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Abstract

Multiple regression is often used to compare the importance of two or more predic-
tors. When the predictors being compared are measured with error, the estimated
coefficients can be biased and Type I error rates can be inflated. This study explores
the impact of measurement error on comparing predictors when one is measured
with error, followed by a simulation study to help quantify the bias and Type I error
rates for common research situations. Two methods used to adjust for measurement
error are demonstrated using a real data example. This study adds to the literature
documenting the impact of measurement error on regression modeling, identifying
issues particular to the use of multiple regression for comparing predictors, and
offers recommendations for researchers conducting such studies.
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Multiple linear regression is a popular technique used in educational and psychologi-

cal research. Measurement error in predictors is a well-known but often neglected

problem with this technique (Pedhazur, 1997). Prior work has established that sub-

stantial bias and increased Type I error rates are expected when the included predic-

tors are correlated and measured with moderate error (Blalock, Wells, & Carter,

1970; Brunner & Austin, 2009; O. D. Duncan, 1975; Fuller, 1987; Shear & Zumbo,

2013). While these studies make clear that measurement error in one or both
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predictors can bias the estimation of coefficients associated with both predictors, the

focus is generally on the bias in coefficients of a key predictor, and not the predictor

used for statistical control. Therefore, much of this work focuses on interpreting bias

and Type I error in a single key predictor.

Multiple regression is also commonly used to compare the importance of predic-

tors. Researchers may wish to estimate which of two or more variables is a stronger

predictor of the outcome. Beyond using additional independent variables for statisti-

cal control, such analyses compare two key independent variables. When the two

predictors are correlated and one or both are measured with error—a situation that is

very common, if not ubiquitous in practice—the impact of measurement error

becomes complex. This is particularly true when standardized regression coefficients

are used to compare the predictors (Cohen, Cohen, West, & Aiken, 2003), a practice

that is often used when the independent variables being compared are measured on

different scales. Because two variables are being compared, the bias in each affects

interpretations. As explained below, this is most egregious when one of the predic-

tors is measured with a substantially greater level of measurement error but can

affect comparisons when differences in measurement error are modest or small in

certain circumstances.

The purpose of this study is to explore the impact of measurement error on the

bias and Type I error rates when comparing two predictors in multiple regression.

First, the knowledge of bias and Type I error rates from studies focusing on one key

predictor are briefly reviewed. Then, the issues related to bias and Type I error rates

when the goal is to compare multiple correlated predictors, but one is measured with

error, is discussed. Throughout, a hypothetical example is used to illustrate the iden-

tified issues. Then results from a simulation experiment are presented to better quan-

tify the impact of these issues under varying conditions. Finally, basic methods to

deal with measurement error when comparing predictors in multiple regression are

demonstrated with an example using real data.

This study advances the understanding of how random measurement error affects

bias and Type I error rates in multiple regression in at least four ways. First, the

focus is on the comparison of regression coefficients, a practice that is commonly

undertaken to assess the importance of predictors. While this method has been

described as one of the most difficult types of questions to answer with multiple

regression (Pedhazur, 1997), it is not often addressed in the literature on measure-

ment error. Second, the impact of measurement error on a broader range of sample

sizes than in previous studies is explored. With the growing availability of large pub-

licly available data sets, the typical sample size in multiple regression models can be

expected to increase. Most simulation work on measurement error in multiple regres-

sion has limited sample size to 1,000 or less. Because sample size is closely related

to Type I error rates, an understanding of the impact of measurement error on larger

samples will be useful to researchers who wish to assess the impact of measurement

error in predictors of large sample studies. Third, the impact of measurement error

across the full spectrum of predictor reliabilities is explored. This allows a better
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understanding of functional form of the relation between measurement error and pre-

dictor estimation. Finally, issues related to the use of standardized coefficients in

regression are raised.

Impact of Measurement Error on a Single Key Predictor

In this article, the classical additive random measurement error model (Carroll,

Ruppert, Stefanski, & Crainiceanu, 2006; Lord & Novick, 1968) is assumed, which is

often used in the understanding of measurement error in regression models. The clas-

sical model of random measurement error posits that an observed score x for an indi-

vidual is the sum of the true score for that individual, X , plus measurement error u:

x = X + u, ð1Þ

and that measurement error u is independent of the true score X . Here, and through-

out this article, capital letters are used to indicate scores measured without measure-

ment error (e.g., X ) and lowercase italicized versions of letters are used to indicate

scores measured with error (e.g., x).

A hypothetical example will be used to illustrate the impact of measurement error

in linear regression. Suppose a researcher is interested in quantifying the effect of

entering school with higher early reading skills (e.g., letter and word identification

skills) on later reading achievement scores. The researcher has access to measures of

early reading skills assessed at the beginning of kindergarten and measures of reading

achievement assessed at the end of eighth grade for a large nationally representative

sample of U.S. students. In simple regression models with a single predictor, mea-

surement error in the dependent variable, independent variable, or both will attenuate

the estimated relation between the two variables (Fuller, 1987). The magnitude of this

attenuation is directly related to the amount of measurement error. Random measure-

ment error is quantified with the reliability coefficient (rx), which conceptually is the

ratio of the variance of the true score (s2
X ) to the variance of the fallible observed

score (s2
x) as follows:

rx =
s2

X

s2
x

: ð2Þ

As measurement error increases, the reliability coefficient decreases. Note that in the

case of simple regression, the standardized regression coefficient is identical to the

zero-order correlation coefficient, which when squared, is the coefficient of determi-

nation or the R2. All three of these coefficients are attenuated in simple linear

regression.

Even when researchers are interested in the predictive relation between a key pre-

dictor and the outcome, often one or more additional variables are included in the

model as covariates. For example, suppose that the researcher in our example is inter-

ested in the magnitude of early reading skills independent of early fine motor skills,
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as the two are thought to be correlated and both related to later reading achievement.

Early fine motor skills have been found to be predictive of later reading achievement,

and it has been postulated that this relation may reflect the role of motor skills in

writing, which is closely related to reading (Grissmer, Grimm, Aiyer, Murrah, &

Steele, 2010; Suggate, Pufke, & Stoeger, 2018). Another proposed explanation is that

fine motor skills might reflect development of higher cognitive processes involving

executive functioning or visuospatial processing (Cameron et al., 2012). Therefore,

the desire is to isolate the predictive relation of early reading skills to later reading

achievement by including a measure of fine motor skills also measured at kindergar-

ten entry. The following multiple regression equation represents this model:

Y = b0 + bX X + bW W + e, ð3Þ

where Y represents the eighth-grade reading achievement score, while X and W rep-

resent the reading and fine motor skills, respectively, at kindergarten entry. This

model can be considered the true score model as it represents the unlikely situation

where all predictors were measured without error for all members of the population.

The b coefficients represent the standardized relation between the respective predic-

tor and the outcome. Of the three b coefficients, bX is of interest, and represents the

magnitude of the relation between kindergarten entry early reading skills and eighth-

grade reading achievement in the population, holding constant kindergarten entry

fine motor skills. Rarely do researchers have access to the entire population, and the

parameters in Equation (3) are often estimated using a sample from the population

represented in the following equation:

Y = b0 + bX X + bW W + e, ð4Þ

The convention of using Greek letters (e.g., b) to represent population parameters

and Roman letters (e.g., b) to represent estimates based on samples is followed here,

and throughout most of the article. The differences between the b coefficients in

Equation (3) and the b coefficients in Equation (4) are the results of sampling varia-

bility, and the expected value of b over repeated samples is the population value, b.

Each b is therefore an unbiased estimate of the corresponding b.

Equations (3) and (4) assume that all variables are measured without error.

However, the assumption of no measurement error in any of the variables is not rea-

listic in most research settings. With multiple regression using more than one predic-

tor, measurement error in the dependent variable will also consistently lead to

attenuation of estimated coefficients. Similar to simple regression, a zero-order corre-

lation in which one or more of the variables are measured with error will also evi-

dence attenuation. Likewise, the coefficient of determination (i.e., R2) is attenuated

in multiple regression. However, measurement error in one or more independent vari-

ables has a more complex impact on the partial regression coefficients. Generally,

the lower the reliabilities of predictors and the higher the correlation between predic-

tors, the greater the distortion in the estimated coefficients due to measurement error

(Pedhazur, 1997). This distortion may manifest as either an upward or downward bias
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in the regression coefficients. Bias in regression due to measurement error affects not

only those coefficients of predictors measured with error but may also affect coeffi-

cients of predictors measured without error. Therefore, Equations (3) and (4) can be

modified to reflect inclusion of one or more fallible measures as follows. Equation

(3) becomes

Y = b�0 + b�X + b�W + e�; ð5Þ

which would represent the situation where all members of the population were mea-

sured, but at least one of the predictors was measured with error (Shear & Zumbo,

2013; Zumbo, 2007). The difference between each b� in Equation (5), and each cor-

responding b from Equation (3), reflects the bias due to measurement error. For this

and the next model, the asterisk distinguishes between models including variables

measured with error from those free of measurement error. A similar modification

follows for Equation (4), which includes sample data. If early reading skills are mea-

sured without error while fine motor skills are measured with error, say with variable

w instead of W , the following model is estimated instead of the model represented

by Equation (4):

Y = b�0 + b�X X + b�W w + e�: ð6Þ

This model can be considered the observed model to reflect the more realistic situa-

tion in research settings where sample data are used and at least one variable is mea-

sured with error. The expected difference between each b and the corresponding b�

represents the bias due to measurement error in w. Note, the expected values are used

here to account for sampling variability that would be reflected by a coefficient esti-

mated from a particular sample.

It is not surprising that the measurement error in w would affect the estimation of

the regression coefficient for this variable—that, on average, b�W would differ from

bW . However, it may be less apparent that, if W and X are correlated, measurement

error in the former will also bias the estimation of the regression coefficient in the

latter—on average bX in Equation (4) would differ from b�X in Equation (6). The

mathematical details of the bias have been thoroughly addressed (see Carroll et al.,

2006; Cochran, 1970; Fuller, 1987), however researchers often overlook this bias

when evaluating coefficients of predictors in multiple regression. An intuitive way to

understand this bias is to consider that a proportion of the variance in the outcome

attributable to the less reliably measured predictor (e.g., fine motor skills), is attrib-

uted to the more reliable predictor (e.g., early reading skills) by means of the correla-

tion between the two. This is most clearly demonstrated when considering omitted

variable bias. Omitting an important variable is a well-known problem in the litera-

ture on regression modeling and can be thought of as equivalent to including the cov-

ariate measured with zero reliability (Zinbarg, Suzuki, Uliaszek, & Lewis, 2010). For

example, in the case of a simple regression of eighth-grade reading on early reading

skills, the estimated coefficient is expected to be biased due to omitting fine motor
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skills from the model (i.e., bW = 0 is assumed). The primary reason for including cov-

ariates in multiple regression is to address this bias. When a measure of fine motor

skills is left out of the model, the coefficient for early reading reflects both the rela-

tion between early reading and later reading as well as the shared variance between

early reading and fine motor skills that is also related to the outcome. A similar bias

occurs when a fallible measure of fine motor skills is included.

Efforts to quantify the bias in multiple regression due to measurement error have

most often focused on the bias in one key predictor. A typical scenario in methodologi-

cal studies involves a model with two predictors, with the goal being to measure the

impact of measurement error in one variable on the estimation of the coefficient of the

other variable, measured without error (e.g., Brunner & Austin, 2009; Shear & Zumbo,

2013). The impact of measurement error in multiple regression depends on the extent

of measurement error in the predictors and is directly related to the reliability of the pre-

dictor measured with error. Returning to our example, the researcher may be interested

in how measurement error in fine motor skills would impact the estimation of the rela-

tion between early reading skills and later reading achievement. Multiple studies have

shown that for key predictors, if the covariate is measured with substantial error and the

covariate and key predictor are correlated, the latter can be biased.

Measurement error affects not only the magnitude of the regression coefficients

but also their standard errors (Carroll et al., 2006), both of which are used to test

against the null hypothesis. Therefore, measurement error also affects Type I error

rate. To estimate the Type I error rate due to measurement error, studies also often

focus on the error rate of the key predictor. For example, simulation studies most

often set the value of a population coefficient of a key predictor to the value of

zero—the value assumed by the null hypothesis being evaluated—and the population

value of a covariate to some positive value. Then adjustments are made to the relia-

bility of measurements of the covariate, and the impact of this measurement error on

the proportion of times the null hypothesis is erroneously rejected for the key predic-

tor is quantified. Brunner and Austin (2009) explored the impact of measurement

error in one predictor on the Type I error rate in another predictor using a simulation

study. They found unacceptably high Type I error rates under conditions typical of

research studies in the social sciences.

More recently, Shear and Zumbo (2013) replicated and extended prior work

including Brunner and Austin (2009), by also looking at the impact of measurement

error on effect size in addition to Type I error rates. They found that when the covari-

ate and key predictor are not related, the Type I error rate is very close to the nom-

inal .05 alpha level as expected, and is not impacted by the sample size, the level of

reliability of the covariate w or the R2 of the true model. However, even with a mod-

est correlation between the true predictors, the Type I error rate is substantially

inflated. This inflation is affected by each of the other simulation parameters just

mentioned. The larger the sample size the higher the Type I inflation. The less reli-

ably the covariate is measured the greater the Type I error rate, and the larger propor-

tion of variance (R2) attributable to the true relation between w and the outcome the
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greater the inflation of Type I error rates. Particularly, troubling was the finding that

with moderate to large samples even traditionally acceptable reliability coefficients,

typically greater than .70 for the covariate, lead to large inflation of Type I errors.

Both of these studies used sample sizes of 1,000 or less in the simulations. While it

is clear that the Type I error rates will be worse for larger sample sizes, it is not clear

how much worse.

Impact of Measurement Error When Comparing the Importance of
Predictors

Often researchers use multiple regression to compare the importance of multiple pre-

dictors. For example, educational researchers may wish to know which skills present

at the beginning of school are most important in predicting children’s later achieve-

ment. The use of multiple regression for comparing the importance of predictors is

fraught with problems (Pedhazur, 1997). However, this has not stopped researchers

from using this procedure for such purposes. Referring to our running example, the

researcher might be interested in whether early reading skills or fine motor skills are

a more important predictor of later reading achievement. This may help inform which

skill should be the focus of early educational intervention.

It is important to note that because the goals of studies aimed at isolating a key

predictor differ from the goals of those aimed at comparing predictors, so do the

hypotheses that should be tested. When the goal is to isolate a key predictor, the bias

in that predictor is important, and most often researchers test the null hypothesis that

the coefficient for the key predictor is zero in the population. However, when the

goal is to compare two predictors, the bias in both predictors is relevant, and the

appropriate null hypothesis is that the two coefficients are equal, or equivalently, that

the difference between the two coefficients is zero. This is a much preferred method

of testing two coefficients than to the practice of comparing their statistical signifi-

cance (Gelman & Stern, 2006; Lindsay, 2015). For example, early fine motor skills

may not exceed the statistical significance threshold while early reading skills do. It

is possible that the two coefficients are very similar in magnitude with the former

just falling short of the statistical significance threshold and the latter falling just

above. As pointed out by Gelman and Stern (2006), the magnitudes of the coeffi-

cients can be quite different and the difference between the two coefficients may still

not be statistically significant. Therefore, if the goal is to determine if one coefficient

of a predictor is greater than the other using null hypothesis statistical testing, the

appropriate statistical test is against the null that the two coefficients are equal. For

linear models, such a test can be conducted using linear contrasts to generate a Wald

test of the two coefficients. In this study, I use the incremental F test to make such

comparisons. This procedure compared a model that freely estimates the two coeffi-

cients with a model that constrains the coefficients to be equal (Fox, 2016).
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Standardized Versus Unstandardized Coefficients. The test of the null hypothesis that the

two coefficients are equal is often only meaningful for standardized coefficients. This is

because predictors are often measured on different scales, and comparisons of the unstan-

dardized coefficients, and the interpretation of the expected difference in the outcome for

a one-unit change in the predictor, depends on this scale. If early reading skills and fine

motor skills are measured on different scales, it often makes more sense to standardize

the variables so that the regression coefficients are expected changes in standard devia-

tion units. This is why most researchers focus on standardized coefficients or derivatives

of the standardized coefficients when comparing predictors. Unfortunately, standardized

coefficients can be problematic when one or more of the predictors are measured with

error due to the inflation of the sample standard deviation compared with the population

standard deviation. To understand this, consider the relation between standardized and

unstandardized coefficients, which is given by the following equation:

bX = BX

sX

sY

; ð7Þ

where bX is the standardized population coefficient, and BX is the unstandardized

coefficient. Measurement error in X would lead to bias in BX , which would also be

evident in bX . But because measurement error not only biases the unstandardized

coefficient but also biases the sample standard deviation, the standardized coefficient

is impacted by what Carroll et al. (2006) referred to as the double whammy of mea-

surement error. The bX coefficient is affected by both the bias in BX and the bias in

the sample estimate of sX , which in practice is used to calculate the sample-based

estimates of the population parameters in Equation (7). Stated differently, measure-

ment error leads to a bias in parameter estimates and also biases the estimates of the

population sample standard deviation. Only the former impacts the point estimation

of unstandardized coefficients, but both impact the standardized coefficient. Recall

that in the classical measurement error model, the sample standard deviation tends to

be inflated. Therefore, in situations when the predictor is measured with greater error

than the outcome, the numerator of the ratio of standard deviations in Equation (7)

will be larger, on average, than the true population ratio, and the standardized coeffi-

cient will therefore be biases upward.

While it is unlikely that researchers will have knowledge of the population standard

deviation for predictor variables measured with error, it can be estimated and used to

calculate an unbiased estimate of the population standard deviation if the reliability of

the predictor is known. This can be accomplished with the following equation:

sX = sX

ffiffiffiffiffiffi

rX

p
,

where sX is the sample standard deviation. This equation can be obtained by solving

for the variance of X in Equation (2), then taking the square root of both sides of the

equation. In other words, by adjusting the sample standard deviation by multiplying it

by the square root of the reliability of the predictor an unbiased estimate of the true

population standard deviation is obtained. While this method will not address the total
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bias due to measurement error, it does adjust for the bias that results in the inflation

of the sample standard deviation due to measurement error. Therefore, this adjust-

ment is recommended when using standardized coefficients for variables measured

with error and an estimate of the reliability is available.

Illustration With Hypothetical Example. To illustrate the impact of measurement error

in one predictor when the goal is to compare the importance of two predictors, a

hypothetical data set is used, based on the following extension of our previous exam-

ple. Suppose that instead of being interested in isolating the relation of early reading

skills on later reading achievement, the researcher in our example wishes to deter-

mine which of the two skills measured at kindergarten entry is the more important

predictor of eighth-grade reading achievement, early reading skills or fine motor

skills. Further suppose that the measurement of fine motor skills is much less devel-

oped than the established measure of early reading skills and therefore the reliability

of measures on the newer variable tend to be much lower than measures of the estab-

lished variable, leading to substantially greater levels of measurement error in this

predictor. In other words, our researcher wishes to compare bX with bW from

Equation (3) by comparing the estimates bX and bW from Equation (4). However,

instead of observing W directly, the researcher has obtained a fallible measure of W ,

namely, w, and therefore b�X will be compared with b�W , both from Equation (6).

To demonstrate the impact of measurement error on Type I error rates associated

with testing the null hypothesis that the two regression coefficients are equal, further

assume that the population values of the standardized coefficients are identical. The

model of interest to the researcher includes three true score variables (Y, X , and W )

from a multivariate normal distribution that represents eighth-grade reading, early

reading skills, and fine motor skills, respectively, all measured without error. To

facilitate interpretation, assume that these are standardized variables, each with a

mean of 0.0 and a standard deviation of 1.00, to account for possible differences of

scale between original variables. Further assume that the population correlation

between the two predictors, X and W , is 0.60, and the population correlation between

each of the predictors and the outcome Y is .46, a value that would result in a model

R2 of .25 when estimating Equation (3).

While the researcher is interested in the model in Equation (3), instead of W , the

researcher has a fallible measure w, which has been measured with a reliability of

.50. Suppose our researcher has access to a nationally representative data set with

10,000 students, with measures of eighth-grade reading achievement and early read-

ing skills measured without error, and a fallible measure of fine motor skills. So

instead of estimating the model in Equation (3) the researcher estimates the model in

Equation (5). Comparisons of the reliabilities of X with w represent extreme values

of reliability in practice, and are used to emphasize the impact of measurement error

on comparing regression coefficients for variables when one contains measurement

error. To minimize the impact of sampling variation a very large sample size of

10,000 was used for this hypothetical example.1 Therefore, the differences due to
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sampling error (i.e., differences between the b and b coefficients, as well as the dif-

ferences between the b� and b� coefficients) are negligible, and any differences can

be attributed to the impacts of measurement error.

Table 1 includes the means, standard deviations, and correlations between the

hypothetical variables measured without error, as well as w which was measured with

error. All of the means are very close to zero, even for w, which is consistent with

the classical measurement error model. Note that the variances of the true score vari-

ables are equal to 1.00. However, the variance of w is 40% greater than W , demon-

strating that measurement error induces additional variance in the observed variable.

Also note that the correlation between the predictors measured without error (X and

W ) is .60, which is the population parameter, while the correlation between X and w,

the variable measured with error, is attenuated to .42. The correlation between both

of the predictors measured without error and the outcome Y are equal to each other at

.46, again as specified in the true model, while the correlations between the outcome

and the predictor measured with error are different from the population value. The

correlation between w and Y has also been attenuated, estimated at .33. These esti-

mates are consistent with expectations following the above discussion. Namely, when

a variable is measured with error, the bivariate correlations including that variable

are attenuated.

Table 2 includes summaries of multiple regression results for two models. In the

first model, the outcome Y was regressed on the versions of the predictors measured

Table 1. Means (M), Standard Deviations (SD), and Correlations of Hypothetical Data.

M SD Y X W

Y 20.01 1.0
X 0.01 1.0 0.46
W 0.00 1.0 0.46 0.6
w 0.00 1.4 0.33 0.42 0.71

Table 2. Impact of Measurement Error on Comparing Predictors in Hypothetical Data.

True model Observed model

(Intercept) 20.01 (0.01) 20.01 (0.01)
X 0.29*** (0.01) 0.39*** (0.01)
W 0.29*** (0.01)
W 0.12*** (0.01)

R2 .26 .23
No. of observations 10,000 10,000

*p \ .05. **p \ .01. ***p \ .001.
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without error, X and W . This is the model in Equation (4), that represents use of

sample data containing variables free of measurement error, but because of the very

large sample size, sampling variability is minimized, and the coefficients are precise

estimates of the population values represented in Equation (3). The column labeled

‘‘True model’’ in Table 2 illustrates that the estimated model very closely captures

the population parameters just described. The coefficients for the two predictors, bX

and bW , are equal in value with a magnitude of 0.29. Compare these coefficients

with those in the column labeled ‘‘Observed model,’’ which contains the coefficients

of regressing Y on X and w, the observed variable w measured with error. Before

being entered into the Observed Model, w was standardized using the method recom-

mended to adjust the biased sample standard deviation using the reliability of this

predictor.2 Because these two predictor variables are correlated, and one is measured

with error, both coefficients are biased. Notice that b�X the coefficient for X , the more

reliable predictor, is biased upward, so that the coefficient for this variable .39 is an

overestimate of the true coefficient .29, while the coefficient b�W for the observed

variable w, which is the less reliable predictor, is .12, which is an underestimate of

the true coefficient of .29. Also note that the multiple correlation of the observed

model (R2 = :23) is attenuated compared with that of the true model (R2 = :26), and

the population value of .25. As noted in the previous discussion, and similar to the

bivariate correlations, the multiple correlation (i.e., R2) is also attenuated when vari-

ables measured with error are included in the model.

Compound Bias in Comparing Regression Coefficients. It is important to better understand

how the change in focus from estimating bias and Type I error in a key predictor to a

focus on comparing two predictors also changed the source of the bias and Type I

error rates. Conceptually, bias in coefficients due to measurement error is defined as

the difference between the population coefficient for X from the equation including

fallible measures (e.g., b�X from Equation 5), and the true population parameter being

estimated (e.g., bX from Equation 3). If our focus is on X as the key predictor, then

only the bias in X is relevant, which is the difference between the population coeffi-

cient for this variable measured with error, b�X and the population coefficient mea-

sured without error, bX . If we use DX to represent this bias, we have:

DX = b�X � bX :

Because of the negligible sampling variability in our example, the difference

between the two coefficients for X from Table 2 is a precise estimate of this bias,

which is 0.39 2 0.29 = 0.10. This bias represents a 30% overestimation of the popu-

lation value. When the goal is not to estimate bW , but only to use the additional vari-

able as a covariate, the bias in this coefficient due to measurement error is not

important. However, when the focus is on comparing the two predictors, the bias in

each coefficient must be considered, as each estimated coefficient is a source of bias.

The bias in the coefficient for w is estimated as the expected difference between the

coefficient for w and the coefficient for W . The expected difference between
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DW = b�W � bW , which in the current example is precisely estimated by

b�W � bW = 0:12� 0:29 = � 0:17. The negative bias indicates that the estimate using

the observed variable underestimates the true population parameter for W . Because

the bias in the comparison of coefficients has two sources, I refer to this as com-

pound bias. The compound bias is defined as the differences between the individual

coefficient biases:

DXW = (b�X � bX )� (b�W � bW ) = DX � DW :

By rearranging the second term in this equation, the compound bias can be repre-

sented as the difference between the two coefficients from the model including at

least one coefficient measured with error and the two coefficients from the model

free from measurement error:

DXW = (b�X � b�W )� (bX � bW ):

Importantly, in situations where the two true population coefficients are equal (i.e.,

bX = bW ), the compound bias reduces to the difference between the coefficients from

the model containing a fallible measure:

DXW = b�X � b�W , if bX = bW :

Note that the equality of bX and bW is what is assumed in the appropriate null

hypothesis for comparing predictors. Because the sample-based coefficients are

unbiased estimates of their population counterparts, under conditions of the null

hypothesis that the two population coefficients bX and bW are equal, the expected

value of the difference between the observed coefficients is an unbiased estimator of

the compound bias:

DXW = (DX � DW ) =E(b�X � b�W ),

where E(:) signifies expectation and here means that the compound bias in the esti-

mation of coefficients for X and W is the expected difference between b�X and b�W
over many samples. Because this condition holds for the hypothetical example, the

bias in comparing the coefficients associated with the two variables X and w is

0:10� (� 0:17) = 0:27. This difference is identical to the difference between the

two coefficients in the ‘‘Observed model’’ column of Table 2: 0:39� 0:12 = 0:27.

Table 2 follows the common practice of including asterisks to indicate statistically

significant coefficients for the test against the null hypothesis that the population

coefficients are zero. Due to the large sample size of this simulation, all coefficients

are statistically significant. However, had the sample size been small, it is likely that

the two coefficients in the true model would remain statistically significant, while

only the coefficient for X would be significant in the observed model. Only having

access to the latter, a researcher may conclude that early reading skills, as measured

by X , are important, but early fine motor skills, as measured by w, are not. But recall

that these would not be the appropriate null hypotheses for comparing predictors.
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The appropriate statistical test when comparing two predictors is to test against the

null hypothesis that the two predictors are equal. The test of the equality of the coef-

ficients for the predictors measured without error (i.e., bX = bW ) is consistent with

this null hypothesis F(1, 9997) = 0.09, p = .766, while the same hypothesis test for

the model including the predictor measured with error (i.e., b�X = b�W ) results in a

rejecting of the null hypothesis, F(1, 9997) = 374.68, p \ .001. These two tests were

computed using the incremental F test to compare the model freely estimating the

two coefficients to the model constraining the coefficients to be equal (Fox, 2016).

Therefore, when both predictors were measured without error, there is no bias, the

hypothesis test is consistent with the population parameters, and leads to the correct

conclusion that the two coefficients are consistent with the null hypothesis. However,

when the variable measured with error is included in the model, there is compound

bias, and the null hypothesis that the two population parameters are equal is erro-

neously rejected, leading to a Type I error. Therefore, whether the researcher com-

pares the magnitude of the observed model coefficients, formally tests the hypothesis

that the coefficients are equal, or both, the wrong conclusion is suggested by the

results of the observed model.

This example illustrates that, at least under certain circumstances, when comparing

two predictors, one measured with error and when the null hypothesis for the equal

coefficients for these predictors is true, the reliably measured predictor is overestimated

while the less reliable predictor is underestimated. Furthermore, measurement error in a

particular variable increases the variance of the observed variables and attenuates any

observed correlation including this variable. Finally, under these circumstances, the

Type I error rate of comparing differences in the predictors may be inflated.

Simulation Study

To understand the impact of reliability on comparison of predictors under a broader

range of conditions, a Monte Carlo simulation was conducted, guided by two primary

research aims. First, the impact of measurement error in one predictor on the compound

bias of comparisons of two predictors was explored. Most studies of the impact of mea-

surement error on bias in multiple regression have considered only the impact on inter-

pretations of a single key predictor’s coefficient. With the wide-scale use of regression

models to compare predictors, understanding the impact of compound bias in more than

one coefficient is important. Second, the impact of measurement error on the Type I

error rate for testing the null hypothesis that the predictors are equal in the population

was explored. Therefore, instead of constraining the key predictor to be zero and deter-

mining what proportion of the simulations erroneously reject the null hypothesis that

this key coefficient is zero, in this study the difference between the two coefficients is

constrained to be zero, and the proportion of times the null hypothesis that the coeffi-

cients are equal in the population is erroneously rejected is assessed. An additional sec-

ondary aim was to estimate the impact of measurement error in large sample studies,

with samples sizes considerably greater than 1,000.
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Simulation Model and Conditions

A full-factorial design was used by manipulating the following factors. Sample size

(n) was manipulated with five conditions, 50, 250, 1,000, 5,000, and 10,000.

Inclusion of larger sample sizes will help researchers understand the impact of using

larger data sets where at least one is measured with error. The reliability of one vari-

able, X was held constant and the reliability of the other, w was manipulated to

understand the impact of measurement error in one predictor on compound bias and

Type I error. The reliability of X (rx) was constant at 1.00 and the reliability of w(rw)

was manipulated between the values of 0.0 to 1.0 at increments of .1, resulting in 11

conditions for this factor. The correlation between the two predictors in the popula-

tion (rxw) was set to five conditions: 0, .2, .5, .7, .9. The explained variance of the

population (R2) in the simulated models was manipulated using four conditions: .10,

.25, .50, and .75, to reflect the broad range of models found in applied research. Note

that to constrain bX and bW to be equal in the population, while allowing the

population-level correlation and explained variances to vary requires that the magni-

tude of the population coefficients may vary across condition. While this would be

problematic if the goal was to test the bias and Type I error for the null hypothesis

that the coefficients are zero, it is not problematic for the current study, which is

aimed at assessing the bias and Type I error rates for the null hypothesis that the dif-

ference between the coefficients is zero.

The full-factorial design resulted in 5 3 11 3 5 3 4 = 1,100 factor combinations.

For each of the 1,100 combination of factors 1,000 replications were initially gener-

ated, resulting in 1,100 3 1,000 = 1.1 million simulated data sets. However, due to

concerns of instability of estimates with the smaller sample size (i.e., n = 50 and n =

250), these conditions were simulated 10,000 times, resulting in 5.06 million repli-

cated data sets. All simulations were conducted with the R statistical computing lan-

guage (R Core Team, 2018), using the SimDesign package (Chalmers, 2018).

Annotated computer code for the simulations as well as data sets containing the

aggregated simulation results for all conditions can be found in the online

Supplemental Materials. Validity of the simulation code was evaluated by using the

simulation code to generate data under ideal conditions (i.e., large samples size) and

evaluation of parameters estimated with variables measured with no error compo-

nents. All simulation code, software version details, and random seed information is

included within the online Supplemental Materials. Most simulation studies on mea-

surement error in multiple regression restrict the manipulated reliabilities within the

range of recommended reliabilities for such studies, which typically includes values

greater than .50 or .70. A broader range of reliabilities were included to provide a

better understanding of the functional form of the relation between measurement

error and the resulting bias and Type I error rates.

Equation (3) was used as the population regression model to generate variables X

and W for all simulated data sets, and the error variance of models was selected to

obtain the desired population level R2 value. Then, for each data set, w was generated

by adding random noise to W , using Equation (1), with u, the measurement error
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term, being selected to obtain a desired level of reliability. Consistent with the

assumptions of multiple regression, all variables were simulated draws from the stan-

dard multivariate normal distribution. The use of standard normal variates reflects the

common practice of using standardized regression coefficients to compare predictors

that are often measured on different scales. However, as discussed above, this prac-

tice introduces an additional bias due to the inflation of the sample standard deviation

of the variable measured with error. As discussed in the previous section, when esti-

mates of the reliability of the fallible measure are available, it is easy to adjust for this

bias by multiplying the sample standard deviation by the square root of the estimated

reliability. Because this adjustment recovers the population standard deviation well in

situations where the reliability is estimated precisely, w is not standardized before

estimating the regression coefficients in the simulations. This decision also isolates

the source of bias on the impact of measurement error in the parameter estimation,

better estimating the functional form of the bias in coefficients due to measurement

error. It also reduces computation time, by removing the additional computations

needed to restandardize the variables across the 5 million simulations.

The two primary outcomes of interest were the observed compound bias of the

two coefficients and the Type I error rates for testing the null hypothesis that the two

coefficients are equal in the population. Because interest is in the compound bias for

the estimates due to the focus on two predictors, the differences between the biases

for each predictor were averaged as follows:

DXW =
S(DX � DW )

N
,

where N is the number of replications in each factor combination, and D was calcu-

lated as the average difference between the sample estimate and the population para-

meter for a given simulation factor combination.

All simulated data sets were drawn from populations where the true coefficient for

X and W were equal. The Type I error rate was calculated as the proportion of statis-

tical tests that falsely rejected the null hypothesis that the two coefficients were equal

in the population within each combination of the study factors. The alpha level was

set at .05 and the incremental F test was used to compare the coefficients.

Simulation Results

Table 3 contains select tabulated results for the compound bias in comparing predic-

tors when one is measured with errors. The cells represent the compound bias for the

given condition averaged across all replications. The columns are first broken down

by the correlation between the two predictors in the population (rxw), at three levels

(.0, .5, and .9). Within each of these levels, subcolumns for five levels of reliability

of w(rw) are represented (i.e., .6, .7, .8, .9, 1.0). Because most researchers quantify

measurement error with reliability coefficients, results are presented using reliability

coefficients to make the tables and graphs more useful. Furthermore, only
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reliabilities typically considered acceptable are used in this table. Inspection of com-

pound bias at other levels of reliability can be found in the online Supplemental

Materials, and in Figure 1, as discussed below. The rows of Table 3 represent the

four levels of population R2 (.01, .25, .50, .75). Because the expected value of bias is

not impacted by sample size as suggested by previous literature (Brunner & Austin,

2009; Shear & Zumbo, 2013) and which was confirmed in the present simulation

study (see the online Supplemental Materials), the cells in Table 3 for each level of

R2 are averaged across the simulated sample sizes, as well as across replications.

Compound biases greater than .10 are in bold to ease identification of excessive

values.

Figure 1 contains a graphical depiction of the simulation results for compound bias

given in Table 3, but includes all simulated levels of reliability for w, making the full

functional form of the relations between conditions apparent. Each of the graphs rep-

resents a different level of correlation between the predictors in the simulation popu-

lation (e.g., 0, .5, and .9), while the curves represent the four levels of population R2

(i.e., .10, .25, .50, and .75). For each of the graphs the x-axis indicates the level of

reliability of w, while the y-axis indicates the compound bias of the two predictors.

Figure 1. The compound bias in the two predictors due to measurement error in one
predictor.
Note. rX = 1:00 in all conditions and is the reliability of X. rXW is the correlation between the two

predictors had they been measured without error. R2 is the proportion of variance in the outcome

explained by the two predictors if both had been measured without error.
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Both Table 3 and Figure 1 demonstrate that the higher the reliability of w the less

the compound bias in comparisons of the coefficients for X and w. As the reliability

of w approaches 1.0, the bias approaches zero. The far-right column of Table 3 indi-

cated no bias when the reliability of both variables is 1 (e.g., measurement error is

zero). Said differently, the more measurement error in w, the greater the compound

bias in the magnitude of the difference between these coefficients.

In addition to being impacted by the level of reliability of w the compound bias is

also impacted by the magnitude of the correlation between the two predictors (rxw),

and the proportion of variance explained by the two predictors (R2). As the magni-

tude of each of these factors increases, so does the compound bias. Examination of

Figure 1 reveals a nonconstant relation between the reliability of w, the population-

level correlation between w and X , and the population R2. When the predictors are

not correlated there is a linear relation between reliability of w and compound bias.

This is because the compound bias in this situation consists of only the bias in w.

The absence of a correlation between the two prevents bias in the estimation of X .

As the reliability of w decreases the compound bias increases. The rate of increase in

compound bias in relation to reliability is a function of the R2, which reflects the

strength of the correlation between the predictors and outcome. When the predictors

are correlated there is a nonlinear relation between the reliability of w and compound

bias. This is because the compound bias is a function of the bias in both w and X .

This nonlinear relation appears to be quadratic in nature and most pronounced when

the predictors are highly correlated (see the rightmost graph), exemplifying the

impact of collinearity of regression coefficients. The compound bias is greatest when

the two predictors are both highly correlated with each other and with the outcome.

This suggests a strong interaction between the proportion of variance explained by

the predictors and the correlation between the predictors. When the predictors are

highly correlated and strongly related to the outcome, small amounts of measurement

error in w can have a relatively large impact on compound bias when comparing the

estimated coefficients.

These results indicate substantial bias in comparisons of regression coefficients

when within the range of acceptable reliabilities for variables. Note that even when

the correlation between X and W is zero, the compound bias approaches and often

exceeds .10 for reliabilities of .7, a level of reliability which many researchers would

consider acceptable (Lance, Butts, & Michels, 2006). When the predictors are corre-

lated the problem is much worse. For example, when the correlation between X and

W is .50 and the reliability of w is .70 the compound bias ranges from 0.10 to 0.27

depending on how strongly the predictors are related to the outcome (i.e., the greater

the R2, the greater the bias). But even when the variables are weakly related to the

outcome (R2 = :10), the compound bias reaches .10. The magnitude of the difference

in reliabilities of the two predictors is clearly important, even when both reliabilities

exceed what many researchers consider to be adequate levels.

Table 4 contains select tabulated results for the Type I error rates for tests of the

linear hypothesis that the two coefficients are equal when comparing predictors, one
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measured with error. Because sample size does impact Type I error rates, this table

contains a subtable for each sample size (50, 250, 1000, 10,000) each of which is

organized just as in Table 3 except that the cells contain the Type I error rates instead

of compound bias. Similar to prior studies exploring Type I error rates and measure-

ment error (e.g., Shear & Zumbo, 2013), Bradley’s (1978) criterion of .075 is used to

identify excessive error rates, and such values are set in bold type in this table.

Figure 2 contains a graphical depiction of select simulation results for the Type I

error rates.

Similar to prior studies on the Type I error rate in a single key predictor, the results

of this simulation demonstrate a stark inflation of false positives when one of the pre-

dictors is measured with error. The magnitude of this inflation is troubling. The

Figure 2. The probabilities of showing a significant hypothesis test that two coefficients are
equal when one is measured with error.
Note. rXW is the correlation between the two predictors had they been measured without error. R2 is

the proportion of variance in the outcome explained by the two predictors if both had been measured

without error.
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results of the Type I error rates mirror those of the compound bias, which reflects the

close relation between these two outcomes. Namely, as the reliability of w approaches

that of X the Type I error rate approaches the nominal .05 level. Similar to the com-

pound bias, the correlation between the two predictors and the proportion of variance

explained by both impact the Type I error rate. As the correlation between predictors

increases, the magnitude of the inflation of the Type I error rate increases. As the pro-

portion of variance explained by the two predictors increases, the inflation of the

Type I error increases. Unlike bias, the Type I error rate is also impacted by sample

size. Consistently, the higher the sample size the greater the Type I error rates. This is

because with larger samples, estimates of the standard error tend to be smaller,

increasing the power of the statistical test. As the sample size increases the impor-

tance of the R2 and the importance of the correlation between the two predictors

diminishes. When sample size is 10,000, the Type I error rate is 1.00 when the relia-

bility of the fallible measure differs from the error-free measure by at least .10, and

remains unacceptably high regardless of whether the predictors are correlated and

regardless of how strongly the predictors are related to the outcome. Even with no

correlation between the predictors and a small proportion of the variance explained

by the two predictors, the Type I error rate increases steeply as the reliability of w

decreases, particularly, for large samples.

The results of the simulation study demonstrate the substantial impact measure-

ment error can have when the goal of multiple regression is to compare the impor-

tance of two predictors. The compound bias can lead to large observed standardized

differences between the coefficients even when none exist in the population.

Particularly with large samples, hypothesis tests of the difference between the predic-

tors can suffer from unacceptably high Type I error rates for small levels of measure-

ment error in one of the predictors.

Adjusting for Reliability

General strategies to minimize the impact of measurement errors in predictors

include increasing the number of measures of each construct, using more reliable

measures, or using latent variables (Shadish, Cook, & Campbell, 2002). However,

these solutions are not always practical to researchers using existing data. Because

many of the studies that use multiple regression to compare the importance of predic-

tors use existing large nationally representative data sets, which often report reliabil-

ities of measured variables for the samples, methods using estimates of reliabilities

in adjusting for measurement error are demonstrated. Also, because there are rarely

multiple measures of these variables within these data sets at a given time point, a

focus on methods that can be used with a single measure of each variable were cho-

sen. Two methods that meet these criteria are the errors-in-variables method and

single-indicator structural equation modeling (SEM) with adjustment for reliabilities.

The errors-in-variables method adjusts for bias by using the estimated reliabilities to

alter the variance-covariance matrix for the linear model (Carroll et al., 2006; Fuller,
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1987). The single-indicator SEM method models the fallible measure as a single

indicator of a true score latent variable. Then the variance of the single indicator is

set to be the product of the complement of the reliability of the fallible measure and

its variance (e.g., (1� rw)s2
w; O. D. Duncan, 1975; Kenny, 1979). The goal of this

section is not to provide a comprehensive explanation of these two methods for

adjusting models for measurement error, but instead the use of these methods is

demonstrated. A number of software packages make available errors-in-variables

regression (e.g., R, Stata) and any SEM program can be used for single-indicator

SEM approach. In this demonstration, I use the error-in-variables method implemen-

ted in R using the eivtools package (Lockwood, 2018), and single-indicator SEM

method using Mplus (Muthén & Muthén, 2017).3

Table 5 contains results from the true score model using variables measured with-

out errors (‘‘True’’), and the observed model using the fallible variable w (‘‘Naive’’),

from Table 2. In addition, the models using the two methods for adjusting for mea-

surement error discussed in this section are also included. Both these models use vari-

ables that are standardized adjusting for the bias in sample standard deviations using

the known reliability coefficients, which must be available for the use of these meth-

ods. The third model (‘‘Errors-in-variables’’) contains a model using the eivtools

package available for R. The fourth model (‘‘SEM’’) includes a single-indicator SEM

model conducted in Mplus. These results recover the true population parameters quite

well. Note however, that the true reliability was used here instead of an estimate of

the reliability of w. In real applications, the adjusted estimates will depend on the

accuracy of the reliability estimates available. The regression coefficients and the

model R2 are nearly identical to the estimates in the true score model.

Example With Real Data

With the growing availability of data for assessing educational and psychological

research questions, more and more studies will likely use multiple regression to

Table 5. Regression Estimates for the Hypothetical Example Data Without Adjusting for
Measurement Error (Naive) and With Adjustment Using the Errors-in-Variables Method and
the Structural Equation Modeling (SEM) Method.

True Naive Errors-in-variables SEM

(Intercept) 20.01 (0.01) 20.01 (0.01) 20.01 (0.01) 20.01 (0.01)
X 0.29*** (0.01) 0.39*** (0.01) 0.28*** (0.01) 0.28*** (0.01)
W 0.29*** (0.01)
w 0.12*** (0.01) 0.30*** (0.02) 0.30*** (0.02)

R2 .26 .23 .26 .26
No. of observations 10,000 10,000 10,000 10,000

*p \ .05. **p \ .01. ***p \ .001.
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compare the importance of predictors. For example, among educational researchers,

the availability of large nationally representative longitudinal data such as the Early

Childhood Longitudinal Studies allow for the comparison of various early social and

psychological characteristics as predictors of children’s later academic achievement.

However, these early skills are measured with varying degrees of reliability. A num-

ber of recent studies have used large nationally representative data sets to compare

skills measured at kindergarten entry as predictors of later achievement (e.g., G. J.

Duncan et al., 2007; Fryer & Levitt, 2004; Grissmer et al., 2010). With rare excep-

tion (e.g., G. J. Duncan et al., 2007) measurement errors in the early skills are not

accounted for.

To demonstrate the use of adjustment for measurement error when comparing two

predictors when one is measured with greater error, data from the kindergarten wave

of the Early Childhood Longitudinal Study, Kindergarten Cohort (ECLS-K) is used

to predict reading achievement at the end of eighth grade. The ECLS-K contains mea-

sures of reading skills and fine motor skills at kindergarten entry. These early skills

were measured with substantially disproportionate levels of measurement error. The

reported reliability is .92 for early reading, compared with .57 for early fine motor

skills.

Table 6 includes the naive model in which the observed variables are used with-

out adjustment, and the errors-in-variables model which adjusts for the estimated

reliabilities. The model without adjustment for measurement error suggests that the

coefficient for reading is almost twice the magnitude of fine motor skills. However,

the model adjusting for measurement error suggests that the two predictors are the

same in magnitude. The test of the null hypothesis that the two coefficients are equal

for the naive model suggests that differences of the estimated magnitude would be

extremely rare if the two coefficients were equal in the population F(1, 6845) =

122.27, p \ .001. However, the same test on the adjusted model, suggests that the

estimated differences would not be rare at all F(1, 6845) = 0.02, p = 0.876.

These two analyses lead to different conclusions about the relative importance of

the two predictors. Based on the naive model not adjusting for measurement error,

researchers would conclude that basic reading skills are almost twice as important as

early fine motor skills. A hypothesis test would lead to the rejection of the null

hypothesis that the two are equal in the population and would support the conclusion

that early reading skills are more important than early fine motor skills for later read-

ing achievement. However, had the researchers adjusted for measurement error in

the two predictors, a very different conclusion would be justified. As the magnitude

of the adjusted model coefficients are the same, and the null hypothesis is reasonable

given the hypothesis test, the adjusted results suggest that there is no evidence that

one of the predictors is more important than the other. The results of using real data

(Table 6) demonstrate how measurement error can lead to vastly different estimates

of the importance of predictors, and how adjustment can help correct for this bias.
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This real analysis example provides an opportunity to discuss limitations to the

simulations conducted. First, for ease of interpretation, only two predictors were

included in the simulations. Most applied studies include numerous predictors, many

of which may be intercorrelated and measured with varying levels of measurement

error. This will likely greatly complicate the bias and Type I error rates in the result-

ing models. Second, estimates of reliabilities are not always available for all covari-

ates, and it is not clear how these may impact the comparison of key predictors. For

example, in our applied example, in addition to early reading and fine motor skills,

researchers may want to control for demographic variables for which reliabilities are

not provided. To the extent that these are correlated with the key predictors, the inevi-

table measurement error will have an impact on the bias and Type I error rates related

to those predictors. Future simulation studies should explore the impact of measure-

ment errors in such variables on comparing key predictors. Third, only the impact of

measurement error, and not other types of errors captured by the model residuals, was

considered. The classic measurement error model, while commonly used in methodo-

logical work, may not accurately reflect situations found in real research settings.

Future work should also address the additional bias incurred when standardized coef-

ficients are used and should also explore the impact of adjustments to the sample

standard deviations with estimates of reliability. Another limitation of this study was

the manipulation of the reliability of only one of the two predictors being compared.

Table 6. Simple Regressions for Fine Motor and Reading, Unadjusted Multiple Regression
(Naive), and Multiple Regression Adjusting for Measurement Error (Error-in-Variables)
Predicting Fifth-Grade Reading.

Naive Errors-in-variables

(Intercept) 20.00 (0.01) 20.00 (0.01)
Reading 0.37*** (0.01) 0.34*** (0.02)
Fine motor 0.19*** (0.01) 0.34*** (0.02)

R2 .23 .28
No. of observation 6,848 6,848

*p \ .05. **p \ .01. ***p \ .001.

Table 7. Descriptive Statistics of Real Data Example.

M SD Reading 8th grade Reading K

Reading 8th grade 0 1.1
Reading K 0 1.0 .43
Fine motor K 0 1.3 .34 .31

Note. M = mean; SD = standard deviation.
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An important development of the insights provided by this study will be to evaluate

the comparisons of measurement error in both predictors being compared across a

wide range of reliabilities to understand the impact of disproportionate measurement

error. Despite these limitations, and with the increasing number of large data sets

available to psychological researchers, many of which not only contain large number

of participants but also often contain a wide array of variables, this study suggests that

great care is needed in interpreting the results, particularly, when researchers are

interested in comparing the importance of multiple predictors.

Discussion, Recommendations, and Conclusions

Multiple regression is commonly used to compare the importance of two or more

predictors. Often these predictors are measured with disproportionate levels of error.

Differing levels of reliability for predictors measured within samples can bias the

estimation of population parameters. In this article, I demonstrated how measurement

error in one predictor can substantially bias parameter estimates and inflate the Type

I error rates when comparing predictors. The results are consistent with prior research

focusing on the impact of measurement error on the estimation of a key predictor

when a covariate is measured with error, in that they demonstrate the substantial

impact measurement error can have generally in multiple regression. However, there

are also issues related to bias and Type I error unique to uses of regression models to

compare predictors. In this section, I summarize the problems related to measurement

error when comparing predictors, emphasizing the issues unique to this situation,

then offer recommendations to researchers using multiple regression for this purpose.

Problems Comparing Predictors With Measurement Error

While the results of this study are consistent with previous studies showing that mea-

surement error can bias parameter estimates and inflate Type I error rates, these

results also demonstrate problems specific to studies aimed at comparing the impor-

tance of predictors. These differences generally stem from the change in focus of the

study and the related change in the hypothesis being tested. In this section, I discuss

three problems with the use of multiple regression for comparing the importance of

predictors when one is measured with error.

Comparisons of Uncorrelated Predictors Can Be Biased When One Is Measured With Error,
Leading to Inflated Type I Error Rates. An important difference between the present

results and studies of measurement error that focus on bias and Type I error rates in a

key predictor involves conditions in which the two predictors are uncorrelated. When

the two predictors are not correlated the measurement error in one predictor does not

lead to bias in estimating the other. Therefore, studies exploring the impact of mea-

surement error in a covariate on estimation of a key predictor have found bias only in
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situations when the two are correlated and have emphasized the value of modeling

orthogonal predictors.

However, when comparing two predictors, as was explored in this study, resulting

bias is impacted by estimates of both the predictors. Even if the two predictors are

not correlated, the bias in one of the predictors may lead to considerable bias in their

comparison. More problematic, this bias also leads to inflation of Type I error rates

for testing the null hypothesis that the two coefficients are equal, by means of both

the underestimation of the coefficients and the inflation of the standard errors of the

less reliable predictor. When comparing the importance of predictors, bias and Type I

error rates are problematic when these predictors are measured with disproportionate

levels of measurement error, even if the predictors being compared are not correlated.

Minimal Reliabilities Are Not Sufficient to Address Measurement Error When Comparing
Predictors. It is not uncommon for research articles to report reliabilities of measures,

noting that all measures meet some minimal cutoff criterion. For example, Lance et

al. (2006) describe how Nunnally (1978) is often misinterpreted as suggesting that

reliability estimates of .70 or higher are acceptable. The results of this study suggest

that this is not sufficient to address issues related to bias and Type I error when com-

paring predictors. For many conditions in the simulation study with reliabilities con-

sidered typical in research, bias and Type I error rates were found to be unacceptably

high. This is particularly true in conditions where the two predictors are highly corre-

lated, the multiple R2 was relatively large, or both of these conditions are present.

Large Sample Sizes Exacerbate the Impact of Compound Bias due to Measurement Error on
Type I Error Rates. This study extended previous research by including much larger

samples sizes typical of the large-scale nationally representative data sets such as the

ECLS-K and found that small levels of measurement error in a predictor can have a

substantial impact on the conclusions drawn. While large sample sizes often help with

many modeling issues, such as power, the impacts of measurement error on Type I

error rates are exacerbated in larger samples. When sample sizes were large, there

were many conditions in the simulation results in which the Type I error rate were

unacceptable (i.e., ranged from .1 to .99) with the reliability of the less reliable pre-

dictor at .90. The results are similar to prior work showing that measurement error

can lead to unacceptable levels of bias and Type I error rates.

Recommendations

A number of recommendations are provided to help researchers conduct and evaluate

studies using regression models to compare the importance of predictors. First,

instead of simply ensuring that predictors meet some minimum standard, it is recom-

mended that researchers also assess the disproportionality of reliabilities of predictors

being compared in a particular sample. If disproportionate levels of measurement

error exist, then caution is warranted in interpreting such comparisons, and

Murrah 573



adjustments may need to be made to obtain less biased estimates and more accepta-

ble Type I error rates. Future research should explore a wider variety of more realis-

tic situations when both variables are measured with differing levels of reliability to

give researchers a better understanding of the impact of measurement error when

comparing predictors in situations when both are measured with error.

Second, when evaluating one or more studies in which the more reliably measured

predictor is also more strongly correlated to the outcome than a less reliably measured

predictor, researchers should suspect that the difference between the two estimated

coefficients may be exaggerated. In such situations, it is possible that the more reli-

ably measured predictor is overestimated and the less reliably measured predictor is

underestimated. Third, when sample sizes are large, researchers should be very care-

ful when interpreting differences in regression coefficients and recall that tests against

the null hypothesis that the two coefficients are equal may suffer from drastic infla-

tion of Type I error rates.

Finally, if estimates of the reliability of measures within the sample are available,

using one of the available methods for adjusting for measurement error is recom-

mended. And if standardized coefficients are being compared the variables should be

standardized by adjusting the sample standard deviation using the reliability of the

variables. In addition to demonstrating the problems arising from using multiple

regression to compare predictors when one is measured with error, I also demon-

strated that in certain situations simple adjustment methods can provide much less

biased estimates with more reasonable Type I error rates. By using real data, I demon-

strated how the reliabilities of the predictors can be estimated; researchers can adjust

for measurement error to obtain less biased estimates.

Conclusions

Prior research has demonstrated the complication of measurement error in the bias

and Type I error rates when using multiple regression to isolate the relation between

a key predictor and the outcome using one or more covariates. Many of these prob-

lems also impact the use of multiple regression for comparing the relative importance

of two predictors on the outcome. In both situations the greater the measurement

error, the stronger the correlation between predictors, the stronger the relation

between the predictors and the outcome, the greater the bias and Type I error. In both

situations, the larger the sample size the greater the Type I error rate. But because

the hypothesis being tested is different for these two situations, there are also some

problems specific to the use of multiple regression for comparing predictors that

researchers should keep in mind when designing and interpreting such studies.

A major insight provided by this study is that ensuring that the reliabilities of the

predictors surpass a threshold is not sufficient to deal with the bias and Type I error

rates related to measurement error when comparing two or more predictors. While

large sample size helps with many analytic issues, I also demonstrated that the

impact of measurement error in one predictor is much worse for large sample sizes.
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Additionally, I showed that in situations where the more reliable predictor is also

more strongly related to the outcome, the bias when comparing predictors can be

much greater than in studies focusing on a key predictor.

Related to the real data example, there is great interest in identifying new predic-

tors of later achievement, but these candidate skills will likely continue to be mea-

sured less reliably than early reading and math skills, which are well established in

the field of early education. This could lead to a systematic bias against new skills

being identified as important, simply because of the relative lack of measurement

work. If these candidate skills are dropped from consideration before relatively reli-

able measures are developed, researchers run the risk of missing important predictors

of later achievement. Similar systematic biases might exist in other areas of psycho-

logical and educational fields where newer measures are being compared with highly

reliable measures.

These insights highlight the importance of measure reliability for predictive mod-

eling. A number of methods exist for adjusting for measurement error. Two were

demonstrated in this article and shown to adequately deal with the bias and Type I

error rates in a hypothetical example. One of these methods was also used on a real

data example and demonstrated how the decision of whether to adjust for measure-

ment error can have substantial impacts on interpretation of results. The goal of this

article was to make researchers aware of the impact of measurement error on com-

parisons of regression coefficients and point them toward resources to help address

these issues. Measurement is a critical, but often neglected, aspect in many studies.

Based on the results of this study, it is recommended that researchers pay close atten-

tion to the reliabilities of predictors being compared. The methodological literature

has often argued that when the goal is to compare the importance of two predictors,

the appropriate statistical test is against the null hypothesis that the two coefficients

are equal in the population. However, when one of the variables is measured with

substantial measurement error, comparisons of coefficients may suffer from com-

pound bias, particularly in large samples, and adjustments for the reliabilities of the

measures should be considered.
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ffiffiffiffiffiffiffi

0:5
p

= 0.99.
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