Skip to main content
. 2019 May 30;29(4):1081–1111. doi: 10.1177/0962280219851817

Table 1.

The results of performing a simple bidirectional Mendelian randomization analysis for various degrees of pleiotropy.

δ βXYIV σXYIV βYXIV σYXIV p(MXY|D)
−0.5 0.517 0.0346 −0.8715 0.0415 0.167
−0.4 0.615 0.0348 −0.5853 0.0352 0.211
−0.3 0.712 0.0350 −0.3746 0.0305 0.516
−0.2 0.810 0.0353 −0.2130 0.0270 0.632
−0.1 0.908 0.0356 −0.0851 0.0242 0.894
0.0 1.006 0.0359 0.0187 0.0219 0.907
0.1 1.105 0.0362 0.1045 0.0200 0.774
0.2 1.204 0.0366 0.1767 0.0184 0.864
0.3 1.303 0.0370 0.2383 0.0170 0.803
0.4 1.402 0.0374 0.2914 0.0159 0.750
0.5 1.501 0.0378 0.3377 0.0149 0.774

Note: In the first step, we used GX as an instrument for X to estimate the causal effect βXY (the correct direction). We then used GY as an instrument for Y to estimate the causal effect βYX (the wrong direction). We compared these estimates against our posterior probability estimate of MXY given the data, in which analysis we used both instruments concomitantly.