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Summary

Here, we present Scribe (https://github.com/aristoteleo/Scribe-py), a toolkit for detecting and 

visualizing causal regulatory interactions between genes and explore the potential for single-cell 

experiments to power network reconstruction. Scribe employs Restricted Directed Information to 

determine causality by estimating the strength of information transferred from a potential regulator 

to its downstream target. We apply Scribe and other leading approaches for causal network 

reconstruction to several types of single-cell measurements and show that there is a dramatic drop 

in performance for “pseudotime” ordered single-cell data compared to true time series data. We 

demonstrate that performing causal inference requires temporal coupling between measurements. 

We show that methods such as “RNA velocity” restore some degree of coupling through an 

analysis of chromaffin cell fate commitment. These analyses highlight a shortcoming in 
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experimental and computational methods for analyzing gene regulation at single-cell resolution 

and suggest ways of overcoming it.

eTOC blurb

Qiu et al present Scribe (https://github.com/aristoteleo/Scribe-py), a toolkit for detecting and 

visualizing causal regulatory networks between genes in diverse single cell datasets. They use 

Scribe to understand how casual network reconstruction depends on temporal coupling between 

measurements. They show that while pseudotime-ordered single-cell data fails to capture much of 

the information present in true temporal couplings, RNA velocity measurements restore much of 

this information.

Graphical Abstract

Introduction

Most biological processes, either in development or disease progression (Faith et al., 2007; 

Friedman et al., 2000; Langfelder and Horvath, 2008; Margolin et al., 2006; Meyer et al., 

2008), are governed by complex gene regulatory networks. In the past few decades, 

numerous algorithms for inferring networks from observational gene expression data (Faith 

et al., 2007; Friedman et al., 2000; Langfelder and Horvath, 2008; Margolin et al., 2006; 

Meyer et al., 2008) have been developed.
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Inferring a network of regulatory interactions between genes is challenging for two main 

reasons. A first challenge is that adding even a handful of genes to a network inference 

analysis requires that an algorithm consider many additional interactions between them (Fig. 

1A). Each of these potential regulatory interactions must be accepted or rejected on the basis 

of data. If a network that includes a particular gene regulatory interaction does not 

statistically “explain” the observed data substantially better than the network that excludes it, 

the interaction should be rejected. Deciding whether to include an interaction in a network is 

especially difficult because adding interactions risks overfitting to a particular dataset. 

Ultimately, because the number of edges explodes as the number of genes grows, so too do 

the algorithms demand for input data.

A second challenge in regulatory network inference is distinguishing upstream regulatory 

genes from their targets directly downstream. Most methods that aim to do so are predicated 

on the notion that changes in regulators should precede changes in their targets in time (Fig. 

1B) (Bar-Joseph et al., 2012). Granger causality (GC) (Granger, 1969) is a statistical 

hypothesis test for determining whether one time series (X1) is useful in forecasting another 

(X2) which has been applied to infer biological networks (Zou and Feng, 2009). However, 

GC assumes a linear relationship between the regulator and the target, which is violated in 

many biological settings (Hill et al., 2016). Convergent Cross Mapping (CCM) (Sugihara et 

al., 2012), a more recent technique based on state-space reconstruction (Takens, 1981) can 

detect pairwise non-linear interactions. However, this method is limited to deterministic 
systems, and thus may be poorly suited for many cellular processes (e.g. cell differentiation), 

which are inherently stochastic.

Single-cell transcriptome sequencing experiments (scRNA-seq) are attractive for gene 

regulatory network inference for two reasons. First, scRNA-seq experiments now routinely 

produce thousands of independent measurements, which may open the door to sufficiently-

powered inference (Liu and Trapnell, 2016). Second, algorithms that order the cells along 

“trajectories” that describe development or disease progress offer a tremendously high 

“pseudotemporal” view of gene expression kinetics (Haghverdi et al., 2016; Qiu et al., 

2017a; Setty et al., 2016; Trapnell et al., 2014). The recently introduced SCENIC method 

(Aibar et al., 2017) combines GENIE3 (Huynh-Thu et al., 2010) with regulatory binding 

motif enrichment to simultaneously cluster cells and infer regulatory networks. Other studies 

have inferred regulatory networks from scRNA-seq data using differential equations 

(Matsumoto et al., 2017; Ocone et al., 2015), information measures (Chan et al., 2017), 

Bayesian network analysis (Sanchez-Castillo et al., 2017), boolean network methods 

(Hamey et al., 2017) or linear regression techniques (Huynh-Thu et al., 2010; Papili Gao et 

al., 2017; Wei et al., 2017). However, most methods don’t explicitly leverage time-series 

data to identify causal interactions, and more importantly, most fail to recover the correct 

network even in simple settings (Babtie et al., 2017; Fiers et al., 2018).

Here, we introduce Scribe, a scalable toolkit for inferring causal regulatory networks that 

relies on Restricted Directed Information (RDI) (Rahimzamani and Kannan, 2016). In 

contrast to GC and CCM, Scribe learns both linear and non-linear causality in deterministic 

and stochastic systems. It also incorporates rigorous procedures to alleviate the sampling 

bias and builds upon improved estimators and regularization techniques to facilitate 
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inference of large-scale causal networks. In concordance with theory, we demonstrate that 

Scribe has superior performance compared to existing methods when the observations 

consist of true time-series data. However, current scRNA-seq protocols do not follow the 

same cells over time, breaking temporal coupling between measurements. We demonstrate 

that there is a dramatic drop in performance in causal network accuracy when the temporal 

coupling between measurements is lost. We then demonstrate that “RNA velocity”, a 

recently developed analytic technique for single-cell RNA-seq analysis, restores temporal 

coupling and improves causal regulatory network inference. Our results suggest that 

preserving this coupling should be a major objective of the next generation of single-cell 

measurement technologies.

Results

Previously, we proposed Restricted Directed Information (RDI) (Rahimzamani and Kannan, 

2016, 2017), an information metric to accurately and efficiently quantify causality (STAR 

Methods). Here, we introduce Scribe, a toolkit built upon RDI, that is designed for the 

analysis of time-series datasets (either real time, RNA velocity, pseudotime or live-imaging 

datasets), and is especially tailored for single cell-RNA-seq (Supplementary Figure 1 and 

STAR Methods) and their visualization (Supplementary Figure 2 and STAR Methods).

In order to assess the performance of Scribe, we examined Caenorhabditis elegans’ early 

embryogenesis, where live-imaging has been used to measure nearly half of all transcription 

factors’ protein expression dynamics in every single cell in an embryo (Murray et al., 2012). 

This dataset consists of 265 time series each of which tracks the expression dynamics of a 

transcription factor using fluorescent reporter constructs. Measurements were collected at 

one-minute intervals in every cell of the developing embryo for the first ~350 minutes of 

embryogenesis (Fig. 2A).

We tested whether Scribe was able to learn validated genetic interactions that govern worm 

development. For example, it is understood that in the intestinal cell lineage Ealap the 

transcription factors end-1 and end-3 were upregulated prior to their targets elt-2 and elt-7 

(Fig. 2B and well before most other upregulated factors in this lineage (Fig. 2C and 

(Wiesenfahrt et al., 2016)). We ran Scribe on these four genes to determine whether it could 

correctly infer the causal regulatory interactions between them. Although Scribe captured 

some known causal interactions among the core transcription factors that specify this lineage 

(Owraghi et al., 2010), it also reported both false positive and false negative interactions 

based on previously curated networks (Owraghi et al., 2010; Wiesenfahrt et al., 2016). For 

example, Scribe reports that end-1 also strongly regulates end-3 which is not supported by 

previous studies (Owraghi et al., 2010; Wiesenfahrt et al., 2016) (Fig. 2D). The entire Ealap 
lineage-specific network of C. elegans’s early embryogeneis constructed by Scribe is shown 

in Fig. 2E–G; zoomed-in versions of each network state is available in the Supplemental 

Information and Scribe’s GitHub repository. Overall, Scribe was able to accurately infer 

known regulatory hierarchy (Fig. 2F, (Murray et al., 2012)),
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Accurate causal network inference requires temporally coupled expression 

data

Next, we explored Scribe’s ability to recover causal interactions using single-cell RNA-seq 

which in contrast to live-imaging measures many genes in each cell. We first collected 

publicly available datasets from several biological systems including developing airway 

epithelium (Treutlein et al., 2014), dendritic cell response to antigen stimulation (Shalek et 

al., 2014), and myelopoiesis (Olsson et al., 2016). We then pseudo-temporally ordered these 

cells as previously described using Monocle 2 (Qiu et al., 2017a). Next, we ran Scribe on 

these pseudo-time series (Fig. 3, Supplementary Figures 3) and examined the regulatory 

interactions reported for known transcriptional regulators of these systems. For each gene, 

we summed the causal interaction scores to all other genes, deriving a measure of its 

aggregate influence on the system. These aggregate causality scores were significantly 

higher for known transcriptional regulators than for genes believed to be targets by the 

authors of the original studies (unpaired two-sample t-test, Supplementary Figure 3).

We next explored whether Scribe can accurately reconstruct causal regulatory networks. 

Recently, Olsson and colleagues suggested a core network of transcription factors for 

regulating myelopoiesis (Olsson et al., 2016) by performing bulk ATAC-seq, ChIP-seq, 

perturbation experiments and profiling the transcriptomes of 382 cells from flow-sorted 

populations undergoing the transition (Fig. 3A). We used Scribe to calculate causal scores 

for each regulator-target pair from the Irf8 and Gfi1 master regulators of the monocyte or 

granulocyte lineage as identified by Olsson et al., respectively, to the other six genes in the 

core network, using single-cell RNA-seq data alone. We hypothesized that Scribe would 

return strong causal scores for the targets ascribed to each regulator but not others. We 

observed that expression kinetics over pseudotime correctly reflect the network architecture 

(Fig. 3A, B). We represent the causal network inferred by Scribe as a heatmap where each 

row corresponds to the causal score from the regulator to all other genes and the color 

corresponds to the magnitude of the causal score (Fig. 3C). Scribe assigns a high causality 

score for all targets of Irf8 (Gfi1, Irf5, Klf4, Per3, Zeb2) but lowest causality score to Irf8 
and Ets1 which are not its direct targets. Similarly, Scribe assigns a high causality score for 

the majority of Gfi1’s targets (Irf8, Klf4, Per3) even though Gfi1 has low expression values 

(Fig. 3C). Visualization of the combinatorial regulation of Irf8 and Gfi1 to either Zeb2 or 

Per3, based on the Scribe visualization toolkit, captures the conflicting regulation pattern 

between two regulators and their two targets (Fig. 3D).

To determine Scribe’s capabilities to reconstruct transcriptome-level causal networks 

containing edges between transcription factors (TFs) as well as from TFs to putative 

downstream targets, we applied Scribe to scRNA-seq data of haematopoiesis(Paul et al., 

2015). We find that the lineage-specific genes tend to have high total outgoing RDI sum 

among all significant transcription factors (Fig 3E). When restricting to a small subset of 

previously identified erythropoiesis associated TFs, we find Scribe identified several 

regulatory interactions, such as Gata1-Gfi1-Klf4, which are known to play an important role 

in myeolopoeisis (Laslo et al., 2006; Stopka et al., 2005; Tamura et al., 2015) Fig. 3F). 

However, in recovering known regulatory interactions in each system based on a manually 
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curated network from the literature, Scribe only marginally outperformed GC and CCM but 

all three methods generally performed poorly, with no method reaching an AUC of greater 

than 0.7 (Fig. 3G–I).

We hypothesized that as with live imaging datasets, lack of coupling between the expression 

measurements in pseudo-temporally ordered single-cell RNA-seq data leads to poor 

accuracy during regulatory network inference. In contrast to true time series in which an 

individual cell is tracked and measured longitudinally, in pseudo-temporal datasets, each 

expression measurement comes from a different cell. Therefore, although pseudotime 

reveals overall trends of the gene expression dynamics, the real-time gene expression 

“micro-fluctuations” (fluctuations that happen within short time-scales) of a regulator to a 

target is not captured in pseudotime.

To test whether causal network inference requires temporal coupling between genes across 

measurements, we ran Scribe on simulated data based on a core network of neurogenesis 

(STAR Methods) collected using four strategies for obtaining longitudinal measurements 

from individual cells. First, we consider “real-time”, an ideal theoretical technology in 

which all genes are tracked in each individual cell as that cell differentiates. We therefore 

consider a second setting “live-imaging”, in which each cell is tracked over time but only 

one gene is measured. Third, we examine pseudotime, where all genes are measured only 

once in distinct cells that have been sampled from a population undergoing differentiation. 

Finally, we tested Scribe on RNA velocity data, which consists of a snapshot measurement 

of each cell’s current transcriptome along with a prediction of that same cell’s expression 

levels at a short time in the future (Supplementary Figure 4A).

Using pseudo-temporal measurements, Granger causality, convergent cross-mapping, and 

Scribe all performed very poorly in recovering direct, causal interactions between genes in 

the hypothetical network (Supplementary Figure 4B). The inability of these methods to 

recover regulatory interactions is unlikely to be due to the undersampling of the system, as 

the performance was insensitive to varying the number of cells captured in the simulated 

datasets (Supplementary Figure 4C, D). Performance of the three methods was only 

modestly better when using data captured by “live imaging.

We next evaluated two alternative modes of measuring gene expression dynamics in single 

cells in which fluctuations are coupled. Using conditional Restricted Directed Information, 

Scribe produced highly accurate reconstructions from “real-time” measurements of gene 

expression (AUC: 0.859 ± 0.0283), in which every gene is measured repeatedly in a set of 

cells as they differentiate. This demonstrates that when measurements are fully coupled 

across time, and fluctuations in a regulator can propagate to its targets, restricted directed 

information correctly reveals causal regulatory interactions. Scribe also recovered accurate 

networks (AUC: 0.837 ± 0.0189) with “RNA velocity” measurements (Supplementary 

Figure 4A). Although RNA velocity does not repeatedly measure cells, it provides a 

“prediction” of the future expression levels of each gene based on comparing mature to 

immature transcript levels, in effect introducing a form of temporal coupling to the data. 

These simulations show that methods for regulatory inference based on information transfer 
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fail using data from measurement modalities in which fluctuation of a regulator’s expression 

across cells is “uncoupled” from fluctuations in its targets.

Causal network inference with “RNA-velocity” reveals regulatory 

interactions that drive chromaffin cell differentiation

We next sought to test whether Scribe could recover causal network interactions using real 

RNA velocity measurements. Recently, La Manno and colleagues applied RNA-velocity to 

study the chromaffin cell differentiation as well as their associated cell cycle dynamics (La 

Manno et al., 2018). We used this chromaffin dataset as a proof-of-principle for 

incorporating “RNA velocity” into Scribe. We first reconstructed a developmental trajectory 

from mature mRNA expression levels from each cell in this dataset and then applied BEAM 

(Qiu et al., 2017b) to identify genes that significantly bifurcate between Schwann and 

chromaffin cell branches (Fig. 4). These genes were enriched in processes related to neuron 

differentiation along the path from SCPs (Schwann Cell Progenitors) to mature chromaffin 

cells (Supplementary Figure 4E).

We then applied Scribe to the RNA velocity measurements from the 3,665 significantly 

branch-dependent genes (qval < 0.01, Benjamini-Hochberg correction) (Figure 4C, 

Supplementary Figure 4). We first built a network between significant branching 

transcription factors (TFs) as well as from TFs to the significant targets in chromaffin 

lineage and found that only 0.75% of TFs interact with each other while 8.40% TFs regulate 

potential targets (causality score > 0.05) (Supplementary Figure 4E–G). We then inferred a 

core network between fourteen TFs believed to drive chromaffin cell differentiation (Furlan 

et al., 2017). Within this core network, Scribe identified two feed-forward loop (FFL) motifs 

(Alon, 2007): Eya1-Phox2a-Erbb3 and Gata3-Phox2a-Notch1 (Fig. 4C–E). The STRING 

database of genetic and molecular interactions (Szklarczyk et al., 2017) provided additional 

support for these regulatory motifs (Supplementary Figure 4H). From the RNA-velocity 

network, we also find that SCPs related TFs, such as Sh3tc2, tend to have stronger causal 

regulation (ranked higher in terms of hubness as shown in the arc plot) while chromaffin 

cell-related TFs, including Chga and Th, has much smaller causal regulations, reflecting the 

network captures transition from SCPs to chromaffin cells (Furlan et al., 2017).

Discussion

Despite extensive research into gene regulatory network inference over the past several 

decades, the fundamental source of poor performance by these methods on single-cell data 

remains uncertain. One possibility is that, even with the tremendous gains in the throughput 

achieved by the developers of single-cell RNA-seq technology over the past decade 

(Svensson and Vento-Tormo, 2017), these methods still haven’t been provided with 

sufficient data to accurately reconstruct networks. Alternatively, the basic approach of 

inferring genetic interactions based on statistical interactions between their measured 

expression levels may be fundamentally limited.

We developed Scribe, which uses recently reported advances in information theory to infer 

complex causal regulatory interactions between genes. Scribe employs Restricted Directed 
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Information (RDI), overcoming limitations inherent to Granger Causality (GC) and 

Convergent Cross Mapping (CCM). Scribe also provides several ways to visualize causal 

information transfer, helping users distinguish between direct and indirect interactions and 

unravel combinatorial regulatory logic.

Although Scribe correctly infers causal regulatory interactions in simulated measurements 

that track all the genes in an individual cell over time, it performs poorly on live imaging or 

pseudotemporally ordered single-cell datasets. We demonstrate that poor performance is due 

to the loss of temporal coupling between measurements of genes that interact, in which 

fluctuations in the levels of a regulator propagate to measurements of its targets. This may 

explain poor performance by a broad class of information theoretic or statistical approaches 

for inferring regulatory networks from single-cell RNA-seq data. If so, then simply 

improving the throughput of single-cell RNA-seq protocols will not be sufficient to power 

inference methods. Pseudotemporally ordering single-cell RNA-seq data provides a boost to 

the number of genes that may be considered, and the temporal coupling provided from joint 

measurement via live imaging of pairs of genes could boost power further (Figure 4F).

Improvements to single-cell expression assays that produce measurements for multiple 

genes that are coupled across time may enable the accurate regulatory network inference 

possible using Scribe or similar approaches. Although methods for nondestructively tracking 

expression levels of many genes in single cells over time have not been described, several 

assays have been reported that provide snapshot estimates of both steady-state mRNA levels 

along with their rates of synthesis. These assays report measurements of the current and 

future transcriptome of individual cells, essentially providing temporal coupling over a short 

time horizon. For example, SLAM-seq (Herzog et al., 2017; Muhar et al., 2018) or TUC-seq 

(Riml et al., 2017) assay mature RNA levels and estimate the rate of their synthesis via 

nucleotide labeling or conversion based approaches. Importantly, single cell version of those 

technologies (Cao et al., 2019; Erhard et al., 2019; Hendriks et al., 2018; Qiu et al., 2019) 

have recently developed when this paper is under review and awaits integrating Scribe with 

those technologies as future investigation. Sequential multiplex RNA FISH or “Seq-FISH” 

(Shah et al., 2018) which probes both exons and introns of RNAs can also provide similar 

measurements. RNA velocity, which analyzes single-cell RNA-seq reads falling within 

introns and estimates both mature mRNA levels and their immature intermediates to predict 

the transcriptome over a short time in the future, also generates coupled measurements. 

Accordingly, using RNA velocity measurements greatly improves Scribe’s accuracy 

compared to running it on pseudo-temporal single-cell RNA-seq measurements. These 

assays and algorithmic improvements boost Scribe’s ability to recover causal interactions 

because they provide increasingly comprehensive and temporally coupled measurements 

across the transcriptome. Concentrating efforts to improve temporal coupling in new 

experimental methods should, in our view, be a priority for the field.

Single-cell RNA-seq holds great promise for powering various algorithms for network 

inference, but as we have shown, major obstacles remain in the way of doing so in practice. 

Once provided with temporally coupled measurements, Scribe accurately reconstructs 

networks of modest scale. As experimental and computational improvements to single-cell 
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expression techniques couple measurements across time, we expect Scribe to be increasingly 

capable of dissecting the complex genetic circuits that drive development and disease.

STAR+METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Cole Trapnell (coletrap@uw.edu).

This study did not generate new materials.

METHOD DETAILS

Four possible single-cell time-series measurement modalities—Cell 

differentiation is an intrinsically noisy and asynchronous process. Even for the same 

developmental process, every cell in any given time should be regarded as a distinct sample. 

We consider four possible types of gene expression measurements in those single-cell 

samples:

1. Real-time, where we measure the gene expression for all the genes 

simultaneously in a single cell over time. This is the ideal situation but no 

existing technology can produce data like this yet.

2. “RNA-velocity” where we only capture the current state and the next state for all 

genes in different cells. “RNA-velocity” can be computationally inferred from 

single-cell RNA-seq datasets, or directly measured with Seq-FISH(Shah et al., 

2018), and single-cell version of SLAM-seq (Erhard et al., 2019; Hendriks et al., 

2018; Herzog et al., 2017; Muhar et al., 2018; Qiu et al., 2019), TUC-seq (Riml 

et al., 2017) and TimeLapse-seq (Schofield et al., 2018), among others.

3. Live-imaging datasets are those generated with multiple separate live-imagings 

for a single protein in a single-cell which are then aligned along the same 

developmental process to form a time-series for all genes.

4. Pseudo-time is where we apply a trajectory reconstruction algorithm to order the 

single-cell RNA-seq snapshot dataset to form a time-series.

The problem of causal regulatory network inference—In this work, we formulate 

the problem of causal regulatory network inference as the inference of the underlying 

structure of influences in a stochastic dynamical system where the time series of each gene 

is causally regulated by a subset of other genes. We assume that there are no unobserved 

confounders in order to make the problem tractable. In this setting, we can potentially infer 

the causal regulators based on estimating the amount of information transferred from one 

variable (a potential regulator) to another time-delayed response variable (a potential target). 

In the context of single-cell genomics (e.g. scRNA-seq, live-cell imaging), we ask how we 

can reconstruct a regulatory network consisting of causal regulations that accurately describe 

the gene expression dynamics and the associated cell fate transitions.
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Causal Inference—In the setting stated above, various techniques, including Granger 

Causality and CCM, each associated with different assumptions have been proposed to 

detect the structure of the causal regulatory network. In the following, we briefly summarize 

these methods and introduce RDI, the method we developed and used in this study.

Granger causality—In order to determine whether one time series (X1) is useful in 

forecasting another (X2) in economics, Clive Granger first proposed Granger Causality (GC) 

in 1969 (Granger, 1969). According to GC, if X1 “Granger causes” X2, then the 

predictability of X2 based on past values of X2 and X1 together is significantly greater than 

that of predicting purely based on the past values of X2. GC in its original formulation, 

however, is only able to detect linear causal regulation: i.e., when the regulators regulate the 

target through a linear relationship.

Kernel Granger Causality—In (Marinazzo et al., 2008), a generalization of the Granger 

causality (kernel Granger causality or kGC) to the nonlinear case was introduced using the 

theory of reproducing kernel Hilbert spaces. They showed kGC outperforms linear Granger 

causality in the feature space of suitable kernel functions, assuming an arbitrary degree of 

nonlinearity. Hence choosing the proper kernel function with proper parameters is crucial for 

this method to perform acceptably. Furthermore, introducing kernel functions operating on 

the linear inner products means significantly higher computational complexity over that of 

naïve Granger causality.

Convergent Cross Mapping—In order to detect pairwise non-linear interactions in 

deterministic ecology systems, George Sugihara and colleagues proposed Convergent Cross 

Mapping (CCM) which is based on state-space reconstruction (Sugihara et al., 2012). One 

fundamental and somewhat counterintuitive idea of CCM, distinct from GC, is that it is 

possible to estimate X1 from X2, but not the other way if causation is from X1 to X2. CCM 

first constructs shadow manifolds MX2 and MX1 from lagged coordinates of the time-series 

X2 and X1. It then tests whether states in the shadow manifold MX2 can be used for 

estimating the states in MX1 and vice versa via mapping through nearest neighbors (cross-

mapping). Another key idea of CCM is convergence which means that as the length of the 

time-series increases, the shadow manifolds become denser and the ellipsoid or space 

formed by nearest neighbors shrinks, leading to improvement of cross-map estimates. 

Although CCM is appealing, it cannot be generalized to stochastic systems as Takens’ 

theorem, the cornerstone of CCM, will break down in such scenarios (Takens, 1981). 

Furthermore, CCM can only infer pairwise relationships and complex multi-factorial 

interactions common in gene regulatory networks are not captured in CCM.

Restricted Directed Information (RDI)—As mentioned earlier, the causal inference 

method in Scribe is based on Restricted Directed Information (RDI). This measure 

determines the amount of statistical inter-dependence (or more formally the mutual 
information) between the past state of the regulator and current state of the target gene 

conditioned on the target’s immediate previous state.
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Cell state transitions are controlled by hierarchical regulatory networks (Peter and Davidson, 

2011). In such networks, as the expression of the regulator changes, their downstream target 

responds accordingly after some time delay d. A canonical measure of mutual dependence 

which accounts for both linear and nonlinear associations between two genes (or more 

generally, two random variables) X and Y, is mutual information (MI)(Cover, 2006). MI is 

symmetric and can quantify the “amount of information” obtained about gene X or Y, 

through the other gene Y or X. It essentially determines how similar the joint distribution 

(pXY) of the two genes X and Y is to the products of factored marginal distribution pXpY, or 

formally:

I(X; Y ) = ∑x, y pXY (x, y)log
pXY (x, y)

pX(x)pY (y)

If I(X;Y) is zero, then the two genes X and Y are independent; otherwise it implies there 

exists some dependency between them (e.g. in the case of a regulator and its target). It is 

often useful to quantify the mutual dependence between two random variables (for example, 

regulator X and target Y) while removing the effect of a third random variable (for example 

another regulator Z or the history state of the target). This leads to developing of conditional 

mutual information, which is defined as:

I(X; Y |Z) = ∑x, y, z pXY Z(x, y, z)log
pXY |Z(x, y |z)

pX |Z(x |z)pY |Z(y |z)

MI provides a powerful approach to quantify the symmetric interdependence between genes. 

However, a favorable approach would be to measure the causal score from a potential 

regulator to its target. We can achieve this by considering the time-series of regulators and 

targets (Xt, Y t) and quantifying the information transfer from the past state(s) of X to the 

current state of the variable Y denoted by Yt.

Previously, T. Schreiber reported Directed Information (DI) as a measure for the amount of 

information flowing from the past state(s) of X, the regulator, to the current state of the 

variable Y, the target (Schreiber, 2000). DI is defined as:

DI(X Y ) = ∑t = 1
T I Xt − 1; Yt |Y t − 1

In order to remove indirect interactions, we can calculate the information transferred from 

the regulator to the target while conditioning on all the other genes ({X(i), X(j)}C), which is,

DI X(i) X(j) | X(i), X(j) C = ∑t = 1
T I X(i)t − 1; Xt

(j) |X(j)t − 1, X(l)t − 1
l ∈ X(i), X(j) C

Furthermore, for a set of genes of interest, X(1), X(2),…, X(N) from a single-cell genomics 

dataset, we can infer a Directed Information graph, GDI = (V,E) where the vertex set V 
corresponds to the genes X(1), X(2),…, X(N) and the edge eij = (X(i), X(j)) from gene X(i) to 
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exists if and only if DI X(i) X(j) | X(i), X(j) C ≠ 0 and the edge weight corresponds to the 

quantified DI value DI X(i) X(j) | X(i), X(j) C
.

It was shown that if a system is not purely deterministic, the directed information graph GDI 

inferred from DI will correctly recover the true causal graph GC (the network which includes 

all causal interactions as directed edges) (Sun et al., 2015). Although DI is able to detect 

both linear and non-linear causality as opposed to the linear Granger causality and is 

applicable to stochastic systems, it (1) can not deal with deterministic systems which may be 

of interest for certain scenarios and (2) poses huge computational burden because it 

conditions on all possible previous states of the regulator or target and (3) requires an 

enormous amount of data which is not affordable even with current single-cell genomic 

datasets.

We recently proposed a formulation of DI to alleviate those issues by employing only the 

immediate past of the target or regulators instead of all the past states assuming a first-order 

Markov system, which is generally applicable to most biological processes. In this method, 

the randomness is present due to the random initialization of the Markov system, hence 

creating a random process on which information measures are well defined. We term this 

method “Restricted Directed Information” (RDI) and define it as,

RDId(X Y ) = I Xt − d; Yt |Yt − 1

Despite the fact that the original RDI measure is defined only for the immediate past of the 

regulator X, this measure can be flexibly defined for arbitrary effect delay d from X to Y as 

we have done here.

Conditional Restricted Directed Information (cRDI): Similar to (Schreiber, 2000), RDI 

can also be extended to the case where the information transfer from X to Y is conditioned 

on other potential regulator(s) Z to rule out the possible indirect causal effects and 

confounding factors. Thus the Conditional RDI (abbreviated as cRDI) can be formulated as:

RDId1 X Y |Zt − d2 = I Xt − d1; Yt |Yt − 1, Zt − d2

In (Rahimzamani, et. al, Allerton 2016), it’s shown that cRDI works in many stochastic or 

deterministic cases and under some mild assumptions is capable of inferring the correct 

regulatory network GC. Moreover, it has shown that if the conditions are violated, no other 

method will be able to recover the correct network (see Section IV. in (Rahimzamani, et. al, 
Allerton 2016)).

In the upcoming sections we will discuss how RDI and cRDI are utilized in the Scribe 

toolkit.

Uniformization method for adjusting sampling bias—During our studies over the 

simulated benchmark data, we found that as the number of samples increases, the 
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performance of RDI first increases and then starts to decrease. This problem was particularly 

acute in simulations where gene expression reached a plateau after cells committing to a cell 

fate. In general, while the transitional states are of higher importance in the discovery of 

causal interactions, oversampled equilibrium states will outnumber the transitional samples 

resulting in a sampling bias towards less informative equilibrium states. This phenomenon 

can in turn reduce the inference accuracy since RDI requires calculating conditional mutual 

information (I(Xt−d;Yt|Yt−1)) by design, which is a function of the joint distribution (p(xt−d, 

yt, yt−1) = p(yt|xt−d, yt−1)p(xt−d, yt−1)). That is, the distribution is influential in the RDI 

calculation, despite the fact that the RDI score should be fully determined only by the 

conditional distribution. Hence we devised a scheme to correct for sampling bias by re-

weighting samples so that those from the system during transitional periods are weighted 

higher than cells sampled from the system at equilibrium. One may assume the input 

distribution is uniform and redistribute the observed samples in a more homogeneous 

fashion before calculating the RDI value.

This bias correction scheme, which we term Uniformized conditional mutual information 
(uCMI) replaces the actual distribution p(xt−d, yt−1) with a uniform distribution u(xt−d, yt−1) 

and then calculates the conditional mutual information for p(yt|xt−d, yt−1)u(xt−d, yt−1). This 

is made possible thanks to the concept of potential Conditional Mutual Information (qCMI) 

(Rahimzamani and Kannan, 2017) and an estimator, in which the actual distribution p(xt−d, 

yt−1) of samples is replaced by any arbitrary distribution q(xt−d, yt−1) before estimating the 

conditional mutual information. uCMI is thus a special case of qCMI, in which the 

replacement distribution q(xt−d, yt−1) is uniform. By replacing the conditional mutual 

information (CMI) in RDI with uCMI, we obtain a new way of computing information 

transfer called uniformized Restricted Directed Information (uRDI).

The discussion above is especially relevant for single-cell genomics datasets as single cells 

are not homogeneously spread across many biological processes and they often will be 

heavily sampled from steady states while rarely from transition states. A compelling 

discussion of this phenomenon can be found in c.f. (Olsson et al., 2016). This imbalance of 

sampling confounds the performance of RDI (or other mutual information based methods) 

and thus leads to ignorance of rare but critical regulation that happened during transition 

states. We noticed that empirical methods have been reported to account for sampling biases 

from single-cell measures (Krishnaswamy et al., 2014). However, the uRDI method 

incorporated in Scribe provides a rigorous approach to replace the biased sampling 

distribution with a uniform distribution to quantify potential causality (how much influence 

a regulator can potentially exert on target without cognizance of the regulator’s distribution) 

and is thus arguably a superior approach to account for the sampling biases issue 

(Rahimzamani and Kannan, 2017).

Scribe: a toolkit for visualization and detection of complex causal regulation 
from single-cell genomics datasets—Although Scribe is applicable to any time-series 

datasets, it is specifically designed for visualizing and detecting complex gene regulation 

from single-cell genomics datasets (e.g. scRNA-seq). Scribe relies on (uniformized) 

restricted directed information to detect causality but also supports other methods, including 

the well-known mutual information, Granger causality and the more recent CCM. Scribe 
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starts with time-series data, which can be based on “pseudotime-series” of a developmental 

trajectory reconstructed from scRNA-seq data such as those constructed using Monocle 2, 

live imaging data or datasets with current and predicted spliced RNA expression estimated 

using RNA-velocity. Scribe provides two main types of analysis:

1. Visualization and estimation of causal gene regulation;

2. Reconstruction of large-scale sparse causal regulatory networks.

Preparing pseudotime-series or RNA-velocity for scRNA-seq datasets—Scribe 

does not provide any built-in functionalities for pseudotime-series construction and relies on 

Monocle (http://cole-trapnell-lab.github.io/monocle-release/) or similar tools, such as dpt 

(Haghverdi et al., 2016) or wishbone(Setty et al., 2016), for reconstructing the single-cell 

trajectory before inferring causal networks. Scribe also doesn’t provide any built-in 

functionalities for RNA-velocity estimation and relies on the velocyto framework (La 

Manno et al., 2018) for those estimations. In relation to physical time, pseudotime has an 

arbitrary scale, thus Scribe doesn’t consider pseudotime value themselves instead using the 

ordering of each cell in pseudotime for causal network inference. Similarly, we also assume 

the time delays Δt used in RNA-velocity estimations are constant across cells and genes for 

the sake of simplicity.

Visualizing pairwise gene interaction—In order to intuitively visualize casual 

regulations between genes, Scribe provides different strategies to visualize the response, 

causality and combinatorial regulatory logic between gene pairs. The response 

visualization is similar to the DREVI approach as proposed by Smita Krishnaswamy, et. 

al(Krishnaswamy et al., 2014) with the exception that it considers time delay to visualize the 

expected expression of potential targets given a potential regulator’s expression after a time 

delay. Response visualization thus additionally aids in visualizing commonly appeared time-

delayed regulations involved in cell differentiation(Alon, 2007).

One limitation of response visualization is that it ignores the effects of a gene’s previous 

state to the current state or memory of its history. In order to also capture this effect and thus 

intuitively visualize causality, Scribe is equipped with causality visualization. Essentially, 

this approach visualizes the causal regulation by considering the information transfer from 

the time-delayed potential regulator to the target’s current expression, conditioned on the 

target’s previous state to remove effects from auto-regulation. Causality visualization is a 

heatmap consisting of the expected value of the target’s current expression given the target’s 

immediate past expression (y-axis) and the regulator’s expression with a time lag d (x-axis). 

For each column, it represents the relationship for the target’s expression at the previous 

time point to the current state (memory of the history or “auto-regulation”) given a fixed 

regulator value, while for each row, the information transfer from the regulator to its targets 

given the previous target state.

Visualizing combinatorial gene regulation—It is of great interest to understand the 

combinatorial gene regulation as it often determines how cells make decisions to choose a 

particular cell fate or adapt to external stimuli(Ma et al., 2009). In order to visualize two-

input combinatorial regulation, Scribe provides a third visualization tool. This visualization 
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is a heatmap consisting of the expected value of the target’s current expression given 

knowledge of both of the regulators’ expressions with a time lag (x/y-axis). For both of the 

causality and the combinatorial logic visualizations, the corresponding expected value is 

calculated through a local average with a Gaussian kernel.

We noticed that gene regulation directly affects the rate of the target gene which then results 

in gene expression changes. For example, if a gene X is negatively regulated by gene Y. We 

may define the rate function of X as 
dXt
dt = 1/ Xt − 1

2 + Y t − μ
2 . Therefore, visualizing the 

expected rate of a target at its current state given knowledge of both the regulators’ 

expressions with a time lag (x/y-axis) allows better intuition of regulations. Although we 

won’t have accurate estimates of the rate of gene expression with pseudo-time series data, 

the RNA-velocity method can be used to obtain those estimates.

Causal network inference: an RDI-based algorithm—Causal inference in Scribe is 

based on RDI, which is an extension of directed information under the assumption that the 

underlying processes can be described by a first-order Markov model. The method we 

implemented basically tries to calculate the RDI value for each pair of genes (i, j) 
conditioned over the top L genes (default is 0 or no conditioning and 1 for cases where we 

used conditioning) which are candidates of being regulators of the gene j.

To reach this goal, it first calculates all the pairwise unconditioned RDI values, for all the 

potential delays specified by the user in vector d (by default, it is a vector including 5, 10, 

20, 25). Note that for the RNA-velocity dataset, since we assume the time delays Δt for the 

current and predicted future RNA expression level are constant across the cell and genes, 

there is no need to scan for a window of potential time delays. Then for each pair (i, j), it 
treats the delay corresponding to the largest RDI value as the “true” delay of effect, i.e. the 

actual time delay by which the effect of i appears in j. Having identified the “true” delays, 

the method then re-calculates the pairwise RDI values for each pair of genes (i, j), this time 

conditioned over the top L (L can be specified by the user) genes with the highest incoming 

RDI values to j associated with their corresponding true delays, treating them as the 

potential regulators of j. The algorithm of causal inference in Scribe is as follows:

Input: gene expression time-series (either based on pseudotime-series, “RNA-velocity” or live imaging data, among 

others) X(i)t for each gene i

Output: A matrix of pairwise causality scores

Parameters: d: vector of delays, L: number of conditioning genes

Pseudocode:

1. For each pair of genes (i, j):

 - For all delays δ ∈ d: Calculate RDIδ (X(i) → X(j))

 - Set δi, j
max: = arg max

δ ∈ d
RDIδ X(i) X(j)

2. For each gene j:
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 - For all i: sort RDIδi, jmax X(i) X(j)  values in descending order

 - According to the sorting above, take the L + 1 nodes i with the highest incoming RDI values to j and store them in a 

set as incjmax. Store their corresponding delays δi, j
max in a set dj

max.

3. For each pair of genes (i, j):

 - If i ∈ incjmax, remove i from incjmax. Otherwise, remove the node l with the lowest RDIδi, jmax X(l) X(j)

from incjmax.

4. For each pair of genes (i, j): Output RDIδi, jmax X(i) X(j) | Xt − δl, j
max

(l)
l ∈ incjmax

The estimation of mutual information is inspired by Kraskov’s method (Kraskov et al., 

2004), which builds on counting nearest-neighbor points. In the R implementation of Scribe, 

nearest-neighbor points are identified with a modified RANN package.

To calculate the causal network with uRDI, we apply the same algorithm as above but 

simply replace RDI with uRDI. In addition to what required in RDI, uRDI also needs to 

estimate the actual distribution, p (xt−d, yt−1), which relies on kernel density estimation 

(KDE). We use standard Gaussian kernels from R in the Scribe package to calculate KDE.

Inferring and visualizing transcriptomic gene regulatory network—Scribe can 

estimate a causal network from a set of known TFs (and among the TFs) to a set of targets of 

interest (selected through, for example the BEAM test), or estimate the pairwise causality 

among all the genes in a set of genes of interest. For the first scenario, Scribe estimates 

causality between all pairs of TFs and the causality from each TF to each putative target; for 

the second scenario, Scribe estimates causality for any pair of genes in both directions. In 

order to retrieve significant causal edges while removing promiscuous edges and reconstruct 

a sparse causal regulatory network that satisfies known properties of biology networks, 

Scribe relies on a modified CLR regularization method (Context Likelihood of Relatedness) 

regularization and a directed network regularization inspired by some biological 

assumptions (see section Network sparsifier: CLR regularization and directed graph 
regularization below).

In order to facilitate the visualization of complex networks, Scribe provides a variety of 

approaches to visualize the RDI network either through a heatmap, a hierarchical layout, an 

arc diagram or a hive plot, implemented based on igraph, netbiov, ggraph, arcdiagram as 

well as the HiveR R packages.

We used the Kleinberg centrality to define the hubness used to order genes on the arc plot 

which is defined as the principal eigenvector of AA′, where A is the adjacency matrix of the 

graph(Kleinberg, 1999).

In addition to the core causality detection feature based on (uniformized) restricted direction 

information, Scribe also supports various methods for inferring the regulatory relationships 

including mutual information, Granger causality, and CCM implemented based on 

parmigene, vars, and the rEDM packages, respectively. We also provide a python package 
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for most of the estimation methods, although without extensive support for visualization 

which may be supported in the future.

Parameters of RDI

Parameter Type Effect of tuning parameters

d Vector of 
positive 
integers

Default: 5, 20, 40
The vector of potential delays, for which the corresponding RDI values are 
calculated.
Setting this argument too small may limit the ability of Scribe to detect causal 
relationships, while setting it too large can result in the discovery of incorrect or 
indirect causal relationships, resulting in false delays and conditioning.

L Non-
negative 
Integer

Default: 0
The number of the top incoming node(s) to the target, excluding the source, over 
which RDI is conditioned.
L = 0 corresponds to no conditioning (Plain pair-wise RDI). Any L > 0 corresponds 
to conditional RDI (cRDI).
Conditioning over more nodes approaches the theoretical prerequisite of 
conditioning over all genes, excluding the source and target, needed for inferring the 
true causal network, however it imposes more computational burden and 
undesirably reduces the accuracy of the RDI estimator with fixed number of 
samples N, as it exponentially increases the dimension of the state space used to 
calculate the k-nearest neighbors.

k Positive 
Integer

Default: 5
Number of the nearest neighbors in the kNN estimator for the conditional mutual 
information. The parameter should be set in such a way so the neighborhood 
captures an adequate number of samples for a good estimate of the probability 
corresponding to each sample.

Uniformization Boolean Default: False
If True, uRDI instead of RDI will be used. While imposing higher computational 
burden over the same data than RDI, uRDI is expected to improve the causal 
inference in the cases with highly-biased sampling distributions.

Algorithm complexity

Algorithm Methodology Parameters Worst-case Complexity
N: the number of samples;
d: the dimension of the X and Y 
manifolds (default 2);
k: the number of nearest 
neighbors
L: the number of conditioning 
genes
I: the dimension of the features 
data

CCM Determining the causality 
from X to Y based on how 
well one can reconstruct the 
cross-mapped estimate of X 
from the nearest neighbors 
determined on Y space

E: The number of lags 
embedded in the shadow 
manifold
Tau: The time lag between 
each consecutive pair of time 
samples (default: 1)

O (2EN log N) *+ O (2(E + 1) N) 
**
*Complexity of kd-tree algorithm 
for kNN search
** Complexity of regression and 
weight estimation

Granger 
Causality

Determining the causality 
from X to Y based on how 
much the past samples of X 
contribute in linearly 
estimating the current state of 
Y, compared to when the Y is 
estimated based merely upon 
its own past

Maxlag: The number of lags of 
the past sample included in 
estimating the current state of 
Y

O (IN + 2I2 N + I3) *
* The complexity of linear 
regression

RDI and 
cRDI

Determining the causality 
from X to Y based on the 
amount of mutual information 
between the past of X and the 
current state of Y conditioned 

k: The number of neighbors for 
kNN estimation of mutual 
information
d: The lags for which the 
mutual information from the 

O ((d + L + 1) N log N) * + O 
(kN) **
*Complexity of kd-tree algorithm
**Complexity of inquiry of each 
neighbor
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over the past of (potentially) 
all other variables than X

lagged source to the current 
state of target is estimated.
L: The number of the 
conditioning nodes other than 
X and Y. While small L’s can 
result in false positives since 
we won’t filter out confounding 
and/or intermediate factors, too 
large L’s will result in curse of 
dimensionality in smaller 
sample set regimes and 
increasing the computational 
complexity in larger sample set 
regimes.

uRDI and 
ucRDI

Same as RDI method, but 
including the replacement of 
the empirical distribution of 
the past samples with a 
uniform distribution

All Parameters from RDI 
plus: BW: The bandwidth of 
the kernel estimator

O ((d + L + 1) N log N) * + O 
(kN) ** + O (N3) ***
*Complexity of kd-tree algorithm
**Complexity of inquiry of each 
neighbor
***Complexity of kernel density 
estimation

Regularizing causal interaction networks—In theory, Scribe can remove potential 

indirect causal gene regulation from one gene X to another gene Y by conditioning on all 

other genes in the transcriptome except X. However, this requires a huge number of samples 

which is infeasible even with current single cell genomics techniques and is impractically 

slow for even modest sets of genes. Therefore, we sought alternative approaches based on 

statistical significance and reasonable assumptions of biology structures to remove potential 

indirect edges. The first method we applied is the CLR or Context Likelihood Relatedness 
regularization. Previously, CLR is used in conjunction with mutual information (MI). RDI 

(cRDI, etc) is like MI, it calculates the pairwise “causality influence score”. Simply 

computing MI between all pairs of genes would yield a dense network with many indirect 

interactions. CLR regularizes this network to enrich it for direct interactions. Just as with 

MI, we need some means of sparsifying the network formed by RDI links between all pairs 

of genes. Thus, Scribe uses a procedure for regularizing RDI networks that is analogous to 

the one CLR uses to regularize MI networks. It works as the following: after computing the 

causality score with RDI (uRDI) without conditioning between all gene-pairs, CLR 

calculates a normalized score based on the z-score (or 0 if the z-score is less than 0) from all 

the input edges to the potential target and all the output edges from the potential regulator of 

the gene pair. This normalized score is used as a statistical likelihood of each causal edge 

regarding to its network context. More formally, denoting the asymmetric matrix R 
corresponds to all raw causality scores calculated with Scribe, with Rij being the causality 

score from gene i to gene j, we can calculate the z-score zi based on all gene i’s output 

causality scores and zi all gene j ‘s input causality scores. The normalized score of Rij, Rij is 

defined as:

Rij = max 0, zi
2 + max 0, zj

2/2

The user can either use the normalized score or choose a threshold of the normalized scores 

and treat the edges above the threshold as significant or real regulation comparing to the 

background distribution of the causality scores. As discussed in the original study, CLR 
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removes many of the false regulations in the network by eliminating “promiscuous” cases, 

where one regulator weakly co-varies with a large numbers of genes, or one gene weakly co-

varies with many transcription factors which may arise when the assayed conditions are 

inadequately or unevenly sampled. We note that, however, the original CLR is only applied 

on a symmetric mutual information based matrix while we are dealing with an asymmetric 

matrix of causality scores. To avoid potential confusion, we name our modified procedure as 

“CLR regularization” in our text. After applying CLR, the network may be still dense and 

contain spurious edges. Previous studies have shown that the biological networks have some 

special properties distinct from those of random networks; for example, the network’s out-

degree distribution is well approximated by a power law distribution where its in-degree 

distribution is almost an exponential distribution. Based on those assumptions, we proposed 

a new regularization method for a directed graph.

The goal of our method is to learn a sparse directed graph from a dense asymmetric 

causality network (retrieved after applying CLR regularization) satisfying two 

aforementioned properties. The directed graph’s structure is represented by an indicator 

matrix denoted by Θ ∈ {0, 1}N×N, where θi,j = 1 stands for the existence of edge i to j, and 0 

otherwise. Since the entries are indicators, the in-degree and out-degree of each node in the 

network can be easily formulated. Specifically, the out-degree of the ith node can be 

represented by hout (i) = ∥θi∥1 and the in-degree of the ith gene is correspondingly 

represented by hin (i) = ∥θi∥1, where θi and θi are the i th row and i th column of Θ, and ℓ1-

norm counts the number of nonzero elements since θi,j ∈ {0,1}. Given the asymmetric 

matrix of causality score R with the (i, j)-th entry as Rij, the following optimization problem 

is formulated to learn the structure of the network:

min
ΘϵA

−∑i, jθi, jRi, j + α∑i = 1
N log θi 1 + ξ + λ∑i = 1

N θi 1

where the feasible set of the network structure is

A = Θ ∈ 0, 1 N × N : ∑i ∑jθi, j ≥ B

The intuition of the objective function comes directly from the above three assumptions: the 

first term of the objective is to select the edge with large value of Rij; the second term is the 

negative log likelihood of the power law distribution for the out-degree of each gene; the last 

term is the negative log likelihood of the exponential distribution for the in-degree of each 

gene. The budget parameter B is introduced to prevent trivial solution, and a small positive 

value ξ is used to prevent the numerical issue of log function. The parameter α is the 

exponent of the power law distribution and λ is the parameter of the exponential 

distribution.

Benchmarking Scribe with alternative algorithms on inferring causal 
regulatory network—We follow the same procedure as reported previously (Qiu et al., 

2012) to simulate the differentiation of central nervous system (Eq. 1), except here we 

replace the correlated noise in the previous study with independent additive noise for the 
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purpose of simplicity. The data generated through this simulation is regarded as “real-time” 

dataset.

matureμ = 0
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a = 4
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dx[Brn2]
dt = a

xt − 1
n [Masℎ1]

1 + xt − 1
n [Masℎ1]

− k ⋅ xt − 1[Brn2]

dx[Zic1]
dt = a

xt − 1
n [Masℎ1]

1 + xt − 1
n [Masℎ1]

− k ⋅ xt − 1[Zic1]

dx[Tuj1]
dt

= ae
xt − 1

n [Brn2] + xt − 1
n [Zic1] + xt − 1

n [Myt1L]
1 + xt − 1

n [Brn2] + xt − 1
n [Zic1] + xt − 1

n [Myt1L]

− k ⋅ xt − 1[Tuj1]

dx[Hes5]
dt

= a
xt − 1

n [Pax6]
1 + xt − 1

n [Pax6] + xt − 1
n [Masℎ1]

− k ⋅ xt − 1[Hes5]

dx[Scl]
dt

= ae
ηnxt − 1

n [Hes5]
1 + ηnxt − 1

n [Hes5] + xt − 1
n [Olig2]

− k ⋅ xt − 1[Scl]

dx[Olig2]
dt

= ae
ηnxt − 1

n [Hes5]
1 + ηnxt − 1

n [Hes5] + xt − 1
n [Scl]

− k ⋅ xt − 1[Olig2]

dx[Stat3]
dt

= a
ηnxt − 1

n [Hes5]xt − 1
n [Scl]

1 + ηnxt − 1
n [Hes5]xt − 1

n [Scl]

− k ⋅ xt − 1[Stat3]

dx[Myt1L]
dt = a

xt − 1
n [Olig2]

1 + xt − 1
n [Olig2]

− k ⋅ xt − 1[Myt1L]

dx[Aldℎ1L]
dt = ae

xt − 1
n [Stat3]

1 + xt − 1
n [Stat3]

− k ⋅ xt − 1[Aldℎ1L]

dx[Sox8]
dt = a

ηmn xt − 1
n [Olig2]

1 + ηmn xt − 1
n [Olig2]

− k ⋅ xt − 1[Sox8]

dx[Mature]
dt = matureμ

1 − xt − 1[Mature]
mx

Eq. 1. Ordinary differential equations for the neuron system.
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For creating Supplementary Figure 1B, D, we set the time step as 0.1, samples per 

simulation as 100, the total number of simulations as 20. We then infer the causal network 

based on all the 2000 samples using CCM, GC and RDI or uRDI either without conditioning 

or conditioning on one gene that has the maximal input causality other than the current 

regulator to the target. Time delay between regulator and target used in all those algorithms 

is set to be 1. We compare the inferred network with the known network to calculate the 

AUC (area under curve). The experiment is repeated for 25 times to ensure reliable 

conclusions. We also increase the standard deviation of the intrinsic noise from 0 to 0.2. 

ROC (Receiver Operating Characteristic) curve in Supplementary Figure 1C, D is obtained 

similarly while setting the simulation based on a linear system where the transition matrix A 
is generated according to the network with non-zero coefficients randomly taken from a 

uniform distribution u (0.75,1.25). The A matrix is then normalized to 1.01×max{eig (A)} to 

avoid the divergence of the system. The intrinsic noise standard deviation (s.d) is set to be 

equal to 0.01. All the genes are initialized with a random value u (0.5,2). To infer the causal 

network, we take 100 samples per simulation and perform the simulation five times, then 

apply Scribe, CCM and GC on those simulated data points.

To visualize the response, causality and combinatorial regulations as in Supplementary 

Figure 2C–I, a single simulation leading to the neuron fate is used. To create the response 

and the causality visualization for the two-node motifs (Ma et al., 2009), the network motifs 

are firstly converted into a set of SDE functions using similar formulations as that used in 

the above simulation for neuronal differentiation. The expression dynamics is then simulated 

by setting the initial expression for both genes as 0.01 and followed based on the set of SDE 

equations (Supplementary Figure 2a). We used similar procedures to simulate expression of 

genes under combinatorial regulations with different logic gates and then create the 

combinatorial regulation visualizations (Supplementary Figure 2b).

To investigate the importance of temporal coupling and the number of samples on the 

performance of causal inference, we also simulate three other types of dataset based on the 

simulated “real time” dataset as following:

1. The RNA-velocity analysis framework estimates both exon and intron expression 

levels for each cell i or Ci. It then calculates the RNA-velocity Vi(j) for each 

gene j in each cell i and predicts the future exon expression of Epredict after Δt = 

1. Assuming the time delays from all regulators to their putative targets are the 

same as Δt (or 1), Scribe calculates causality from the potential regulator to the 

target with the conditional mutual information between the current regulator’s 

exon expression Xt to the predicted target exon expression Yt+1 (or equivalently 

the estimated RNA velocity value Vt(Y)) conditioned on the current target exon 

expression Yt or by the default formula I(Xt; Yt+1|Yt) (or alternatively 

I(Xt;Vt(Y)|Yt)). Since Xt, Yt+1(Vt(Y)) and Yt are all estimated from the same 

cell, in theory the gene expression dynamics between Xt, Yt+1 (Vt(Y)) and Yt is 

coupled. To generate RNA-velocity simulation dataset, we randomly select one 

time point t for each cell and collect all genes’ current and the next time point’s 

expression (Xt
(i) and Xt + 1

(i) ). RNA velocity for each cell in that time point is then 
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simply calculated as the difference between next time point and current time 

point’s gene expression (V t X(i) = Xt + 1
(i) − Xt

(i)).

2. To generate live-imaging simulation dataset, we first randomly select 13 cells 

where for each cell, a different gene is chosen and is followed over the entire 

developmental process.

3. To generate pseudotime dataset, similar to RNA-velocity, we randomly select 

one time point t for each cell and collect all genes’ expression at that time point. 

Then all data points from each cell at different time point is pooled and used as 

input to Monocle 2 for trajectory inference, we then set the beginning of the 

simulation as root state for the trajectory and order cells based on the inferred 

pseudotime to form a pseudotime series.

To create Supplementary Figure 4B, five replicates each with 2000 data points are used for 

each algorithm. For Supplementary Figure 4 C (D), the same analysis is performed but with 

data (replicates) downsampled to 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 or 2000 

data points (1, 5, 10, 15, 20 repeats).

Details on analyzing datasets used in this study

Benchmark Scribe with DREAM challenge datasets: In GeneNetWeaver, we looked at 

the DREAM3 challenge in-silico data for three networks, each of which has a size of 50. All 

networks were obtained from modeling network in yeast (Yeast-1, Yeast-2 or Yeast-3). For 

each network, GeneNewWeaver is used to simulate the time series for 10 times (i.e. we had 

a total of 10 runs), for a duration of 1000 time-units, and the measurement is recorded at 

every 10 time-units, hence 100 total time points for each run. The intrinsic noise coefficient 

was set to be 0.05. The measurement noise was set as the default model in microarrays 

which is also used in DREAM4 challenge. Each time series was then normalized after 

adding the noise. For each of the three networks, we conducted the inference task by running 

different methods over the generated time series data described above and compared the 

final AUC score for each network.

Inferring causal network with pseudotime ordered scRNA-seq datasets: Lung data is 

processed as described previously. Expression matrix is downloaded from GEO 

(GSE52583). After filtering, log-transformed TPM values of 183 single cells’ transcriptome 

are used for monocle 2 analysis. (Qiu et al., 2017a). Categorization of pneumocyte 

specification markers into either early and late groups used for benchmarking is based on 

references(Qiu et al., 2017a; Treutlein et al., 2014).

The LPS data was pre-processed as described previously. 510 cells annotated as 

unstimulated replicate (normal unstimulated cells were observed to have low RNA library 

quality), LPS stimulated cells without any perturbations, and LPS stimulated cells with Stat1 

and Ifnar1 knocked out taken at each of the included time points are used. The pseudotime 

trajectory is reconstructed with the reversed graph embedding (Qiu et al., 2017a) on the 

same set of ordering genes used in this study. Only the path with wild-type cells is used for 

causal network inference. Regulators and targets, and the regulatory network used for 

Qiu et al. Page 22

Cell Syst. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



benchmarking are collected from references (Amit et al., 2009) and reference (Garber et al., 

2012), respectively.

Olsson data is processed as described previously. The processed FPKM values is 

downloaded via synapse (id syn4975060) and used for pseudotime ordering with Monocle 2. 

The master regulators, transcription factors and downstream targets, and the regulatory 

network used for benchmarking are collected from reference (Qiu et al., 2017a) and 

references (Su et al., 2017), respectively.

Paul data is processed as described previously. We downloaded the UMI counts data and the 

cell cluster annotation information for the Paul from http://compgenomics.weizmann.ac.il/

tanay/?pageid=649. Only the path leading to the erythrocytic fate is used for reconstructing 

the causal regulatory network. The regulatory network responsible for the differentiation of 

erythrocyte cells used for benchmarking is collected from (Swiers et al., 2006).

Infer causal network with RNA-velocity: The data of the chromaffin cell “RNA-velocity” 

analysis is retrieved from (http://pklab.med.harvard.edu/velocyto/notebooks/R/

chromaffin.nb.html). We use the estimated exon expression to reconstruct the trajectory for 

the chromaffin cell commitment. Only cells on the path from the Schwann cell progenitors 

to mature chromaffin cells are used to infer the casual network. Two different formulations, 

I(Xt;Yt+1|Yt), (or I(Xt;Vt(Y)|Yt)), can be used to infer causal networks with data from RNA-

velocity. In this study, we apply the first formulation.

Inferring causal network with live-image data: Lineage-resolved live-imaging data for C. 
elegans early embryogenesis is obtained from Waterston lab. Raw fluorescence intensity 

signal is directly used for causal network inference. We note two caveats in analyzing the 

reporter data with Scribe. First, although the promoter-fusion data sheds light on the 

induction kinetics of the TF of interest, once the fluorescent reporter is expressed it follows 

the trafficking and degradation kinetics of the histone protein, and not the TF. Second, the 

time series for each TF was captured in a different embryo, so this may introduce noise that 

obscures the regulator/target relationships between the TFs although the C. elegans 
development process is highly robust. Nevertheless, this data set represents an 

unprecedented view of TF activity at high spatiotemporal resolution during the early 

development of a complex organism.

DATA AND SOFTWARE AVAILABILITY

Code availability—A version of Scribe (version: 0.99) used in this study is provided as 

Supplementary Software. The newest Scribe implemented as an R package is available 

through GitHub (https://github.com/cole-trapnell-lab/Scribe), an equivalent python version is 

hosted at (https://github.com/aristoteleo/Scribe-py). Notebooks for usage cases of Scribe is 

available at https://github.com/aristoteleo/Scribe-Python-notebooks. CCM algorithm is 

implemented as the rccm package (https://github.com/cole-trapnell-lab/rccm) which is based 

on https://github.com/cjbayesian/rccm. The neurogenesis simulation is implemented as the 

scRNASeqSim package (https://github.com/cole-trapnell-lab/scRNASeqSim). 

Supplementary Software also includes a helper package containing helper functions as well 

as all analysis code that can be used to reproduce all figures and data in this study.
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Data availability—This study did not generate new data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Scribe detects causal regulatory networks between genes in diverse single cell 

datasets

• Scribe uses Restricted Directed Information to identify regulators and their 

targets

• Inferring causal regulatory networks requires temporal coupling between 

measurements

• RNA velocity outperforms pseudotime but neither perform as well as true 

timeseries data
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Figure 1: Scribe, a toolkit for inferring and visualizing causal regulations.
(A). Inferring regulatory networks from gene expression data is challenging because the 

number of regulatory interactions that must be evaluated grows much more quickly than the 

number of genes in the analysis. (B) Ordering single-cell data in “pseudotime” or tracking 

how fluctuations in a regulatory are followed by changes in a putative target in the same 

individual cells could boost power to detect causal regulatory interactions. (C) Scribe detects 

causality from four types of single cell measurement (“pseudotime”, “live-image”, “RNA-

velocity” and “real-time”) datasets with a the metric, restricted directed information (RDI). 

Scribe relies on RDI (Rahimzamani and Kannan, 2016) to quantify the information 

transferred from the potential regulator to the target under some time delay while 

conditioned over its past on this pseudo-time series data. A gene often has strong memory to 

its intermediate previous state (Yt−1) but RDI will only give highly positive causality score 

from the putative regulator to target in cases where there is still a strong relationship 

between the regulator’s history and the target’s present conditioned on target’s history (Case 
1 vs. Case 2).
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Fig 2: Live imaging dataset of C. elegans’ early embryogenesis captures transcription expression 
dynamics hierarchy.
(A) Scheme used by Murray et al for measuring transcription factors protein expression 

dynamics in real-time for every cell during early C. elegans embryogenesis. (B) Single cell 

lineage-resolved fluorescence data captures temporal dynamics of E lineage master 

regulators during C. elegans embryogenesis. The expression for each gene is scaled to be 

between 0 and 1 and then smoothed using LOESS regression, same in C. (C) Expression 

dynamics for 265 report TFs along the lineage leading to the Ealap cell. (D) Scribe 
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reconstructs the causal regulatory network for the four master regulators (end-1/3, elt-2/7). 

Note that the outlined box corresponds to the previously known regulations. (E) A scheme 

for the multi-scale network for panel B. (F) An integrative multiscale model for the E 

lineage specification. Zoom in to see the network architecture in details. (G) Lineage (AB, P, 

MS, E, D, C) specific causal networks for the curated master regulators constructed with 

Scribe shown as a hiveplot.
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Figure 3: Scribe recovers a core regulatory network responsible for myelopoiesis.
(A) A core network describes key regulators during the specification of monocytes and 

granulocytes (Olsson et al., 2016). (B) Examples of gene-target pair kinetic curves over 

pseudotime along the monocyte lineage. (C) Scribe infers the expected core regulatory 

network interactions for myelopoiesis. (D) Visualization of combinatorial gene regulation 

from Irf8 and Gfi1 to Zeb2 or Per3. (E) The normalized rank of lineage-specific genes’ total 

outgoing RDI sum. (F) Lineage-specific network of significant regulators during 

erythropoiesis. Edges supported by the SPRING database are colored as red lines. For panels 

E (F), BEAM analysis was used to identify significant branching genes associated with the 

four (one) lineage bifurcation events shown in the haematopoietic trajectory from ref. (Qiu 

et al., 2017a) based on the paul dataset (Paul et al., 2015). The top 1,000 differentially 

expressed genes associated with each bifurcation were chosen to build a causal network for 

each relevant lineage. A set of TFs relevant to specific lineages described previously is used 

for panel E or F. Neu: Neutrophil; Ery: Erythroid, Mk: Megakaryocyte; Mono: Monocyte; 

DC: Dendritic Cell; BE: Basophil / Eosinophil. (G, H) Receiver Operating Curves or ROC 

(G, top) and Area Under Curve or AUC (H, bottom) of the inferred causal network based 
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on Scribe, GC and CCM, from left to right, on the Dendritic Cells (DC) dataset, the 

granulocyte or monocyte branch of the Olsson dataset, the erythroid branch of the Paul 

dataset. Four different variants of causal inference implemented in Scribe are tested: RDI ( L 
= 0): the default RDI method without conditioning on any other gene; RDI (L = 1): the RDI 

method based on conditioning on the incoming gene with highest causality score, except the 

current target; uRDI: the method based on the uniformization technique applied on the 

actual distribution in RDI; uRDI ( L = 1): the uRDI method but also with the conditioning 

on the incoming gene with the highest causality score, except the current target. (I) The 

network of the gene-set as included in the panel (panel F) retrieved from the STRING 

database.
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Fig 4: Causal inference in Scribe with RNA-velocity.
(A) RNA-velocity vector projected onto the first two latent dimensions. A small subset of 

arrows is used to visualize the velocity field of the cells. S: Sympathoblasts; C: Chromaffin. 

SCP: Schwann Cell Progenitor. The color of each cell corresponds to the cluster id from Fig 
5B of ref. (Furlan et al., 2017). (B) A core causal network for chromaffin cell commitment 

inferred based on RNA-velocity. Gene set is collected from ref. (Furlan et al., 2017). CLR 

(context likelihood of relatedness) regularization is used to remove spurious causal edges in 

the network (see STAR Methods). (C) Two potential coherent FFL (feed-forward loop) 

motifs of chromaffin differentiation are discovered from the core network. Edge width 

corresponds to causal regulation strength. (D) Visualization of the six causal regulations 

pairs in the feedforward loops of Eya1-Phox2a-Erbb3 and Gata3-Phox2a-Notch1. (See 

STAR Methods for details). (E) Visualizing combinatorial regulation logic for the two 

feedforward loops in Panel C with Scribe. For both Panels D and E, a grid with 625 cells (25 

on each dimension) is used. Similarly, expected values are scaled by the maximum to obtain 

a range from 0 to 1. (F) Scribe’s ability to detect causal regulatory interactions is limited by 

the single-cell measurement technology used. Technologies that provide measurements that 

are coupled across time and between genes provide more power for inference than 

conventional single-cell RNA-seq experiments.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Lung dataset (Treutlein et al., 2014) GEO id: GSE52583

LPS dataset (Shalek et al., 2014) GEO id: GSE41265

MARS-seq dataset (Paul et al., 2015) http://compgenomics.weizmann.ac.il/tanay/?pageid=649

Olsson dataset (Olsson et al., 2016) synapse id syn4975060

Live imaging dataset for the C. 
elegans

(Murray et al., 2012) Waterston lab

Software and Algorithms

Scribe This paper https://github.com/aristoteleo

rccm Implemented based on: https://
github.com/cjbayesian/rccm

https://github.com/cole-trapnell-lab/rccm

scRNASeqSim This paper https://github.com/cole-trapnell-lab/scRNASeqSim

Other

Supplementary software This paper Supplementary software
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