecasaccharide is initially added to Asn by oligosaccharide transferase (not shown). Further
processing of this structure in the endoplasmic reticulum and Golgi involves catalytic removal and addition of sugars, resulting in the sequential formation of high
mannose (Man), hybrid, and then complex N-glycans. Multiple steps are represented by dashed arrows, with enzymes catalyzing these processes listed below. Fuc,
fucose; Gal, galactose; GlcNac, N-acetylglucosamine; MGAT, alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase; Sa, sialic acid.

Monocyte Recruitment by N-Glycans
ICAM-1 N-Glycosylation and Monocyte
Adhesion

Endothelial adhesion molecules are extensively N-glyco-
sylated. For example, ICAM-1, which is expressed at low
levels constitutively and rapidly induced by proin-
flammatory stimuli, contains five extracellular IgG-like
domains and, based on amino acid composition, has a
predicted molecular weight of approximately 50 kDa.
However, ICAM-1 runs at approximately 100 kDa on an
immunoblot, and the 50-kDa protein is only observed if all
of the N-glycans are cleaved by PNGase-F, a glycosidase
that will cleave N-glycans from the Asn residue, or if
addition of the initial tetradecassacharide is inhibited by
tunicamycin.68 Induced ICAM-1 can also run as a 75-kDa
band, which is less abundant than the 100-kDa band, and
often overlooked or ignored.74e76 This 75-kDa band is, in
fact, an HM N-glycoform of ICAM-1.68 Western blot
analysis showed two distinct molecular weight bands for
ICAM-1 in endothelial cells treated with TNF-a
(Figure 3A). Inhibiting a-mannosidase I leads to an accu-
mulation of HM N-glycans; ICAM-1 is expressed as the
75-kDa form (Figure 2). In this case, ICAM-1 still contains
N-glycans; hence, the molecular weight is >50 kDa, but
not to the extent of sugars present in the 100-kDa N-gly-
coform. Additional data supporting identification of the 75-
kDa band as an HM glycoform of ICAM-1 includes
endoglycosidase-H treatment, a glycosidase that selec-
tively cleaves HM structures, which results in a loss of the
75-kDa band only68; and immunoprecipitation with HM-
specific lectins, followed by immunoblotting with anti-
eICAM-1 antibody, only pulls down the 75-kDa protein.68

Moreover, similar immunoprecipitation strategies applied
to atherosclerotic tissue reveal the presence of an approx-
imately 75-kDa molecular weight ICAM-1 in vivo.68 The
75-kDa N-glycoform observed on an immunoblot could
The American Journal of Pathology - ajp.amjpathol.org
simply reflect the pool of ICAM-1 present in the endo-
plasmic reticulum or Golgi that is in the process of
becoming a complex N-glycoform and before trafficking to
the cell surface. Then, immunoprecipitation experiments of
surface expressed ICAM-1 also reveal a 75-kDa band, and
more recent studies using the proximity ligation assay
show that an HM ICAM-1 is present on the surface of
TNF-aeactivated endothelial cells.43,68 These data suggest
that at least two different N-glycoforms of ICAM-1, HM
and complex, may be present on the endothelial surface
during inflammation.

Furthermore, when normalized to ICAM-1 levels,
monocyte rolling and adhesion to HM ICAM-1 were
approximately twofold to threefold higher compared with
complex ICAM-1.68 That said, HM ICAM-1 abundance
was approximately 10� lower than complex ICAM-1,
which suggests that monocyte adhesion to HM ICAM-1
should still be largely mediated by complex ICAM-1.
However, this does not exclude for potential differences
in how HM or complex ICAM-1 engages with different
leukocyte or monocyte subsets. A recent study addressed
this question and demonstrated that HM ICAM-1 has a
selective role in binding to CD16þ monocytes, but not
CD16� monocytes nor neutrophils.43 Blocking of HM
structures on the endothelial surface abrogated CD16þ

rolling and adhesion, but not for CD16� monocytes.43

Furthermore, a Cos-1 cell system transfected with human
ICAM-1 showed an increase in CD16þ monocyte adhe-
sion, but not CD16� monocytes, when ICAM-1 was
expressed in a HM N-glycoform compared with a complex
N-glycoform. This effect too could be abrogated by lectin
blocking of HM or hybrid N-glycan structures.43 More
important, the total levels of surface ICAM-1 did not
change in these experiments; monocyte adhesion was
attenuated only by changing the type of sugar on ICAM-1
or selectively blocking the sugar.
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Figure 3 A: Representative Western blot
analysis of intercellular adhesion molecule 1
(ICAM-1) from tumor necrosis factor (TNF)-a (10
ng/mL, 4 hours) treated human umbilical vein
endothelial cells with or without kifunensine (Kif;
class I a-mannosidase inhibitor) pretreatment to
demonstrate high-mannose ICAM-1 formation. B:
CD16� monocytes adhere to ICAM-1 via the
lymphocyte functioneassociated antigen 1 (LFA-
1) domain or macrophage-1 antigen (Mac-1)
domain when the latter is modified with complex
N-glycans. C: CD16� monocytes do not adhere to
the Mac-1 domain when it is modified with high-
mannose N-glycans. D: CD16þ monocytes adhere
to neither the LFA-1 domain of ICAM-1 nor the
Mac-1 domain modified by complex N-glycans. E:
CD16� monocytes only bind to the Mac-1 domain
when it is modified by high-mannose N-glycans.

Regal-McDonald and Patel
There is precedent for suggesting that N-glycans on
ICAM-1 play a role in leukocyte adhesion. Seminal studies
by the Springer laboratory mapped where on ICAM-1
leukocyte ligands bind and showed that LFA-1 binds
domain 1 of ICAM-1, whereas macrophage-1 antigen (Mac-
1) binds domain 3.77,78 Of note, domain 1 is devoid of
N-glycans, whereas domain 3 contains an N-glycosylation
site (Figure 3B). Furthering this point, Mac-1 binding to
ICAM-1 can be regulated by altering glycosylation of the
latter.78 Diamond et al78 demonstrated that Mac-1 binding to
ICAM-1 was increased when ICAM-1 expressing cells were
treated with deoxymannojiriycin, an a-mannosidase class I
inhibitor that will cause the accumulation of HM structures
on N-glyocosylated proteins (Figure 2), similar to effects of
952
kifunensine (Figuer 3A). LFA-1 binding to ICAM-1 was not
affected by treatment with deoxymannojiriycin, and treat-
ment with neuraminidase to remove sialic acid residues
from ICAM-1 had no effect on binding on either LFA-1 nor
Mac-1 to ICAM-1.78 These data were one of the first to
demonstrate a role for N-glycans on endothelial cell
adhesion molecules in controlling monocyte adhesion. The
understanding of mechanisms regulating endothelial
function during inflammation has evolved significantly,
especially concerning how endothelial responses vary on the
basis of the different types and rates of flow experienced
in vivo. Indeed, many laboratories would argue
that assessing endothelial biology under static conditions
only is not sufficient, and experiments require integration of
ajp.amjpathol.org - The American Journal of Pathology
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flow-dependent regulation. Illustrating this point are data
that show leukocyte adhesion mechanisms to vascular cell
adhesion molecule 1, specifically the domain of vascular
cell adhesion molecule 1 involved in adhesion, changes
between static and flow conditions.79 Although many
studies have investigated leukocyte adhesion under flow
conditions, few have revisited the role of endothelial
N-glycans specifically. Recent work expands pioneering
studies by Diamond et al78 and showed that, under flow,
CD16� monocyte rolling and adhesion were inhibited by
blocking LFA-1 binding domain on ICAM-1 and, to a lesser
extent, by blocking the Mac-1 domain. However, when all
N-glycans on the Mac-1 domain were HM, CD16� cell
adhesion became insensitive to Mac-1 domain blockade.
In contrast, CD16þ monocyte adhesion showed little
sensitivity to LFA-domain blocking, but was significantly
attenuated by Mac-1 domain blocking. Taken together,
these data support the model for how CD16þ and CD16�

monocyte adhesion to endothelial cells is regulated by
ICAM-1 N-glycoforms (Figure 3, BeE). Conceptually,
sugars regulating leukocyte adhesion is not new mechanism
of controlling leukocyte-endothelial interactions (eg, role of
sialyl-Lewis X sugars on neutrophils and T cells).60 The
model proposed in Figure 3 extends these concepts and
identifies a role of sugars on endothelial adhesion molecules
in controlling monocyte interactions in a subset-dependent
manner. If domain 3 of ICAM-1 is modified by complex
sugars, CD16� monocytes will adhere via LFA-1 and Mac-
1, as seen (Figure 3B). However, if domain 3 of ICAM-1 is
modified by high-mannose sugars, CD16� monocytes will
only adhere to the LFA-1 domain (Figure 3C). In contrast,
CD16þ monocytes will not adhere to the LFA-1 domain of
ICAM-1 nor to the Mac-1 domain if it is modified with
complex sugars (Figure 3D), and they will only adhere to
the Mac-1 domain if it is modified with high-mannose
sugars (Figure 3E).

To reiterate, both CD16� and CD16þ monocytes express
similar levels of Mac-1.33 How HM N-glycans on ICAM-1
endow selectivity for Mac1 on CD16þ monocytes then, but
not on CD16� monocytes, remains to be determined.
Interestingly, CD16 itself may be involved. Within neutro-
phils, CD16 is linked to Mac-1 via sugar-based interactions;
enzymatic digestion of neutrophil HM N-glycans on CD16
or addition of D-mannose, which competes with HM on
CD16, abrogates interactions with Mac-1.80�84 These
CD16eMac-1 interactions are not seen, however, in
monocytes,80,81,84 perhaps because of the fact that CD16A,
the isoform found exclusively on monocytes, lacks an N-
glycosylation site found on CD16B, the isoform exclusively
found on neutrophils.80 Thus, an HM N-glycan ligand for
Mac-1 is provided by CD16B in neutrophils, which may
prevent Mac-1 binding to HM structures on the endothe-
lium. With CD16þ monocytes, this HM structure is absent,
which hypothetically allows Mac-1 on these cells to bind to
HM N-glycans from endothelial ICAM-1, and regulate,
therefore, how CD16þ monocytes are recruited to
The American Journal of Pathology - ajp.amjpathol.org
endothelial cells over CD16� monocytes or neutrophils.
Further studies are needed to test this hypothesis, although
notably, neutrophil adhesion was not found to be sensitive
to the presence or absence of endothelial HM ICAM-1.43

Finally, although the discussion of this review herein is
focused on ICAM-1, it is worth noting that other endothelial
adhesion molecules (eg, vascular cell adhesion molecule 1
and E-selectin) are also N-glycosylated, but whether they
can be formed as distinct N-glycoforms during inflammation
remains unclear.68,69
Vascular Bed Dependence to Monocyte
Recruitment and Re-Assessing Adhesion
Molecule Therapeutics

As mentioned earlier, endothelial-leukocyte adhesion is
dependent on organ and type of leukocyte; for example, in
lung capillaries, neutrophils have been shown to adhere
more frequently in comparison to monocytes.51,85 Interest-
ingly, although the exposure to TNF-a increases adhesion
molecule expression in both aortic and pulmonary endo-
thelial cells in vitro, formation of HM or hybrid N-glycans
on the cell surface was only observed with aortic endothelial
cells, perhaps explaining why monocytes do not adhere as
much as neutrophils to lung capillaries.11 This observation
also suggests that differential formation of adhesion mole-
cule N-glycoforms is one mechanism that underlies het-
erogeneous responses to inflammation by endothelial cells
from different vascular beds.1,9,11,86 The potential for
endothelial surface N-glycan signatures varying in different
vascular beds, or as a function of disease within a given bed,
supports the concept of an N-glycan zip code that directs
which monocyte subset is recruited and to which site of
inflammation. This idea is similar to that proposed by
others.10,87 For example, Renkonen et al10 used three
different antibodies against distinct glycans on L-selectin
(sialyl-Lewis X, sulfated sialyl-Lewis X, and sulfated lac-
tosamine) and measured their expression levels on the
endothelium across several inflammatory diseases,
including thyroiditis, vasculitis, myocarditis, and colitis.
When compared with noninflamed tissue, the inflamed
endothelium contained higher amounts of these sugars, with
the relative expression of each glycan varying by disease.
The investigators assigned each disease a three-number code
based on the positive staining for each glycan tested,
deeming it an organ-specific zip code, and suggested this
code regulates L-selectinedependent lymphocyte homing.10

Understanding that different N-glycoforms of ICAM-1
may mediate recruitment of distinct monocyte subsets has
implications for therapeutics also. Previous studies have
tested whether inhibiting monocyte-endothelial interactions
protects against inflammatory diseases. In mice and other
animal models, inhibition of adhesion molecules, such as
ICAM-1, via knockout or antibody-based functional block-
ing, abrogates atherosclerosis.88e90 However, antieICAM-1
953
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blocking antibodies have not worked in humans. Enlimomab,
a monoclonal antibody against ICAM-1, in fact increased
mortality and adverse events in stroke patients. Data from
other trials in kidney allograft rejection, multiple myeloma, or
Crohn disease show similar lack of efficacy by antieICAM-1
therapeutics,91e93 suggesting that broad inhibition of ICAM-
1 is not a plausible therapeutic, likely reflecting the multiple,
good and bad, roles of ICAM-1 across the innate immunity to
inflammatory disease spectrum. Recent positive data from the
Canakinumab Anti-Inflammatory Thrombosis Outcomes
Study (CANTOS), showing that IL-1b antagonism improved
cardiovascular disease outcomes, suggest that anti-
inflammatory strategies can be efficacious.94e96 This review
hypothesizes that developing approaches that inhibit only
HM ICAM-1 dependent effects, rather than all ICAM-1, may
be a safer approach and one that selectively attenuates
proinflammatory monocyte recruitment to sites of endothelial
dysfunction. Currently, no HM glycoform-specific therapies
for inflammation exist. Interestingly, however, recent studies
have shown that dietary mannose can slow tumor growth in
mice, and improve metabolism, resulting in the attenuation of
obesity onset.97,98 The effects of mannose on monocyte-
endothelial interactions were not directly tested in these
studies; however, an intriguing possibility is that dietary
mannose competes with endothelial HM structures,67 atten-
uating monocytic inflammation.

Finally, although the discussion of endothelial heteroge-
neity and monocyte adhesion herein has focused on human
disease, the proposed paradigms may be applicable to ani-
mal models as well, which may provide experimental sys-
tems to delineate detailed mechanisms by which N-glycans
regulate atherogenic inflammation. First, mouse monocyte
subsets that are more or less inflammatory have been
described; proinflammatory Ly6Chi monocyte subsets are
associated with more advanced atherosclerosis and inflam-
mation.26,99,100 Similarly, heterogeneity across mouse
endothelial beds with respect to responses to inflammation,
lectin staining, surface adhesion molecules, and leukocyte
adhesion has been reported also.101e103 That said, not all
human and mouse proteins are N-glycosylated to the same
extent, nor at the same sites. Human ICAM-1 contains 8 N-
glycan sites, whereas mouse ICAM-1 contains 10, for
example, and whether similar changes in high mannose N-
glycans occurs is not known. These differences underline
the importance of comparing and validating mouse with
human models; and potential differences in N-glycans may
have contributed to the relative poor translation of data
generated in murine models to human disease and
therapeutics.
Gaps in Knowledge and Final Thoughts

The proposed model does not imply that ICAM-1 harbors
either HM or complex N-glycans. ICAM-1 contains eight
N-glycosylation sites, and each site can be differentially
954
modified with any variety of N-glycan structures (HM,
hybrid, or complex). Given that each of these sites can be
modified by a different sugar, the possibilities of structures
increasing logarithmically with each site were added. Lau
et al104 calculated that a protein with one N-glycosylation
site can have up to 14 different N-glycoforms, whereas a
protein with eight N-glycosylation sites, such as ICAM-1,
may have >200,000 different N-glycoforms. Referring to
HM ICAM-1 herein means that there are HM epitopes on
ICAM-1 that are responsible for monocyte adhesion, which
are likely to be in domain 3. Exactly which of the eight N-
glycan sites on ICAM-1 harbor HM structures, and how
formation of N-glycans at these site(s) is regulated, remains
unclear. Another key question is how the formation of HM
structures is regulated. Given the linear pathway for N-
glycan biosynthesis (Figure 2), inhibition of a-man-
nosidases is one possible mechanism. Consistent with this
idea, TNF-a inhibits a-mannosidase activity.11,68 Under-
standing how this occurs will inform on mechanisms
endothelial cells use to regulate N-glycoforms during
inflammation and perhaps yield additional targets for ther-
apeutic targeting. Finally, the impact that binding to
different N-glycoforms of ICAM-1 has on monocytic
function beyond adhesion (eg, migration and differentiation)
is another area that remains to be studied. Understanding
these changes may further shed light on how monocyte
functions are regulated during inflammation.
This review highlights how endothelial N-glycosylation

of surface adhesion molecules, regulation of this process,
and formation of HM ICAM-1 specifically may regulate
monocyte trafficking. We suggest that HM ICAM-1 is a
critical mediator of proinflammatory monocyte adhesion
and propose that glyco-specific therapeutics should be
considered to selectively modulate chronic inflammatory
diseases.
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