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Abstract: A dinuclear copper(II) complex of formula [{Cu(bipy)(bzt)(OH2)}2(µ-ox)] (1) (where
bipy = 2,2′-bipyridine, bzt = benzoate and ox = oxalate) was synthesised and characterised
by diffractometric (powder and single-crystal XRD) and thermogravimetric (TG/DTG) analyses,
spectroscopic techniques (IR, Raman, electron paramagnetic resonance spectroscopy (EPR) and
electronic spectroscopy), magnetic measurements and density functional theory (DFT) calculations.
The analysis of the crystal structure revealed that the oxalate ligand is in bis(bidentate) coordination
mode between two copper(II) centres. The other four positions of the coordination environment
of the copper(II) ion are occupied by one water molecule, a bidentate bipy and a monodentate bzt
ligand. An inversion centre located on the ox ligand generates the other half of the dinuclear complex.
Intermolecular hydrogen bonds and π-π interactions are responsible for the organisation of the
molecules in the solid state. Molar magnetic susceptibility and field dependence magnetisation
studies evidenced a weak intramolecular–ferromagnetic interaction (J = +2.9 cm−1) between the metal
ions. The sign and magnitude of the calculated J value by density functional theory (DFT) are in
agreement with the experimental data.

Keywords: dinuclear copper(II); ferromagnetic interaction; magnetic properties; noncovalent
interaction

1. Introduction

Copper(II) complexes are interesting in coordination chemistry because of their vast applicability
for bioinorganic purposes and synthesis of metallodrugs [1,2], catalysis [3,4] and magnetism [5,6].
Concerning molecular magnetism, it is known that the magnetic interaction between two or more
copper(II) centres is strongly dependent on the nature of the bridging ligand that works like a magnetic
exchange pathway [7,8]. Among these ligands, the oxalate ion, ox2−, for example, is well known for its
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capability to create adequate magnetic exchange pathways for ferro- and antiferromagnetic interactions
in oligonuclear copper(II) compounds [9–11]. The combination of oxalate and copper(II) ions leads to a
large structural variety including different nuclearities such as mononuclear [12,13], dinuclear [14,15],
trinuclear [16,17], tetranuclear [17,18] and hexanuclear species [19,20] and coordination polymers [14,21].
This class of oxalate-bridged compounds is noteworthy in magnetic applications, as it may comprise
many other transition metal ions such as MnII, FeII/III, CoII, NiII, CrII/III, VIV and RuII [22–25].

The dinuclear copper(II) complexes, which contain only one unpaired electron per metallic ion, are
the most straightforward systems to investigate the through-ligand electron exchange mechanism from
experimental and theoretical perspectives [26–28]. It is well known that the nature and strength of the
magnetic interactions in dinuclear complexes including simple inorganic and extended organic bridging
ligands such as hydroxo, azide, aromatic dicarboxylate, diamine, oxalate and related derivatives are
highly dependent on the nature of the chelating terminal blocking ligands, which prevent complex
polymerisation [5]. Furthermore, the variation in the spatial arrangement of terminal ligands may
change the orbital overlap angle between the copper(II) and the bridging ligand, leading to different
types of magnetic interactions [29,30].

Regarding oxalate-bridged copper(II) compounds, the ferromagnetic or antiferromagnetic
behaviour is determined by the overlap between the two magnetic orbitals. Poor overlap through
oxalate leads to a weak antiferromagnetic interaction. On the other hand, if the overlap is zero,
one could expect a ferromagnetic coupling [8]. Steric hindrance arising from the volume of the
ancillary ligands leads to different orientations of the magnetic orbitals concerning the bridge plane,
hence generating a different magnitude and nature of the magnetic interaction among the copper(II)
centres [17].

Although a variety of oxalate (ox2−)-bridged copper(II) complexes can be found in the
literature, just a few contain more than one bulky ligand besides the oxalate bridge. A detailed
search carried out in the Cambridge Structural Database (CSD) [31] for oxalate-bridged copper(II)
complexes with ox2– in bis-bidentate coordination mode displayed a total of 423 results, of which
86 correspond to dinuclear complexes that possess two additional ligands besides ox2–. Out of 86
structures, 66 contain pentacoordinate metal ions bound to only one type of organic ligand such as
pyridine [1], 2,2′-bipyridine [11,32], phenanthroline [33,34], ethylenediamine [35], pyrazole [36,37] and
imidazole [38] and their derivatives, the coordination sphere being completed by simple inorganic
ions such as nitrate [39], chloride [33], hydroxide [40] and perchlorate [1], or by solvent molecules
such as water [6], methanol [34], dimethylformamide [41], tetrahydrofuran [42] or acetonitrile [43].
In the 20 remaining structures, all of which have been reported more recently, the metal ions are
hexacoordinate and the chemical composition of the complexes, regarding the presence of at least
one organic ligand, solvent molecules and simple inorganic ions, is similar to that observed for the
pentacoordinate species [8,11,14,15,44,45]. Exceptions are found when tetradentate ligands direct
hexa-coordination, decreasing the need for other molecular entities to complete the coordination sphere
of the copper(II) ion [46,47]. Therefore, such systems show high structural and electronic versatility,
which can be modulated by an appropriate choice of ligands other than the ox2− bridge.

Herein the synthesis of a new heteroleptic oxalate-bridged copper(II) dinuclear complex
[{Cu(bipy)(bzt)(OH2)}2(µ-ox)] (1) (where bipy = 2,2′-bipyridine, bzt = benzoate and ox = oxalate)
is reported, in which the coordination environment of the metal ion is described as distorted octahedral
with the unusual coordination of two relatively bulky ligands, a bidentate 2,2′-bipyridine and a
monodentate benzoate, in addition to one water molecule. Structural correlations on how the
orientation of the magnetic orbitals of the CuII ions is affected by the crystal field in 1 and the nature
of magnetic interactions were investigated. We have also carried out theoretical calculations on the
electronic structure and the electron paramagnetic resonance spectroscopy (EPR) spectra to bring light
into its magnetic properties.
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2. Results and Discussion

The reaction between copper(II) acetate monohydrate, benzoic acid, 2,2′-bipyridine and oxalic acid
dihydrate in methanol gave the bluish-green prismatic shape crystals of [{Cu(bipy)(bzt)(OH2)}2(µ-ox)]
(1) in high yield, ca 90%, from a reproducible synthetic methodology (Scheme 1). Powder X-ray
diffraction (PXRD) analysis revealed good correspondence between the simulated and experimental
diffraction patterns (Figure S1 and Table S1).
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The equatorial positions on each copper(II) ion are occupied by two nitrogen atoms from the 
2,2′-bipyridine ligand (N1, N2), one oxygen atom from the bridging oxalate group (O5) and one 
oxygen atom from the monodentate benzoate ligand (O6). The apical positions are occupied by the 
oxygen atom from the water molecule (O1) and the second oxygen atom from the bridging oxalate 
group (O8). There is an inversion centre lying in the middle of the C18–C18i bond of the oxalate ligand 
that bridges the two copper(II) ions in the usual bis(bidentate) mode, giving rise to the neutral dimeric 
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Scheme 1. Synthetic methodology carried out between Cu(CH3COO)2·H2O, Hbzt, H2ox·2H2O and
bipy to produce complex 1. Where bipy = 2,2′-bipyridine, bzt = benzoate and ox = oxalate.

2.1. Crystal Structure

Complex 1, Figure 1, was obtained as single-crystals that belong to the centrosymmetric space
group P21/n. The asymmetric unit consists of a copper(II) centre coordinated to one of each ligand
molecule or ion, namely 2,2′-bipyridine, water, benzoate and one half of the oxalate bridge (the
asymmetric term refers to the different C-O bond lengths in the asymmetric unit).
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The equatorial positions on each copper(II) ion are occupied by two nitrogen atoms from the
2,2′-bipyridine ligand (N1, N2), one oxygen atom from the bridging oxalate group (O5) and one oxygen
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atom from the monodentate benzoate ligand (O6). The apical positions are occupied by the oxygen
atom from the water molecule (O1) and the second oxygen atom from the bridging oxalate group (O8).
There is an inversion centre lying in the middle of the C18–C18i bond of the oxalate ligand that bridges
the two copper(II) ions in the usual bis(bidentate) mode, giving rise to the neutral dimeric entity of
[{Cu(bipy)(bzt)(OH2)}2(µ-ox)] as shown in Figure 1.

The coordination environment of the metal ion can be described as distorted octahedral with
significant deviations exemplified by the O5–Cu1–O8 and O8–Cu1–O1 angles of 76.62(7)◦ and 170.00(7)◦,
respectively. The oxalate bridge is asymmetrically coordinated to the copper(II) centres, as indicated
by the Cu1–O5 and Cu1–O8 bond lengths of 1.9732(19) and 2.378(2) Å, respectively. Equatorial Cu–N
(Cu–N1 and Cu–N2) and Cu–O (Cu1–O5 and Cu–O6) distances average to 2.007(2) Å and 1.9578(19) Å,
respectively, and are in good agreement with the corresponding bond lengths reported in the literature
for other dimeric oxalate-bridged copper(II) complexes with the 2,2′-bipyridine ligand [6,11,32]. Due
to the Jahn–Teller effect, the Cu1–O8 and the Cu1–O1 bonds are elongated (2.378(2) Å and 2.426(3) Å)
in comparison to the other bond lengths in the coordination sphere of the metal in 1 (Table 1). These
values are in good agreement with related tetragonally-distorted copper(II) coordination compounds
that contain benzoate and/or an oxalate-bridging ligand [11,48]. The oxalate bite angle at the metal
ion of 76.6◦ is also in accordance with other copper(II) complexes containing asymmetric oxalate
bridges [8,49]. The selected geometric parameters of 1 are shown in Table 1.

Table 1. Selected bond lengths (Å) and angles (◦) for 1, with estimated standard deviations
in parentheses.

Bond Length (Å)

Cu(1)–O(1) 2.426(3) Cu(1)–N(2) 2.006(2)
Cu(1)–O(5) 1.9732(19) O(6)–C(11) 1.263(3)
Cu(1)–O(8) 2.378(2) O(7)–C(11) 1.230(3)
Cu(1)–O(6) 1.9425(19) C(18)–O(5) 1.260(3)
Cu(1)–N(1) 2.008(2) C(18) i–O(8) 1.230(3)

Bond Angle (◦)
O(5)–Cu(1)–O(8) 76.62(7) O(5)–Cu(1)–N(2) 93.67(8)
O(6)–Cu(1)–O(1) 89.46(9) N(1)–Cu(1)–O(8) 95.24(7)
O(1)–Cu(1)–O(5) 94.26(8) N(2)–Cu(1)–O(8) 94.08(8)
O(1)–Cu(1)–O(8) 170.00(7) N(1)–Cu(1)–N(2) 80.56(9)
O(6)–Cu(1)–O(5) 92.77(9) N(1)–Cu(1)–O(1) 94.26(8)
O(6)–Cu(1)–O(8) 86.93(9) N(2)–Cu(1)–O(1) 90.55(9)
O(6)–Cu(1)–N(1) 93.00(9) H(1B)–O(1)–H(1A) 104(3)
O(6)–Cu(1)–N(2) 173.55(9) O(8) i–C(18)–O(5) 124.4(2)
O(5)–Cu(1)–N(1) 169.75(9) O(7)–C(11)–O(6) 125.7(3)

Symmetry code (i): 1 − x, 1 − y, 1 − z.

The monodentate, rather than bidentate, coordination mode of the benzoate ion to the copper(II)
centre is a remarkable feature of 1. It may be explained by its shorter Cu-N bonds lengths (ca 2.0 Å)
than the equivalent ones in analogous manganese(II) [50,51] or cobalt(II) [52,53] complexes, of ca
2.2–2.3 Å and 2.1–2.2 Å, respectively. These short bonds lengths may make it difficult to accommodate
bulky ligands around the copper(II) centre. The monodentate binding of bzt− is interesting since it
leads to hexacoordination, a surprising result for oxalate-bridged copper(II) systems according to an
extensive CSD database search. As already discussed in the Introduction, the metal ion is usually
pentacoordinate when the oxalate-bridged copper(II) ions possess two additional ligands besides
ox2−. Therefore, complex 1 is one of the fairly rare oxalate-bridged copper(II) complexes in octahedral
coordination involving more than one bulky ligand [44,54–56].

Regarding crystal packing, the centrosymmetric dimeric units are linked in a two-dimensional
architecture (parallel to the a-b plane) through moderate O1–H1B . . . O8iii (D . . . A: 2.954(3) Å; D–H . . . A:
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152(3)◦; iii = x − 1, y, z) and weak C4 –H4 . . . O8ii (D . . . A: 3.096(4) Å; D–H . . . A: 145.9◦; ii = −x + 1, −y,
−z + 1) hydrogen bonds (Figure 2; Table S2).Molecules 2020, 25, x FOR PEER REVIEW 5 of 19 
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Figure 2. Representation of the hydrogen bonds (dotted blue lines) and π-π stacking (dotted black
lines) between the bipy ligands with centroids represented by black spheres. The hydrogen atoms
which do not perform hydrogen bonds were omitted for clarity. Symmetry codes: (ii) –x + 1, −y, −z + 1;
(iii) x − 1, y, z. The molecules shown were taken into account for the evaluation of the intermolecular
magnetic interactions by density functional theory (DFT) methods.

Further, intermolecular π···π stacking interactions are observed between intercalated aromatic
rings of the bipy ligands, building layers that are parallel to the crystallographic a-b plane with distances
between centroids of 3.7–3.8 Å (Figure 2), and between overlapping atoms of 3.426 and 3.430 Å for
C3 . . . C9iv (iv = −x, −y, 1 − z) and C4 . . . C6ii. Additionally, intramolecular hydrogen bonds, O1
–H1A . . . O7, are observed between the non-coordinated benzoate oxygen atom and a hydrogen atom
from the coordinated water molecule (D . . . A: 2.723(3) Å; D–H···A: 153(3)◦).

The intermolecular interactions are crucial for the crystal packing and organisation observed of the
molecules in the solid state. The Cu1···Cu1i (i = 1 − x, 1 − y, 1 − z) distance within the dimer is 5.602 Å,
whereas the shortest intramolecular Cu···Cu distance is 5.888 Å for Cu1···Cu1ii, and occurs along the a
axis. The intramolecular Cu···Cu contact is significantly longer than corresponding distances in related
dimeric oxalate-bridged copper(II) species with bipy ligands, which present values in the range of
5.13–5.17◦ [11,14,45,48,57]. Finally, the copper(II) centres are displaced 0.01 Å from the principal mean
plane formed by the O1, N1, O8, C18 and O5 atoms and their symmetry equivalents.

2.2. Thermal Analysis

In order to investigate the thermal stability of 1, the complex was submitted to thermogravimetric
(TG) and differential thermogravimetric (DTG) analyses with a heating rate of 10 ◦C min−1 under N2/O2

flow. The TG/DTG curves and the attribution of each decomposition step are shown in Figure S2 and
Table S3, respectively. The thermal profile obtained for 1 shows three significant decomposition steps:
in the first step, a mass loss of 5.6% refers to both coordinated water molecules (calc. 4.5%) in the range
of 55–136 ◦C, followed by a second loss with a shoulder at 210 ◦C that suggest full decomposition of
the complex. However, from the found and calculated mass contents it was not possible to distinguish
which ligand was lost in these two final steps, although one would expect bzt− to leave the complex
first when compared to bipy and ox2− due to the chelate effect [58,59]. The found and calculated values
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for the loss of bzt− and bipy ligands in step II, 62.5% and 68.9%, respectively, may indicate that their
decomposition process continues to decompose in step III, which, in turn, starts at 305 ◦C. The weight
loss observed for ox2− (15.3%), considered here the last ligand lost in step III, is above the calculated
content of 10.9%, and this could correspond to ox2− being lost together with the remaining mass of
bzt− and/or bipy.

Considering the final mass content at 900 ◦C, which corresponds to experimental and calculated
total mass losses of 84.3% and 83.4%, respectively, one infers that the complex was decomposed
generating CuO as the final product (experimental 16.4%; calculated 15.8%). This obtained oxide was
confirmed by powder XRD of a sample of 1 treated at 900 ◦C, as shown in Figure S3.

2.3. Vibrational Spectroscopy

A comparative IR study of 1 and its starting materials is presented in Figure S4 and Table S4.
The spectrum of 1 indicates deprotonation of both the benzoic and oxalic acids according to the
quenching of the vibrational modes at 1424 cm−1, δ(COH)COOH, and 936 cm−1, β(OH)COOH, for Hbzt,
and also at 1264 cm−1 for δ(OH)COOH in H2ox. The binding of the O-donor ligands to the copper(II)
centre is additionally evidenced by the shift of the absorption bands to lower frequency, from 1685–1689
to 1648 cm−1, attributed to νas(CO) for H2ox and Hbzt, respectively. The arisal of an absorption
band at 1379 cm−1, assigned to νas(CO)COO−, also indicates the coordination of the bzt− and ox2−

ligands [58,60–62]. The intense and broadened bands assigned as ν(OH) for the coordinated water
molecules confirm the occurrence of hydrogen bonds (O1-H1B···O8ii and O1-H1A···O7, Figure 2 and
Table S2) in 1 [61].

The Raman spectrum recorded for 1 (Figure S5 and Table S5) is in accordance with the infrared
analysis as far as the incorporation of the three ligands is concerned: bands at 366-619 cm−1, assigned
to νs(Cu-O) and νs(Cu-N), were observed and indicate the coordination of bipy, ox2− and bzt− [63].

2.4. Electron Paramagnetic Resonance Spectroscopy (EPR)

The X-band EPR spectrum recorded for polycrystalline 1 (ground crystals) at 77 K, along with
simulation (parameters in Table 2), gives an axial profile with g⊥ = 2.09 and g|| = 2.26, as presented in
Figure 3. These values are expected for tetragonally-distorted copper(II) complexes with elongation
along the z-axis, which is in good agreement with the longest bonds in the complex [Cu(1)–O(1),
2.425(3) Å; Cu(1)–O(8), 2.378(2) Å]. The computed g-values at DFT level (g⊥ = 2.06 and g|| = 2.21) are
in excellent agreement with the experiment. The g⊥ < g|| relationship indicates dx2−y2 as the singly
occupied molecular orbital (SOMO), as suggested by the crystal structure [64,65]. The broadness
of the EPR signal centred at 3230 G, which is due to the allowed transitions with ∆Ms = ±1, agrees
with the presence of magnetic interaction between the copper(II) centres in the dimer. The very weak
half-field signal for the ∆Ms = ±2 transitions, characteristic of copper(II) dimeric compounds with
exchange interaction between the metal centres, is also observed as shown in the inset of Figure 3.
Such transitions cannot be observed in S = 1/2 spin systems, being an irrefutable proof of the dimer
formation in this particular case. The simulated axial zero field splitting (ZFS) parameter, D, translates
to a Cu···Cu distance of 6.35 Å, which, considering the uncertainty introduced by the non-resolved
hyperfine couplings, correlates well to the crystallographic Cu···Cu distance of 5.60 Å.

Table 2. EPR spectrum simulation parameters for the frozen solution and solid powder spectra at 77 K.

Sample g-Matrix A-Matrix/MHz D-Matrix/MHz
gx gy gz Ax Ay Az D E

Solid 2.079 2.079 2.278 <100 <100 >360 350 65.5
Frozen solution 2.053 2.078 2.262 <100 <100 555.1 - -
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Figure 3. X-band EPR spectra for solid 1 (ground crystals) at 77 K with amplification (inset) for the
half-field transition. Experimental spectrum in black and simulated spectrum in red.

The frozen solution X-band EPR spectrum of 1 was recorded at 77 K in H2O/glycerol (9:1). It is also
axial with gx, gy (2.05 and 2.08) < gz (2.26). These values are again in agreement with those reported
for axial copper(II) complexes containing coordinated ox2− or water [66,67]. The four-line hyperfine
structure is observed in Figure 4, and arises from the interaction between the unpaired electron of
copper(II) (S = 1/2) and its nuclear spin (I = 3/2) [68].
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with amplification (inset) evidencing the lack of a half-field transition. Experimental spectrum in black
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The lack of a half-field transition, according to the inset in Figure 4, indicates that the dimeric
structure of 1 is not maintained in solution. This proposition is corroborated by the simulated spectrum
(red line in Figure 4, simulation parameter in Table 2), which was generated for a corresponding,
hypothetical mononuclear complex in solution.

The proposition of possible structures for the mononuclear complexes formed in solution is
difficult given the presence of four different ligands in equal proportion—this raises the possibility of a
variety of different structures. Despite this possible structural variety, it is interesting to note that slow
evaporation of the EPR solution of complex 1 (3.0 mmol L−1) leads to its regeneration as verified by the
unit cell analysis of the resulting crystals.
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2.5. UV/Vis Spectroscopy

The electronic spectra recorded for 1 in aqueous solutions of different concentrations, Figure S6,
show a broad asymmetric band at 650–750 nm that can be attributed to d-d transitions in d1 centres.
The assignment of the energy states involved in these transitions is difficult due to the lack of information
about the structures and, therefore, the symmetries of the mononuclear complexes formed in solution,
as suggested by EPR spectroscopy. Besides the d-d transitions, the electronic spectra show intense,
higher energy bands below 310 nm which may be assigned to ligand-to-metal charge transfer and/or
intra-ligand transitions [17,58,69].

2.6. Magnetic Properties and ab Initio Calculations

TheχMT vs. T curve of 1, as well as its field-dependent magnetisation at 2.0 K from a polycrystalline
sample are shown in Figure 5.
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The χMT versus T plot shows that, in the high temperature range (50 < T < 280 K), χMT is nearly
constant (ca. 0.87 cm3 K mol−1), which is in good agreement with the calculated value (0.85 cm3 K mol−1)
considering two copper(II) ions with g = 2.13, as obtained by simulation of the EPR spectra and by ab
initio calculations. Upon cooling, there is a gradual increase of χMT, reaching a maximum value of
1.04 cm3 K mol−1 at 2.8 K, which gives support to the existence of a ferromagnetic interaction.

Due to the dimeric nature of 1, the magnetic susceptibility data were analysed considering
an intramolecular magnetic interaction using the Hamiltonian H = −JS1.S2, with S1 = S2 = 1/2.
The magnetic susceptibility data were fitted using the DAVE software [70]. The best-fit parameters
used were the average g-value = 2.14 and the magnetic exchange interaction (J = 2.3 cm−1), confirming
that the magnetic exchange interaction between the two magnetic copper(II) ions through the oxalate
bridge is weak and ferromagnetic.

The intermolecular through-bond and through-space magnetic interactions were initially neglected.
However, since the intermolecular interactions are mediated by hydrogen bonds between water
molecules and the oxalate bridge, and by π ·· π interactions between bipyridines, we have verified that
the eventual through-bond magnetic interactions are either absent or of lower orders of magnitudes.
Therefore, we chose the two pairs of molecules where the closest CuII ions lie at 5.88 and 7.22 Å,
respectively (see Figure 2, Sections 2.1 and 3.4). The computed magnetic-coupling constants for the
two pairs are antiferromagnetic, and their values are 0.092 and 0.085 cm−1 for the first and second
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pair, respectively. The strength of these intermolecular interactions is one order of magnitude lower
than the intramolecular one. However, such a value cannot be neglected and, therefore, it was
included in the fit. In order to prevent over-parametrisation, the intermolecular magnetic interaction
was obtained considering the mean field approximation and was fixed to the value obtained from
DFT calculation while the magnetic exchange interaction and average g-value were allowed to vary.
The best fit parameters obtained were J = 2.9 cm−1, average g-value = 2.13 and intermolecular magnetic
interaction λ = −0.09 cm−1 (fixed) (Figure 5). The agreement factor R, defined as R = Σ[(χMT)obs −

(χMT)cal]2 / Σ[(χMT)2
obs, is equal to 1.8 × 10−5, and is affected by the noisier data for temperatures

above 60 K; otherwise, at lower temperatures, the fitting is very good. The inset of Figure 5 shows
the field-dependent magnetisation at 2.0 K and the simulated curve using the same Hamiltonian and
parameters as the fit of χT vs. T, confirming the intramolecular ferromagnetic interaction. The dipolar
through-space magnetic interactions have also been evaluated for the CuII ion considering all the
magnetic centres in the crystal packing, which are less than 20 Å away from the centre. The interactions
were computed using the method described by Bencini and Gatteschi, employing the directions
and values of the computed ab initio g-tensor [71]. The isotropic part of such computed magnetic
exchange is 0.00019 cm−1, four orders of magnitude lower than the intramolecular one, and three
orders of magnitude lower than the through-bond intermolecular one. As a consequence, unlike the
through-bond exchange, the dipolar interaction was not included in the fits.

Symmetry considerations applied to the magnetic orbitals of the copper(II) centres help to
understand the nature of the magnetic interactions in 1. Structural parameters, such as the Cu···Cu
distance (dCu···dCu) across the bridging oxalate, the distance between the copper(II) ions and the plane
described by oxygen and carbon atoms of the oxalate group, and the dihedral angle (θ) between
the plane of the containing the bridging oxalate and the equatorial plane of the copper(II) complex,
significantly influence the nature and the magnitude of the magnetic interactions. All these data
can be useful in predicting the nature of the magnetic exchange [8–10,72]. For oxalate-bridged
copper(II) compounds it is well known, both from experiments and theoretical calculations, that if
the symmetry-related dx2−y2 magnetic orbitals are orthogonal to the oxalate-bridge, the compound
can exhibit a weak ferromagnetic interaction. In 1, the plane of the bridging oxalate ion is formed
by O(5), O5i, O8, O8i, C18 and C18i (plane A in Figure 6). So, according to the magnetic data, the
magnetic dx2−y2 orbitals were expected to be located in the plane formed by O5 from ox2−, O6 from
bzt− and N1 and N2 from bipy (plane B in Figure 6). In this case, the magnetic orbitals for both
copper(II) centres would be parallel to each other and almost orthogonal to the oxalate bridge, the
so-called ‘accidental orthogonality’, with a dihedral angle of approximately 86◦, as reported for other
ferromagnetic oxalate-bridged copper(II) dinuclear complexes (Table 3) [8].

Table 3. Selected magnetostructural parameters for oxalate-bridged copper(II) complexes.

Compound (a) dCu···Cu (Å) (b) θ (◦) (c) α (◦) (d) J (cm−1) (e) Reference

[{Cu(bipy)(bzt)(OH2)}2(µ-ox)] 5.60 85.9 107.7 +2.3 Complex 1
[{Cu(dpyam)2}2(µ-ox)](BF4)2·3H2O 5.74 86.1 - +3.38 [44]

[{Cu(dpyam)2}2(µ-ox)](ClO4)2·3H2O 5.75 77.0 - +2.42 [44]
[{Cu(prbipy)}2(µ-ox)]·4H2O 5.46 78.7 107.4 +3.22 [9]

[{Cu(bpca)(H2O)}2(µ-ox)]·2H2O 5.63 80.7 106.8 +1.1 [7]
[{Cu(bpca)}2(µ-ox)] 5.44 86.3 107.4 +1.0 [7,49]

[{Cu(bpcam)(H2O)}2(µ-ox)] 5.68 81.6 106.6 +0.75 [8]
[{Cu(dien)}2(µ-ox)](NO3)2 5.14 4.6 110.2 −6.5 [45]

[{Cu(3-ampy)}2(µ-ox)]n 5.46 4.8 111.0 −1.3 [10]
[{Cu(4-ampy)}2(µ-ox)]n 5.66 2.4 109.7 −1.1 [10]

(a) Ligand abbreviations: ox = oxalate, bipy = 2,2′-bipyridine; bzt = benzoate; prbipy = N-(2-pyrazinyl)-4,4′-bipyridinium;
bpca = bis(2-pyridylcarbonyl)amidate; bpcam = bis(2-pyrimidyl)amidate; dpyam = (di-2-pyridylamine);
dien = diethylenediamine; ampy = aminopyridine. (b) Distance between copper(II) centres mediated by the
oxalate bridge. (c) Dihedral angle between the oxalate plane and the plane containing the magnetic orbital of the
complex. (d) Cu−Oaxial−Cox bond angle measured only when the oxalate is asymmetrically coordinated. (e) Magnetic
coupling parameter.
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There is also a reported correlation between the Cu–Oaxial–Cox bond angle (α) and the nature
of the magnetic interaction for oxalate-bridged copper(II) complexes that present weak magnetic
interaction. For α < 109.5◦, it is highly probable that the magnetic interaction will be ferromagnetic.
On the other hand, if α > 109.5◦, the magnetic interaction will most likely be antiferromagnetic [8,9].
For 1, the asymmetrical coordination of the oxalate ligand is assured by the bond lengths Cu1–O5
and Cu1–O8axial of 1.973(18) and 2.378(2) Å, respectively, and the value of the α angle, given by
Cu1–O8axial–C18i, is equal to 107.7 ◦ Based on this discussion, the comparison of the values of dCu···dCu,
θ and α for complexes similar to 1 that exhibit weak ferro- or antiferromagnetic exchange interactions,
as determined by temperature-dependent magnetic susceptibility measurements, are shown in Table 3.
These structural parameters were obtained from structures reported in the literature as Crystallographic
Information Files (CIF files) using Mercury software [73]. The weak magnetic interaction determined for
1 is in the same range reported for other binuclear complexes with this type of structural arrangement.

To give support to these magnetic orbital symmetry considerations, DFT calculations were
performed using ORCA 4.0.1 software [74]. The magnetic orbitals are sharply localised and the local
dx2−y2 character is confirmed for each copper ion (see Figure 7). Indeed, they are parallel to each other,
but perpendicular to the oxalate plane for both broken symmetry (BS) magnetic orbitals. Smaller
values of electron density cut-off (≤0.05 e−/a0

3) evidenced a small amount of delocalisation on the
second magnetic centre. However, such a delocalised density corresponds to a dxz orbital, which,
being orthogonal to the local dx2−y2 orbital, may lead to a ferromagnetic pathway (see Figure S7) [75].
The calculations have also shown that the spin density computed on each of the copper(II) centres is
essentially the same, as expected from molecular symmetry considerations. The theoretically predicted
J value of +7.72 cm−1 is of the correct sign and order of magnitude, and therefore is in good agreement
with the experimental J value, +2.9 cm−1, confirming that the ferromagnetic interaction is weak.
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3. Materials and Methods

3.1. Materials and Physical Measurements

All chemicals and solvents were used as acquired, without further purification. Chemicals were
purchased from Sigma–Aldrich (St. Luis, MO, USA) and Merck (Merck, Darmstadt, Germany) (purity
grade: 99.5%) and solvents from Sigma–Aldrich (St. Luis, MO, USA) (purity grade: 98.8%–99.0%).
Elemental (C, H, N) analyses were performed on a Thermo Fisher Scientific Flash EA CHNS-O 1112
series element analyser (Thermo Fischer Scientific Inc., Waltham, MA, USA). Copper dosage was
performed on an atomic absorption spectrophotometer (GBC Scientific Equipment Pty Ltd, Hampshire,
IL, USA), GBC Avanta, equipped with a flame atomiser. The crystalline phase purity of the sample was
examined by powder X-ray diffraction (PXRD) using a Shimadzu XRD-6000 diffractometer (Shimadzu
Industrial Systems Co., Ltd., Tokyo, Japan) equipped with Cu-Kα radiation (λ = 1.5418 Å) in a 2θ
range of 10–60◦. The voltage and current applied were 40 kV and 30 mA. The simulated diffractogram
was performed using Mercury software [73] from the data in the CIF file of 1. Infrared (IR) spectra
were recorded with a BIORAD FTS 3500GX spectrophotometer (Bio-Rad Laboratory, Hercules, CA,
USA) from KBr pellets in the range of 400–4000 cm−1, with a resolution of 4 cm−1 in 32 scans. The
Raman spectrum was recorded with a Renishaw Raman image spectrophotometer (Renishaw Plc.,
New Mills, United Kingdom) coupled with a Leica optical microscope in the range of 100–4000 cm−1;
a He-Ne laser (632.8 nm) was employed. The analysed area of the sample was of 1 µm2 with an
applied voltage of 0.2 mW. Electron paramagnetic resonance (EPR) measurements were carried out
in the solid-state (powdered crystals) and in solution (3.0 mmol L−1 in H2O/glycerol 9:1) using an
X-band Bruker ELEXSYS MX-micro spectrometer (Bruker BioSpin Corporation, Billerica, MA, USA)
operating at 9.5 GHz. Simulations were carried out with the EasySpin software package [76]. Magnetic
measurements were performed on a PPMS Quantum Design magnetometer (Quantum Design North
America, San Diego, CA, USA) in the temperature range of 2–300 K—the powdered sample was
pressed into a pellet. Temperature dependence of magnetisation was measured with an applied
external magnetic field of 1 kOe between 2–60 K and 10 kOe above 60 K. Diamagnetic corrections
were made using Pascal constants [77]. Electronic spectra were recorded on a UV/Vis Varian Cary
50 spectrophotometer (Agilent Technologies Inc., Santa Clara, CA, USA) in the range of 190–800 nm.
Thermogravimetric (TG) and differential thermogravimetric (DTG) analyses were carried out on a
NETZSCHSTA 449 F3 Jupiter analyser (Netzsch, Selb, Germany); the experiment was conducted under
O2/N2 (flow rate of 50 mL min−1) in the range of 20–900 ◦C at a heating rate of 10 ◦C min−1.
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3.2. Synthesis of Compound 1

A solution of benzoic acid (0.122 g, 1.00 mmol) and diethylamine (105 µL, 1.00 mmol) in 10 mL
of methanol was added to a suspension of copper(II) acetate monohydrate (0.199 g, 1.00 mmol) in
40 mL of methanol at 70 ◦C. The reaction mixture was stirred for 10 min leading to a bluish-green
solution, which then received the addition of a colourless mixture of oxalic acid dihydrate (0.063 g,
0.50 mmol) and diethylamine (105 µL, 1.00 mmol) in 10 mL of methanol. A light-blue solution was
immediately formed and was stirred for 10 min. Finally, the addition of a light-yellow solution of
2,2′-bipyridine (0.156 g, 1.00 mmol) in 10 mL of methanol, followed by stirring for 30 min, led to a
change of colour to dark-blue. Bluish-green prismatic crystals were obtained after solvent evaporation
at room temperature for 36 days (0.3640 g, 90% yield based on copper(II) acetate monohydrate).
Solubility: slightly soluble in water, methanol, and glycerol. Elemental analysis calculated (%) for
C36H30Cu2N4O10: C 53.66, H 3.75, N 6.95, Cu 15.77; found: C 53.26, H 3.77, N 7.14, Cu 16.39. IR
(KBr, cm−1, s = strong, m = medium, w = weak): ν(O-H) = 3460(m); ν(C-O, COO−) = 1648, 1379(s);
ν(C=C and C=N) = 1602–1445(m, w); δ(C-H) = 1305–1019(w); β(C-H) = 779–675(m). Raman (cm−1):
ν = 3054(m) (O-H); ν(CO)COO− = 1597 (s); ν(C=C and C=N) = 1597–1494(s, m); δ(CCH) = 1268(w);
δ(OCO) = 843(w); ν(Cu=O and Cu=N) = 619–366(w).

3.3. X-ray Crystallographic Data Collection and Refinement

A bluish-green single crystal of 1 was mounted on a micromount-type mesh (Mitegen). The data
was obtained on a Bruker D8 Venture diffractometer equipped with a Photon 100 CMOS detector,
Mo-Kα radiation (λ = 0.71073 Å) and graphite monochromator. Diffraction data were measured at
302(2) K and processed using the APEX3 program [78]. The structure was determined by the intrinsic
phasing routines in the SHELXT program [79] and refined by full-matrix least-squares methods, on F2’s
using SHELXL program [80,81] in the WinGX suite [82]. The non-hydrogen atoms were refined with
anisotropic thermal parameters. All hydrogen atoms were located in difference Fourier maps and were
refined isotropically and freely. Molecular diagrams were prepared using ORTEP3 [82] and Mercury
software [73]. The crystal data collection and refinement parameters are summarised in Table 4.

Table 4. Crystal data and refinement parameters for compound 1.

Formula C36H30Cu2N4O10

Formula weight 805.72 g mol−1

Temperature (K) 302(2)
Wavelength (Å) 0.71073 Å
Crystal system Monoclinic

Space group P21/n (equiv. to no 14)
Z/calculated density 2/1.593 Mg m−3

a (Å) 7.1994(3)
b (Å) 10.0894(4)
c (Å) 23.1941(10)
β (◦) 94.385(2)

Unit cell volume (Å3) 1679.83(12)
Absorption coefficient µ (mm−1) 1.333

F(000) 824
Crystal size (mm)/colour 0.175 × 0.087 × 0.067/bluish-green

θ range (◦) 2.9–25.0
h, k, l ranges ±8, ±11, ±27

Completeness to θ = 25◦ 99.9%
Total reflections/unique reflections/Rint 51619/2953/0.069

No of parameters/restraints 243/2
Goodness-of-fit on F2 (GOF) 1.037

R1, wR2 (all data) b 0.052, 0.085
R1, wR2 [I > 2σ(I)] a,b 0.033, 0.078

∆ρmaximum/∆ρminimum(eÅ−3) 0.29/−0.17
a R1 = Σ||Fo| − |Fc||(Σ|Fo|)−1; b wR2 = {Σ[w(Fo2

− Fc2)2[Σ(Fo2)2]−1}1/2.
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3.4. Theoretical Methods

Density functional calculations were performed with the quantum chemistry software ORCA
4.0.1 [74]. The X-ray structure of 1 was employed without any further geometry optimisation.
The PBE0 [83] hybrid exchange-correlation functional was chosen. The basis sets were: def2-TZVPP [84]
on Cu, N, O and C, and def2-SVP on H. The broken symmetry (BS) approach [85] was used to extract
the magnetic-coupling constants. Single point calculations on both the triplet and the broken symmetry
state were performed. Hence, within the Heisenberg Hamiltonian H = −JS1·S2, the value of the
exchange constant was computed within the following formula: J = −(EHS − EBS)/(2S1S2), where HS
is the triplet (S = 1). Within the same approach, the intermolecular exchange interaction was also
computed in two dimer models. Both models were made using two molecular units of 1, as extracted
from the crystal structure—the two molecular pairs whose closest Cu ions lay at 5.88 Å and 7.22 Å
away from each other, respectively. The two pairs were chosen due to their Cu···Cu distance below
10 Å. Moreover, in both molecules the first pair interacts via hydrogen bonds between the oxalate
bridge and the water molecules, while the second pair interacts through π-π stacking of the bipyridine
ligands (see Section 3.1), which could promote a non-negligible superexchange path via π orbital
overlap. All the other Cu atoms in the crystal are at a larger distance and, as a consequence, they
were neglected in a first approximation. The exchange constant was computed by converging on
the quintuplet and on the singlet states, i.e., the two states that arise from the two ground triplets
ferromagnetically and antiferromagnetically coupled. The g-matrix of a single copper(II) atom was
also computed by DFT methods. For this purpose, one of the two copper(II) atoms of the dimer was
substituted in silico for its diamagnetic equivalent zinc(II). The g-matrix was obtained within the
coupled-perturbed self-consistent field (CPSCF) approach [86] as implanted in Orca.

4. Conclusions

A new dinuclear copper(II) complex was synthesised and characterised. The crystal structure
showed that [[{Cu(bipy)(bzt)(OH2)}2(µ-ox)] (1) is centrosymmetric and contains two rather bulky ligands,
benzoate and 2,2′-bipyridine, while the majority of the complexes of this class contain just one bulky
ligand. The magnetic interaction predicted by EPR was confirmed by magnetic measurements and
indicated ferromagnetic coupling between the metal centres. The determined J value was supported
by DFT calculations. Therefore, the present study highlights the importance of the oxalate bridge as a
magnetic-exchange pathway, and how bulky ancillary ligands can affect the magnetic response.

Supplementary Materials: The following material is available online, Figure S1: Comparison between simulated
and experimental PXRD patterns of complex 1 (scan velocity: 0.005◦ s−1), Figure S2: Thermogravimetric analysis
(TG and DTG) profiles obtained for 1 in O2/N2 as carrier gas and temperature range of 20 to 900 ◦C, Figure S3:
Comparison between simulated and experimental PXRD patterns of CuO (scan velocity: 0.005◦ s−1), Figure S4:
Infrared spectra of 1 and its starting materials, H2ox·2H2O, Hbzt and bipy recorded from KBr pellets, Figure S5:
Raman spectrum recorded for 1 with exposure time of 10 s and power at 50 % (laser: He-Ne, 632.8 nm), Figure S6:
UV-Vis absorption spectra recorded for complex 1 at 3.00, 2.50, 2.00, 1.50 and 0.75 mmol L−1 in water, Figure S7:
Graphic representation of the two occupied broken symmetry (BS), spin-up and spin-down, magnetic orbitals
for complex 1. The electron density iso value was set to 0.04 e/(a0)3. Light-blue: carbon; white: hydrogen; red:
oxygen; orange: copper; pink: nitrogen, Table S1: Values of 2θ angles for the experimental and simulated PXRD
diffractograms of 1 from 10 to 30◦ displaying a difference of ca 0.1◦, Table S2: Hydrogen bond parameters (Å, ◦),
Table S3: Thermal data for 1, Table S4: Tentative assignments for the IR (cm−1) spectrum recorded for complex 1,
Table S5: Tentative assignments for the Raman scattering (cm−1) spectrum recorded for complex 1. CCDC 1971374
contains the supplementary crystallographic data in CIF format, and this data can be obtained free of charge at
http://www.ccdc.cam.ac.uk/structures.
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