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Abstract
There are many challenges to coupling the macroscale to the microscale in temporal
or spatial contexts. In order to examine effects of an individual movement and spa-
tial control measures on a disease outbreak, we developed a multiscale model and
extended the semi-stochastic simulation method by linking individual movements to
pathogen’s diffusion, linking the slow dynamics for disease transmission at the pop-
ulation level to the fast dynamics for pathogen shedding/excretion at the individual
level. Numerical simulations indicate that during a disease outbreak individuals with
the same infection status show the property of clustering and, in particular, individ-
uals’ rapid movements lead to an increase in the average reproduction number R0,
the final size and the peak value of the outbreak. It is interesting that a high level of
aggregation the individuals’ movement results in low new infections and a small final
size of the infected population. Further, we obtained that either high diffusion rate of
the pathogen or frequent environmental clearance lead to a decline in the total number
of infected individuals, indicating the need for control measures such as improving air
circulation or environmental hygiene. We found that the level of spatial heterogeneity
when implementing control greatly affects the control efficacy, and in particular, an
uniform isolation strategy leads to low a final size and small peak, compared with
local measures, indicating that a large-scale isolation strategy with frequent clearance
of the environment is beneficial for disease control.
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1 Introduction

The transmission of infectious diseases exhibits spatiotemporal multiple-scale prop-
erties, including transmission dynamics at the population level, with viral replication
and interaction with targeted cells at the individual level. Moreover, between-host
disease transmission is generally dependent on the within-host viral loads, and vice
versa. Also, different enteroviral serotypes greatly influence the between-host trans-
mission. A number of mathematical models of infectious diseases have been studied
extensively by employing single-scale-based models at the immunological or epi-
demiological scales (Anderson and May 1991; Nowak and May 2000; Diekmnann
and Heesterbeek 2000). The immunological models focus on the within-host immune
viral dynamics at the individual level, while the epidemiological models focus on the
between-host transmission dynamics at the population level. Availability of big data at
various levels and emergence of unanswered questions enable novel methods of math-
ematical models to connect within-host immune viral dynamics with the between-host
epidemiological transmission of infectious diseases.

Amultiscale immuno-epidemiologicalmodeling approach has become an emerging
method to study the synergistic dynamics of pathogens/viruses at the individual and
population levels (Gog et al. 2015; Shen et al. 2015; Sun et al. 2016; Hosseini andGab-
hann 2012; Dorratoltaj et al. 2017; Bauer et al. 2009). Furthermore, the mechanisms
and processes (transmission, replication, pathogen shedding, infection) for infectious
disease systems can be modeled for each hierarchical level. These can then be coupled
via bridges between themicroscale and themacroscale, leading to similar categories of
multiscalemodelswhich include individual-basedmultiscalemodels (IMSMs), nested
multiscalemodels (NMSMs), embeddedmultiscalemodels (EMSMs) and hybridmul-
tiscale models (HMSMs) (Garira 2017, 2018; Feng et al. 2012; Murillo et al. 2013;
Gandolfi et al. 2014; Yu and Bagheri 2016). Agent(individual)-based models (ABMs
or IBMs) are particularly well suited to characterize biological phenomena in a multi-
scale, multiclassmanner. In particular, they can simulate ensembles of individual hosts
in time and space, represent detailed information on epidemic states and contribute
to our understanding of disease pathology and epidemiology (Sun et al. 2016; Bauer
et al. 2009).

In the environmental transmission of some infectious diseases, pathogen shed-
ding/excretion and pathogen transmission are the two main processes by which
the fundamental mechanisms at the microscale and the macroscale may be cou-
pled and influence each other (Feng et al. 2012, 2013). The microscale submodel
and the macroscale submodel may be described by either the same or different for-
malisms (mathematical representations). Numerical computation becomes quite hard
for various formalisms, with examples of such paired formalisms being determin-
istic/stochastic, discrete time/continuous time, mechanistic/phenomenological (Sun
et al. 2016; Wang et al. 2012, 2015; Wang and Tang 2017). In particular, it is
challenging to simultaneously simulate random moving events, epidemic processes
(transmission, recovery and etc) of individuals as well as the pathogen’s shed-
ding/excretion, transmission and continuous diffusion.

Themain purpose of this study is to develop the computational methods to deal with
two spatial scales (randomly moving individuals and continuous diffusion of bacteria)

123



Coupling the Macroscale to the Microscale in a… Page 3 of 27 58

and temporal scales (slow dynamics of disease transmission at the population scale
and fast dynamics for pathogen shedding/excretion at the individual level), in order
to examine how the spatial movements of individuals and/or pathogens affect the
infectious disease and, in particular, the cumulative number in the infected population
and the average reproduction number. It is a systematic analysis of the effects of
individual random walks in space, virus particles’ diffusion and a threshold control
policy on the transmission of infectious diseases.

2 Individual-Based Stochastic SimulationModels (IBMs)

To describe the coupling of random movement of individuals in space, an epidemic
process and the release and diffusion of pathogens, we initially present how to simulate
the individuals’ epidemic process and movement based on individual-based stochas-
tic simulations. Then we link this stochastic simulation to the pathogen dynamics
with a partial differential equation. Finally, we simulate some interventions to exam-
ine effects of control strategies on outbreaks. In order to show all of the possible
processes clearly, we use the classic deterministic SIR-type epidemic model with
both direct and indirect transmission of free-living pathogens (Anderson and May
1991; Diekmnann and Heesterbeek 2000). Note that when modeling indirect trans-
mission, the grow of pathogen is mainly assumed to be dependent either only on
the shed of the infected individuals or on both the shedding and its’ growth due
to self-growing in reservoir (Codeco 2001; Joh et al. 2009; Kong et al. 2014; Tien
and Earn 2010; Rohani et al. 2009; Mukandavire et al. 2011; Luo et al. 2017).
Here we take the MRSA (Methicillin-resistant Staphylococcus aureus) and MRAB
(multidrug-resistant Acinetobacter baumannii) induced infection in the hospital as
examples to consider (Wang et al. 2012, 2015; Wang and Tang 2017). Conse-
quently, we initially assume the pathogens grow only depending on the infected
individuals’ shedding and leave other case for discussion. The model equations
are: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = −βSI − νSW

dI (t)
dt = βSI + νSW − γ I

dR(t)
dt = γ I

dW (t)
dt = ηI − (μ + νN )W (t)

(1)

where S, I and R denote the number of susceptible, infected and recovered indi-
viduals, W (t) is the pathogen concentration in the environment at time t . The
total population is constant N (N = S + I + R). Parameters β and ν rep-
resent the direct and indirect transmission rates, respectively, and γ denotes
the recovery rate. η denotes the pathogen shedding rate of infected individ-
uals and μ denotes the rate of clearance of the pathogen from the environ-
ment.

The crucial question is how to deal with both the spatial and temporal scales (indi-
viduals’ random and relatively slowmovements and the pathogen’s fast, wide-ranging
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diffusion) when we design the algorithms for the SIRW model (1). To do this, a
semi-stochastic simulation method was employed, i.e., the variation amongst individ-
uals (susceptible, infected and recovered individuals) are treated stochastically, while
the dynamics of the bacterial changes are treated deterministically and follow the
reaction–diffusion equation. Hence, stochastic simulation algorithms are used for the
individuals’ dynamics and numerical method for the deterministic PDE equation is
then applied to the variation amongst the free-living pathogens. Meanwhile, alternat-
ing direction implicit (ADI) time and space discretization schemes for model (1) will
be employed (Peaceman and Rachford 1995).

2.1 IBMs Among Hosts: Epidemic Process and RandomMoving

Epidemic process We formulate a general stochastic individual-basedmodel by event-
driven simulations, develop the numerical algorithm to simulate the spatially random
walk and the pathogen’s diffusion. The event-driven approach using the directGillespie
algorithm (Gillespie 1976, 1977; Keeling and Rohani 2008) can easily be adapted,
and we get the stochastic simulation model with the following probabilities:

(S, I ) → (S − 1, I + 1) with a probability of βSI ,
(I , R) → (I − 1, R + 1) with a probability of γ I .
For spatial transmission events, we assume that an infected individual can only

infect susceptibles within a certain radius rather than throughout the whole region.
Spatial transmission is captured using a technique similar to the integro-differential
equation model, then the transmission term (force of infection) to a susceptible indi-
vidual i is given by:

λi = β

NI∑

j∈I
KT (Di j ),

where Di j is the distance between the susceptible individual i and an infectious indi-
vidual j , and KT is the transmission kernel that measures how transmission decreases
with distance KT (Di j ) = D−α/2

i j . Recovery of an infectious individual is independent
of its position in space, hence the recovery rate of infectious individual j is constant
γ .

Randommoving To describemovement of individuals, we let individuals randomly
and spontaneously move from their current location to a new location according to a
local movement kernel.Meanwhile, to represent the aggregation effect among individ-
uals, we assume that the velocity/direction of an individual’s movement is dependent
on both his/her own original velocity/direction and the populations’ velocity/direction.
Assume that the individuals were represented by points moving continuously (off-
lattice) on the plane. Consider total population (N = S + I + R) at position x(t) =
(x1(t), . . . , xN (t)) moving with dimensionless velocities v(t) = (v1(t), . . . , vN (t))
and direction angles θ(t) = (θ1(t), . . . , θN (t)). We can then write the movement
dynamics as a system of difference Equations (DEs) as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

xi (t + 1) = xi (t) + vi (t + 1),

vi (t + 1) = σvi (t) + (1 − σ)vi0

(
cos(θi (t + 1))
sin(θi (t + 1))

)

θi (t + 1) = 〈θi (t)〉r + 
θi .

(2)

where the velocity of an individual vi (t+1) is dependent on the initial velocity vi0 and
a direction given by the angle θi (t + 1). Here 〈θi (t)〉r denotes the average direction of
the velocities of individuals (including individual i) being within a circle of radius r
surrounding a given individual, the average direction was given by the angle

arctan

[
sin 〈θi (t)〉r
cos 〈θi (t)〉r

]

.


θi is a random number chosen with a uniform probability from the given interval.
Note that here the angle of an individual’s movement at the next moment depends
on two factors: the average moving angle of the population within a radius of clus-
tering and random disturbance received by the current individual. Thus, the random
perturbation may be strong enough such that an individual may move away from
group movements and move independently. Similarly, the velocity of an individual’s
movement at the next moment depends on its own movement speed and population
movement speed with a weighted parameter σ . Thus, if σ is relatively large, then an
individual is more likely to move along its own way, while if σ is relatively small,
then the individual could be more significantly affected by group movement. Thus,
the parameter σ could describe the level of conformity (or bandwagon effect). The
algorithm for the epidemic process and randommovement is listed in “Appendix A1”.

2.2 IBMs Among Hosts and Pathogens: Epidemic Process and Hosts’
Movement/Pathogens’Diffusion

To further consider diffusion of a free-living pathogen based on the individual-based
simulation model, we assume that the infected individual can shed pathogens, and
that pathogens can be taken to different places either by the movement of infected
individuals or by movements in the air. Note that the susceptible individuals can
be infected either by the infected individuals or by free-living pathogens (as shown
in Fig. 1). There is a strong empirical evidence that humans have immunological
thresholds for infections by waterborne diseases (Joh et al. 2009; Kong et al. 2014;
Luo et al. 2017), it is thus interesting to incorporate an immunological threshold
for infections when considering indirect transmission via free-living pathogen. We
then assume that the pathogen can infect the susceptible individuals only when its
concentration reaches a certain threshold value. That is, there is a positive threshold
value Wc such that the indirect transmission rate takes the formula of

ν = ν(W (t, x)) =
{

0, W (t, x) ≤ Wc,

ν0, W (t, x) > Wc,
(3)
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Fig. 1 Structure of SIDW model
for illustration of epidemic
events, individuals movements
and diffusion of bacteria (Color
figure online)

with positive constant ν0.We treat the dynamics of the pathogen deterministically, and
hence the diffusion of pathogens in space is then modeled by the following reaction–
diffusion equation

∂W (t, x)

dt
= ηI (t, x) − (μ + νN )W (t, x) + D
W , (4)

where D denotes the dispersal rate. Note that we model the diffusion for pathogens by
Brownian motion without considering an advective term (usually needed for water-
borne diseases), which is motivated by the MRSA and MRAB infection in hospital
ward. To develop an effective algorithm, we need to consider two key points: (a) the
difference scheme of the reaction–diffusive equation (4)—which is given in detail in
“Appendix A3”; (b) the method of coupling the pathogens’ diffusion with individuals’
movements and transmission at spatiotemporal scales.

Here we give our novel ideas on how to keep the individuals’ movement consistent
with the spatial diffusion of the released pathogen and focus on the two following
novelties: (i) coupling the spatial scales—the spatially shed pathogen from an infected
individual should be linked to the dynamics of the pathogen described by the reaction–
diffusion equation (4). In particular, given an infected individual I j releasing pathogen
at the rate of η j at location x , the shed pathogen then follows the dynamics of model
(4), and hence should be located in the grid associated with the spatial place x . (ii)
Coupling the temporal scales—individuals’ movement should be linked to the spatial
diffusion of the pathogen at the temporal scale. Note that the time of individuals’
movement is the number of iterations (Iter) with a step size of (dt = 1), then we
choose the step size for simulating the reaction–diffusive equation (4) as τ = T /Iter.
The detailed algorithms are given in “Appendix A3”.
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2.3 Modeling the Threshold Control Measures

Spatial control measures involve where to control or what the intensity of a control
measure is. To address this, we assume that there exists a critical size of infected
individuals, denoted by Ic, such that we trigger the control measures (local isolation
strategy or uniform isolation strategy) once the total number of infected individuals
reaches the threshold Ic. The general ODEmodel equation without considering spatial
factor is as follows:

dY

dt
= f (t,Y , 
(t)u(t)), with 
(t) =

{
0, I ≤ Ic,
1, I > Ic,

(5)

where state variable Y = (S, I , R)T and a critical level of infection Ic(Ic > 0)
determines whether a control measure, represented by u(t), is triggered or not. This
threshold policy (hereafter named TP), which is a simple case of variable structure
control in the control literature, has been successfully applied to pest management and
disease control (Tang et al. 2012; Tang and Liang 2013; Xiao et al. 2013, 2015).

Local isolation strategy denotes the isolation of infected individuals within their
cluster radius and also the limitation of the movement of susceptibles within the
radius. Here, within the isolation area the infected individuals could release pathogen
into the environment, which may infect susceptible individuals within the isolation
area. Once an infected individual recovers, then he/she can move freely as before.
This local isolation strategy resembles the Fengxiao strategy which was widely used
in universities in China during the A/H1N1 pandemic influenza in 2009 (Tang et al.
2010).Wegive the detailed algorithms to realize the local control strategy in “Appendix
A2”.

Uniform isolation strategy means that some common isolation areas (such as a hos-
pital ) during the whole outbreak are used to isolate and treat infected individuals.With
this measure, the infected individual, once diagnosed, is taken to (and stochastically
set in) the common isolation area. Similarly, the isolated infected individuals cannot
move into the common isolation area, but can shed pathogen. In contrast, the sus-
ceptible individuals can move freely in the common isolation areas and consequently
may be infected, which calls for strong stringent disinfection measures in the common
isolation areas.

3 Results

We simulate the transmission dynamics of an infectious disease while individuals are
moving. Figure 2 illustrates the variation in both spatial position and infection status
of individuals induced by a single infected individual at different times. It shows the
whole process of the disease outbreak while individuals are moving and, in particular,
during a disease outbreak individualswith the same infection status exhibit the property
of clustering.
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Fig. 2 Spatial distribution of susceptible (black), infected (red) and recovered (green) individuals. Based
on Keeling’s idea and considering the individual movement within a certain plane, i.e., the position of
any individual could be dynamic as time varies . The parameter values are as follows: the total number of
N = 763 with spatial grid [0, 20]×[0, 20], β = 0.025, α = 3.5, γ = 0.17 and I0 = 1 . The initial velocity
v0 = 0.2, the radius of nearest neighbor is r = 1, the intensity of direction perturbation 
θ = 0.06 with
σ = 0.66 (Color figure online)

3.1 Effect of Individuals’Movements on Disease Specifics

In order to better evaluate the effects of spatial movement on the spread of disease,
we take the mean R0, final size and peak time as indices to show how the key parame-
ters affect the disease spread. Here the basic reproduction number R0 is the expected
number of secondary infectious individuals generated by a single infected individual
during his mean infectious period. To do this, the above indicators are obtained by
means of the average over 200 simulations. We mainly focus on effects of the veloc-
ity of individuals’ movement (V0), the radius of spatial infection (r ) and the weight
parameter (σ ) on the above indicators and consider the following three cases:

Case A: Effect of velocity V0 on disease specifics We list the possible final
sizes (RFN), peak timings, peak values for various velocities in Table 1. The results
reveal that the individuals’ movement speed V0 plays an important role in affecting
the spread of infectious diseases. It shows that as the movement speed increases, the
average R0 will gradually increase. Note that when the moving speed is very low,
for example V0 = 0.01, the average R0 is less than that for the classic SIR model
without movement. That is because we assume that the infected individuals can only
infect the susceptibles around them rather than all possible susceptibles. Thus, when
the moving speed is very low, the neighborhood of infected people may not have a
sufficient number of susceptibles.However, as the speed increases, i.e., the individuals’
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Table 1 The effect of movement speed V0 on the average indicators of interest

V0 Mean R0 Final size Peak time Peak value Outbreaks

0.010 1.7500 35.0150 105 3.8350 Multiple

0.025 2.3000 105.7250 91 7.2650 Multiple

0.005 3.1700 264.6300 100 19.0250 Multiple

0.075 4.1400 411.7000 80 30.5250 Multiple

0.100 4.8950 535.7350 63 45.4450 Multiple

0.125 5.2200 583.8800 55 57.9850 Multiple

0.150 6.1350 635.9850 58 69.3250 Single

0.175 6.4050 657.4650 42 83.6400 Single

0.200 7.0450 683.0300 39 93.2650 Single

Table 2 The effects of cluster radius r on the average indicators of interest

r Mean R0 Final size Peak time Peak value Humps

0.20 4.2250 376.1200 102 63.2500 Single

0.30 4.1300 363.3850 99 37.4400 Multiple

0.40 3.6100 282.7750 108 21.9300 Multiple

0.50 3.1700 264.6300 100 19.0250 Multiple

0.60 2.9900 265.1750 91 15.6150 Multiple

0.70 2.7950 300.0350 83 17.3600 Multiple

0.80 2.7100 319.4850 93 18.7600 Multiple

0.90 2.6350 304.2050 98 19.8100 Multiple

1.00 2.5250 320.0100 113 20.8400 Multiple

aggregation is so fast that more susceptible individuals could be within the radius of an
infected individual, resulting in an increase inmean R0 and eventually the reproduction
number mediated by individuals’ movement may be greater than that for the model
without movement. Further, it follows from Table 1 that the higher the velocity V0 is,
the higher the final size, the higher the peak value and the earlier that the outbreak
peaks. A relatively slow movement may result in multiple outbreaks, while quick
movements lead to a single peak being more likely.

Case B: Effect of the radius of spatial infection r on disease specifics Note that
the cluster radius could influence the individual behavior during the movement. In
the following, we investigate variation in disease specifics with r for fixed velocity
V0 = 0.05, and list outcomes in Table 2. It follows that increasing the cluster radius r
gradually decreases the average R0, while the impacts of r on the final size, peak time
and peak value seem to be non-monotonic and exhibit more complex patterns, which
reveals that small variations in the cluster radius could result in significant changes in
those indicators.

Case C: Effect of weight parameter σ on disease specifics To investigate the effect
of weight parameter σ on the mean R0 and outbreaks, we investigate variation in
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Table 3 The effects of weight parameter σ on the average indicators of interest

σ Mean R0 Final size Peak time Peak value Humps

0.10 2.6750 273.1550 101 20.4800 Multiple

0.20 2.7300 262.5450 116 19.8050 Multiple

0.30 2.9150 281.3000 88 19.6900 Multiple

0.40 3.0900 257.2750 93 17.2250 Multiple

0.50 3.2800 253.4650 90 16.2850 Multiple

0.60 3.2600 259.5900 65 17.0600 Multiple

0.70 3.3500 285.2350 120 17.4250 Multiple

0.80 3.5950 331.5400 92 24.4600 Multiple

0.90 4.1150 410.6250 117 35.6750 Multiple

disease specifics with σ for fixed V0 = 0.05, r = 0.5, and list outcomes in Table 3. It
follows that increasing the weight parameter σ greatly increases the average R0, while
the impacts of σ on the final size, peak time and peak value exhibit non-monotonic
and more complex patterns, indicating that small variations in parameter σ , associated
with the level of following herd behavior, could result in significant changes in those
indicators. This means that the lower the bandwagon effect is (i.e., the greater σ ) the
more new infections there are, which is because more individuals move in their own
ways such that the infected individuals move to the wider areas and may infect more
other susceptibles.

3.2 Impact of Local Control Measures (Spatial Threshold Policy) on the Spread of
Disease

Here, we focus on effects of the critical size Ic and the number of initial infected
individuals on the indicators discussed above.However, the actual control reproduction
number is adopted, which is the average number of secondary infections induced by
a single infected individual under the control strategies. The control reproduction
number Rc

0 can be defined as follows:

Rc
0 =

∑Ic
j=1 R

j
0

Ic
,

where R j
0 represents the secondary infections induced by the j-th infected individual.

We consider the following four cases: let the threshold level Ic = 6, 7, 8, 9, 10 with
initial infected individuals I0 = 1 (Case 1), I0 = 2 (Case 2), I0 = 3 (Case 3) and
I0 = 3 and allowing that any individual can slowly move in the isolation area (Case
4, and here V r

0 = 0.015). Note that here the total number of infected people may not
reach the critical size Ic for some simulations, and consequently control measures are
not triggered at all. Another possible extreme case is that some infected individuals
may not infect any susceptible individual during thewhole simulation process, thenwe
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A B

C D

Fig. 3 Variation in mean R0 and disease specifics with the threshold level Ic for four different cases. The
baseline parameter values in this subsection are fixed as follows: N = 763with spatial grid [0, 20]×[0, 20],
β = 0.025, α = 3.5, γ = 0.17, and I0 = 1. 
 = 0.06, σ = 0.66 with V0 = 0.005, cluster radius r = 0.5
(Color figure online)

do not consider those extreme scenarios when we calculate the control reproduction
number Rc

0.
Figure 3 shows the effects of threshold level Ic and initial data I0 on the mean Rc

0
and other epidemic specifics. It follows from Fig. 3a that for a given initial data I0,
the Rc

0 shows the decline trend as Ic increases, which implies that the later the control
strategy implements (greater value of Ic) the lower the number of new infections (the
lesser Rc

0). It seems unreasonable that early implementation of strategies induces more
new infections. Bearing in mind that this isolation strategy does not only isolate the
infected individuals but also the susceptibles who are within the cluster radius of the
isolated infected individual. Then early implementation of control strategies usually
brings about the clustering of outbreaks in local areas, and consequently induces more
new infections, which was observed during the 2009 A/H1N1 pandemic influenza
(Tang et al. 2010) when the Fengxiao strategy was implemented. Further, it shows
that the mean Rc

0 in Case 4 is larger than that for Case 3 for all threshold levels Ic,
which implies that if the individuals in the isolation area can move slowly, then the
mean reproduction number Rc

0 is greater than that for the case in which the individual
cannot move.

Further, Fig. 3a indicates that for a given threshold level Ic the mean Rc
0 will

increase as I0 increases. It seems odd that the mean reproduction number should be
independent of the initial number of infected individuals. It is worth mentioning that
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Fig. 4 Illustration of the infection dynamics, spatial movement of infected persons and cumulative growth
of bacteria. Red circles represent the infected individuals and red circles with ∗ denote the individuals
infected by bacteria, yellow dots represent the pathogens. The six subplots reveal the spatial distribution of
pathogen growing and diffusion over time (Color figure online)

the spatial distribution of individualswill varywith different initial numbers of infected
individuals when the isolation strategy has been triggered (i.e., the threshold level Ic
is reached), as shown in Figs. 10, 11 and 12 in “Appendix”. In particular, Figs. 10,
11 and 12 in “Appendix” show that the spatial heterogeneity becomes stronger when
more infected individuals are introduced, then the isolated areas are distributed more
broadly, and consequently more new infections are obtained (meaning greater mean
value of Rc

0). It follows that the higher the number of initial infected individuals, the
higher the peaks and the greater the final size, compared with Cases 1, 2 with 3 (or 4,
as shown in Fig. 3b, c, and the earlier the outbreak peaks, as shown in Fig. 3d.

3.3 Effects of Spatial Factors (Individuals’Movements and Pathogen Diffusion) on
the Disease Spread

In order to further examine the impact of microscale infection/diffusion processes,
we now extend our simulation model by linking the pathogen’s shedding/excretion,
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A B

C D

Fig. 5 The effect of parameter D on the number of the infected (a, b) without pathogen growing in
reservoir (c, d) with pathogen growing in reservoir given in (6) with g = 1,C = 1. The baseline parameter
values are as follows: β = 0.025, γ = 0.17, α = 3.5, and the parameters for individual initial velocity
v0 = 0.005, r = 0.5, the shading rate of i-th infected individual is ηi = 0.6 with bacteria threshold
(w0 = 0.4). We choose the dispersal rate and cleaning rate for investigating the effects of bacteria on
disease spread, where I0 = 5 (Color figure online)

transmission and continuous diffusion to the epidemic process and randommovement
of individuals at the population level. We initially design the difference scheme of the
reaction–diffusive equation (4) and then develop the method of coupling pathogens’
diffusion with individuals’ moving and transmission at spatiotemporal scales to do
individual simulations at both the microscale and the macroscale. Similarly, we ran
the algorithms 200 times and provide the mean incidence of disease infection over
200 times. Figure 4 reveals the dynamics of population infection, spatial movement
of infected individuals and cumulative growth of pathogen over time. It also shows
individuals with the same infection status showing the property of clustering.

To investigate the effect of pathogen diffusion on disease spread, we plot the number
of infected individuals versus time at various diffusion rates D, as shown in Fig. 5. It
shows that a high diffusion rate of pathogen results in a decline in the total number
of infected individuals and the number of infected individuals who are infected by
pathogen (as shown in Fig. 5a, b). This implies that air flow (or air movement) is
beneficial for disease control. A repeat of plotting the number of infected individuals
with various dilution rates of pathogen μ reveals that the total number of infected
individuals, the recovered population and peak values decrease as theμ increases. The
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plots are similar to Fig. 5 and we omit them. This reveals that frequent environmental
clearance is beneficial for mitigating disease spread.

To further examine the influence of pathogens growing in the environment on
outcomes, we repeat Fig. 5 with the dynamics of pathogens following

∂W (t, x)

dt
= ηI (t, x) + gW (t, x)(1 − cW (t, x)) − (μ + νN )W (t, x) + D
W .

(6)

Here positive constants g and 1/c denote the grow rate and the carrying capacity,
respectively. The plots shown in Fig. 5c, d illustrate that a high diffusion rate of
pathogen leads to an increase in the total number of infected individuals and the num-
ber of infected individuals who are infected by pathogen, which implies that higher
diffusion of pathogen, due to its ability of self-growing in reservoir, causes more con-
taminated places and induces more infected individuals. This indicated that inclusion
of pathogens growing can induce a significant amplification in disease outbreaks with
varying diffusion rates D, which agrees well with the existing results (Codeco 2001;
Joh et al. 2009; Kong et al. 2014).

3.4 Impact of Control Tactics Associatedwith Immediate Isolation Once Diagnosed

To investigate the effects of the rate of clearance μ and the control strategy on the
disease spread, we illustrate the six epidemic indices including IFN (BFN)—the total
number of infected individuals (who are infected by bacteria), peak (Bpeak)—the
maximal number of infected individuals (who are infected by pathogen), peak time
( Bpeak time)—the time that the maximal number of infected individuals (who are
infected by pathogen) is reached, as shown in Fig. 6. It follows from Fig. 6 that
increasing the rate of clearance greatly reduced the BFN and Bpeak, as expected,
indicating that environmental cleaning is effective in lowering infections via free-
living pathogen in the contaminated environment. It also shows that taking the local
isolation measure does not influence the changing trend of BFN, Peak and Bpeak with
varying parameter μ, but results in lower values of BFN, peak and Bpeak and later
peaks. That is because the local isolation measure limits movement of infected and
susceptible individuals, and then leads to a low level of infections.

To further investigate the effect of the uniform isolation strategy with various sizes
of control areas, we simulate the proposed model with an isolation region to examine
disease specifics (IFN, BFN peak and etc). Without loss of generality, we assume
that there is a rectangular area in the centre of the whole considered space, in which
the infected individuals are isolated, as shown in Fig. 13, which reveals the epidemic
process, individuals’ movement and pathogens’ diffusion under the uniform isolation
measure. Here we consider the following four cases:

Case u1 (or u2) Let I0 = 5 and the isolation region is a rectangle of [9, 11]×[9, 11]
(or [8, 12] × [8, 12]);

Caseu3 (or u4) Let I0 = 20 and the isolation region is a rectangle of [9, 11]×[9, 11]
(or [8, 12] × [8, 12]);

123



Coupling the Macroscale to the Microscale in a… Page 15 of 27 58

Fig. 6 Variation in disease specifics with the rate of clearance for the simulation model with and without
local isolation measures over 200 simulations. IFN (BFN)—the total number of infected individuals (who
are infected by bacteria), peak (Bpeak)—the maximal number of infected individuals (who are infected
by bacteria), peak time (Bpeak time)—the time that the maximal number of infected individuals (who are
infected by bacteria) is reached (Color figure online)

Fig. 7 Variation in disease specifics with the rate of clearance for Case u1 (green) and Case u2 (red) under
uniform isolation strategy. Diffusion rate of bacteria is D = 0.005 (Color figure online)
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Fig. 8 Variation in disease specifics with the rate of clearance for Case u3 (green) and Case u4 (red) under
a uniform isolation strategy. Diffusion rate of bacteria is D = 0.005 (Color figure online)

Fig. 9 Variation in disease specifics with the rate of clearance for the local isolation strategy (blue), uniform
isolation strategy (Case u1 (green), Case u3) (red). Diffusion rate of bacteria is D = 0.005 (Color figure
online)

Again, we run the algorithms 200 times and provide the mean incidence of disease
infection over 200 times. Figures 7 and 8 show the results on disease specifics of
Case u1 with Case u2 and those of Case u3 with Case u4. These results indicate
that the common control region with relatively large size leads to an increase in IFN,
BFN, peak and Bpeak and late peaks. In particular, Fig. 7 shows that for low values
of μ the IFN and BFN for Case u1 are smaller than those for Case u2, while for
high values of μ the IFN and BFN for Case u1 are greater than those for Case u2.
This implies that with frequent clearance of the environment the uniform isolation
strategy with a large control region leads to the total number infected individuals
decline, which suggests that a large-scale isolation strategy with frequent clearance
of the environment is beneficial for disease control. Figure 8 shows the similar trend
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of variation in disease specifics with varying the rate of clearance μ, and moreover
it exhibits large and late peaks when more initial infected individuals are introduced
in the numerical simulations. It also follows from Figs. 7 and 8 that the uniform
isolation strategy with larger size could postpone the peaks but with higher peak
values.

In order to compare the uniform isolation strategy (Case u1 and Case u3) with
local isolation measures we again plot the disease specifics including IFN, BFN, Peak
etc., with various μ, as shown in Fig. 9. A relatively large rate of clearance of the
pathogen leads to lower infections with the local isolation strategy than for those
with the uniform isolation strategy. However, the uniform isolation strategy results
in lower values of IFN, with small and early peaks for any rate of clearance. That is
because under a local isolation strategy more aggregated outbreaks within the isolated
areas may happen, inducing more total infections. This points to the advantages of the
uniform isolation measure (or large-scale isolation strategy).

4 Conclusion and Discussion

Mathematical modeling is an essential tool to achieve a system-level understanding of
pathogen replication, spread and disease transmission at the population level. There
are many challenges to coupling deterministic and stochastic simulations of discrete
entities constituting the linkage of the macroscale to the microscale at temporal or
spatial scales. Although IBMs have suffered from notable limitations including com-
putational expense, but with more programming expertise and synthesis of different
spatiotemporal scales (Yu and Bagheri 2016), they can record critical information for
each individual such as by whom a person was infected, when he/she got infected
and at which infection age an infected individual infected others. In this study, we
develop an algorithm to simulate how individuals transmit infectious diseases to oth-
ers and may release pathogens into the environment while moving, and vice versa
these free-living pathogens can further infect individualswhile dispersing, e.g.,MRSA
(Methicillin-resistant Staphylococcus aureus) andMRAB (multidrug-resistant Acine-
tobacter baumannii) transmissions in hospital infections (Wang et al. 2012, 2015;
Wang and Tang 2017). We link individual random movements to pathogen’s continu-
ous diffusion, link the slow dynamics for disease transmission at the population level
to the fast dynamics for pathogen shedding/excretion at the individual level, in order
to examine effects of the individuals’ movements, pathogen’s diffusion and spatial
control measures on the disease outbreak. It is a systematic analysis of the effects of
individual random walk in space, pathogen’s diffusion, disease transmission (directly
or indirectly via the pathogen) and threshold control policy on the transmission of
infectious diseases.

Numerical simulations indicate that during a disease outbreak individuals in the
same infection status show the property of clustering and, in particular, individuals’
quick movements lead to an increase in the average reproduction number R0, final size
and the peak value. Increasing the cluster radius r decreases the average R0, while the
weight parameter σ , associated with the level of autonomous mobility, increases the
average R0. This indicates that the more the bandwagon effect is (i.e., the lower σ )
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the fewer the new infections, which is because more individuals get together such that
disease transmission becomes difficult due to lack of susceptibles.

Note that here increasing moving velocity leads to an increase in the average
reproduction number R0, which is opposed to most of previous works in which
the basic reproduction number R0 is decreasing with respect to the diffusion coef-
ficient based on the reaction–diffusion equations (Allen et al. 2008; Peng 2009; Peng
and Liu 2009; Peng and Yi 2013; Pang and Xiao 2019). It seems reasonable that
strengthening diffusion increases disease transmission and hence is harmful for dis-
ease control, as suggested by our results and by the recent work on SEIR-type model
reaction–diffusion model (Song et al. 2019). The disagreement on effect of diffusion
on R0 between our result and previous works is because individuals movement in
our simulation has a kind of direction and is also mediated by population’s move-
ment direction, rather than random diffusion represented by the reaction–diffusion
equations.

Given the local isolation strategy under a threshold policy, we found for a given
initial datum I0, the mean control reproduction number Rc shows the decline trend
as Ic increases, while for a given threshold level Ic, the mean Rc will increase as I0
increases. This indicates that the earlier the control strategy is implemented (lower
value of Ic) the more new infections there are (the more Rc), which is in agreement
with results of Tang et al. (2010) in which an early Fengxiao strategy induced more
local A/H1N1 cases. That is because this early local strategy may lead to aggregated
outbreaks within the isolated areas. Moreover, the more the initial infected individuals
are introduced (the greater I0), the stronger the spatial heterogeneity is when control
is implemented, and hence the more new infections there are. This indicates that high
level of spatial heterogeneity of seeded infection is a risk factor that induces new
infections and large outbreak.

When considering the pathogens’ dynamics, we treat them deterministically due
to the high rates of the shedding, diffusion and frequent cleaning of the environment,
and hence the variation of the pathogen index is described by a reaction–diffusion
equation. We found that either a high diffusion rate of the pathogen or frequent
environmental clearance leads the total number of infected individuals to decline,
which implies that air movement and frequent cleaning are beneficial for mitigat-
ing an outbreak. We further investigated the effect of a uniform isolation strategy
on disease outbreaks and obtained that with frequent clearance of the environment
a large size of the uniform isolation region results in a small final size, indicating
that a large-scale isolation strategy with frequent clearance of environment is ben-
eficial for disease control. By comparing the local and uniform isolation strategies,
we obtained that the uniform isolation strategy leads to lower values of IFN, and
peaks, suggesting the advantages of the uniform isolation (or large-scale isolation)
strategy.

This study developed a multiscale model and the corresponding simulation method
by linking individual movements to pathogen’s diffusion, linking the slow dynam-
ics for disease transmission at the population level to the fast dynamics for pathogen
shedding/excretion at the individual level. Some interesting and realistic conclusions,
especially the efficacy of various control strategies on disease infection, were sug-
gested. However, it is challenging to test the control measures by specific diseases
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due to lack of reliable data on the concentration of pathogen with/without diffusion,
and we leave this for future work. We note also that our transmission simulation is
based on a neighbor principle, that is, an infected individual can only infect susceptible
individuals within a certain radius, which is a reasonable but ignoring contact network
structure. Meanwhile we acknowledge that complex contact network structure greatly
influences on disease infection (Sun et al. 2018; Xiao et al. 2011; Shirley and Rushton
2005) and we leave this for future research.
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Appendix

In the appendix, we provide the ideas of how to realize the disease transmission while
individuals’ movement and pathogen’s diffusion, and give the detailed framework of
algorithms proposed in this manuscript (Figs. 10, 11, 12, 13).

A B

C D

Fig. 10 Spatial distribution of infected individuals with I0 = 1, Ic = 6 (Color figure online)
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A B

C D

Fig. 11 Spatial distribution of infected individuals with I0 = 2, Ic = 6 (Color figure online)

A B

C D

Fig. 12 Spatial distribution of infected individuals with I0 = 3, Ic = 6 (Color figure online)
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Fig. 13 Illustration of the infection dynamics, movement and uniform isolation strategy. Black and green
dots represent susceptible and recovered individuals, respectively, red dots represent individuals infected
either by infected individuals or by the pathogen, purple dots denote individuals infected by bacteria,
light-blue dots indicate individuals recovering from pathogen infection (Color figure online)
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Appendix A1: Framework of Algorithm of the Epidemic Model with Individuals’
Movement

Algorithm 1 IBM
1: Initial grid space, discrete time, initial the parameter N , β, γ , transmission kernel parameters, initial

individuals states and positions, dimensionless velocities, directions angles, cluster radius
2: for all time do
3: for all i ∈ N do
4: for all j ∈ N do

5: di, j =
√

(xi,1 − x j ,1)2 + (xi,2 − x j ,2)2

6: find the nearest individuals with radius r
7: update the direction angles, velocities and positions
8: end for
9: end for
10: select the grid square B with XB susceptible individuals
11: for all i ∈ I do
12: compute event rates λi = β

∑NI
j∈I KT (Di j ),

13: convert probabilities Pi B = 1 − exp(−λi ), s = 1
14: for all j ∈ XB do
15: P = 1 − s(1 − PAB)XB+1− j

16: if rand < Pi B then
17: s = 0, compute Qi, j=P (j-th in square B is infected )
18: if rand < Qi, j /P then
19: infect the j-th individual
20: end if
21: end if
22: end for
23: end for
24: update the individuals’ states
25: end for
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Appendix A2: Framework of Algorithm for theModel with Local Isolation
Strategies

Algorithm 2 The realization of control strategy, i.e., local and critical size control
method
26: If the number of infected individuals ≥ Ic
27: for all i ∈ N do
28: if i is an infected individual then
29: let velocity=0
30: find all individuals within the radius r , denoted as N I

i
31: for all j ∈ N I

i do
32: if j is a susceptible then
33: infected within hospital, then using Keeling’s program 7.5(Keeling and Rohani 2008)
34: end if
35: end for
36: else if If i is a susceptible then
37: find all individuals within the radius r , denote as NS

i
38: if there is any infected individual in NS

i then
39: let velocitie=0
40: else
41: update the angles, velocity
42: end if
43: else if i is a recovered individual
44: update the angles, velocity
45: end if
46: update position
47: end for

Appendix A3: Framework of Algorithm for Coupling Pathogens’Diffusion with
Individuals’Movement

In this part, we initially give the details of the difference scheme of reaction–diffusive
equation 4. For the diffusion term, we use the ADI (alternating-direction implicit)
method to solve the diffusion equation. TheADI schemeprovides a feasiblemethod for
solving the parabolic equations in 2-spatial dimensions by using tri-diagonal matrices.
To do this, each time increment is executed in two steps.

In order to solve the diffusive-bacteria model, we first mesh the region. Considering
a two-dimensional square space L×L , and the time is T . Given isometric subdivision,
we choose two positive integers M, N , let h = L/M, τ = T /N , xp = ph, yq =
qh(0 ≤ p, q ≤ M), tn = nτ(0 ≤ n ≤ N ), 0 = x0 < x1 < · · · < xM = L, 0 =
y0 < y1 < · · · < yM = L, 0 = t0 < t1 < · · · < tN < T , the space increment is
h = xp+1 − x(p) = y(q + 1) − y(q)(p, q = 0, 1, . . . , M − 1), and time increment
is τ = tn+1 − tn(n = 0, 1, . . . , N − 1). We divide the space-time domain into a cube
grid, and the lattice point is (xp, yq , tn), then the function wn

p,q will be approximation
to the solution of Eq. 4 at the point (xp, yq , tn).
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We introduce the transition layer n + 1/2, there are two steps from n to n + 1: For
the first step, from n to n+1/2, we use an implicit difference scheme in the x direction
and an explicit difference scheme in the y direction. Then we have:

Wn+1/2
p,q −Wn

p,q
τ/2 = D

(
Wn

p+1,q−2Wn
p,q+Wn

p−1,q

h2
+ Wn+1/2

p,q+1−2Wn+1/2
p,q +Wn+1/2

p,q−1

h2

)

−(μ + νN )Wn
p,q +

NI∑

i=1
ηi I i

n+1/2
p,q

(7)

Let ζ = τD
2h2

in the above equation, then we get

ζWn+1/2
p,q−1 + (1 + 2ζ )Wn+1/2

p,q − ζWn+1/2
p,q+1 = ζWn

p−1,q + (1 − 2ζ − τ/2(μ + νN ))Wn
p,q

+ζWn
p+1,q+1 + τ/2

NI∑

i=1
ηi I i

n+1/2
p,q

(8)
which is explicit.

For the second step, from n + 1/2 to n, we use an explicit difference scheme in the
x direction and an implicit difference scheme in the y direction. Then we obtain the
following equation:

Wn+1
p,q −Wn+1/2

p,q

τ/2 = D

(
Wn+1

p+1,q−2Wn+1
p,q +Wn+1

p−1,q

h2
+ Wn+1/2

p,q+1−2Wn+1/2
p,q +Wn+1/2

p,q−1

h2

)

−(μ + νN )Wn+1/2
p,q +

NI∑

i=1
ηi I i

n+1/2
p,q

(9)

Similarly, we let ζ = τD
2h2

and rearrange the above equation, then we get

−ζWn+1
p−1,q + (1 + 2ζ )Wn+1

p,q − ζWn+1
p,q−1

= ζWn+1/2
p,q−1 + (1 − 2ζ − τ/2(μ + νN ))Wn+1/2

p,q

+ζWn+1/2
p,q+1 + τ/2

NI∑

i=1
ηi I i

n+1/2
p,q

(10)

which is implicit.
The boundary conditions for the problem are approximately byW1,0:M = WM,0:M ;

W0:M,1 = W0:M,M .
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Appendix A3: Framework of Algorithm of SIRWModel

1. Initialization: conditions at the start of a simulation

• Initialization space grid for bacteria diffusion at which N individuals are randomly distributed
in these space grids with I infected individuals contained in. Setting the parameter values, time
scales 
T and λ
T (i.e., time for individual movement and time for bacteria diffusion);

• Initialization of coefficient matrix ν(x, y) of bacteria infected individuals in space grid area;
• S0 susceptible individuals randomly distributed on the grid;

2. Overview: Timing and order of events

• Deterministic events for individual and bacterial scale interaction
– bacteria reproduction: An infected individual’s movement in space, a deterministic event

∑NI
i=1 ηi Ii (x, y, t);

– Bacterial space diffusion: D

(
∂W2(t,x,y)

∂x2
+ ∂W2(t,x,y)

∂ y2

)

;

• Random event for individual scale
– Movement: Individuals movement according to Algorithm 1.
– Transmission: according to Algorithm 1
– Recover: according to Algorithm 1

• Infection random events, bacteria infected individuals with multiscale interaction
– If the local bacteria exceeds a threshold B, the S many be infected by the local bacteria with

a probability ν

3. Update the individuals’ states and position, spatial bacterial concentration and other related parameters
and states.
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