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Abstract
Background  An immune active cancer phenotype 
typified by a T helper 1 (Th-1) immune response has 
been associated with increased responsiveness to 
immunotherapy and favorable prognosis in some but not 
all cancer types. The reason of this differential prognostic 
connotation remains unknown.
Methods  To explore the contextual prognostic value of 
cancer immune phenotypes, we applied a multimodal 
pan-cancer analysis among 31 different histologies 
(9282 patients), encompassing immune and oncogenic 
transcriptomic analysis, mutational and neoantigen load 
and copy number variations.
Results  We demonstrated that the favorable prognostic 
connotation conferred by the presence of a Th-1 immune 
response was abolished in tumors displaying specific 
tumor-cell intrinsic attributes such as high transforming 
growth factor-beta (TGF-β) signaling and low proliferation 
capacity. This observation was independent of mutation 
rate. We validated this observation in the context of 
immune checkpoint inhibition. WNT-β catenin, barrier 
molecules, Notch, hedgehog, mismatch repair, telomerase 
activity and AMPK signaling were the pathways most 
coherently associated with an immune silent phenotype 
together with mutations of driver genes including IDH1/2, 
FOXA2, HDAC3, PSIP1, MAP3K1, KRAS, NRAS, EGFR, 
FGFR3, WNT5A and IRF7.
Conclusions  This is the first systematic study 
demonstrating that the prognostic and predictive role 
of a bona fide favorable intratumoral immune response 
is dependent on the disposition of specific oncogenic 
pathways. This information could be used to refine 
stratification algorithms and prioritize hierarchically 
relevant targets for combination therapies.

Background
Evidence of the effects of antitumoral immu-
nity on cancer progression has accumulated 
over the last decades. The identification of 
tumor immune escape mechanisms, most 
importantly the characterization of immune 

checkpoints, led to major advances in immu-
notherapy. Immune checkpoint inhibitors 
have dramatically improved clinical outcome 
for a subset of patients across multiple 
cancer types. Despite this progress, the 
majority of tumors (60%–80%) still fail to 
respond.1 2 Understanding the relationship 
between tumor cell and the immune system is 
critical to develop more effective therapeutic 
strategies.

A pre-existing intratumoral antitumor 
immune response has been associated with 
favorable outcome and responsiveness to 
immunotherapy.3 However, multiple studies 
have reported differences in the association 
between measures of intratumoral immune 
activity and survival across different cancer 
types.4–8 In breast cancer, a positive associa-
tion between survival and density of tumor 
infiltrating lymphocytes, as estimated by 
transcriptomic data, was restricted to tumors 
displaying a high mutational load or an 
aggressive/high proliferative phenotype.9–11 
Proposed transcriptome-based immunolog-
ical classifications range from a measure of 
cytolytic activity by mean expression of GZMA 
and PRF1 genes,12 to reflections of immune 
cell infiltration by cell-specific transcriptional 
profiles,10 13 or gene signatures reflecting 
molecular components of an active antitumor 
immune response, including major histocom-
patibility complex, costimulatory or immu-
nomodulatory molecules.4 14 15 Reported 
prognostic and predictive signatures typically 
show overlapping genes or genes involved in 
conserved immunologic processes.3 16–19 We 
termed these mechanisms as the Immunologic 
Constant of Rejection (ICR).3 14 20–22 The ICR 
signature incorporates interferon-stimulated 
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genes driven by transcription factors IRF1 and STAT1, 
CCR5 and CXCR3 ligands, immune effector molecules 
and counter-activated immune regulatory genes.14 16 22 23 
Overall, the high expression of ICR genes typifies ‘hot’/
immune active tumors characterized by the presence 
of a T helper 1 (Th-1)/cytotoxic immune response, as 
described in detail elsewhere.3 22–24

Previously, we observed a significantly prolonged 
survival of patients with tumors displaying a coordinated 
expression of ICR genes in breast cancer.22 24 ICR gene 
expression was also associated with responsiveness of 
breast cancer metastatic lesion to local immunotherapy.21 
Moreover, we identified genetic determinants of different 
immune phenotypes.22 In particular, we reported that tran-
scriptional dysregulation of the MAPK pathways sustained 
by genetic alterations (ie, MAP3K1 and MAP2K4 muta-
tions) are enriched in immune silent tumors.22 We also 
observed that the ICR signature refines and improves the 
prognostic value of conventional prognostic signatures 
adopted in breast cancer.24 Here, we propose a systematic 
analysis of the entire The Cancer Genome Atlas (TCGA) 
cohort encompassing 31 different histologies. Using a 
pan-cancer approach, we identified novel relationships 
between tumor genetic programmes and immune orien-
tation. After having demonstrated differential associa-
tions between ICR classification and overall survival (OS) 
across cancer types, we systemically analyzed in which 
(molecular) contexts the ICR has prognostic value and 
in which ones it does not. Combination of immune orien-
tation with tumor intrinsic attributes that interact with its 
prognostic significance could refine tumor immunologic 
classifications. This approach was validated in the context 
of immune-checkpoint inhibition allowing better predic-
tive precision.

Methods
Data acquisition and normalization
RNA-seq data from TCGA were downloaded and 
processed using TCGA Assembler (V.2.0.3). Gene symbols 
were converted to official HGNC gene symbols and genes 
without symbol or gene information were excluded. 
RNA-seq data from as wide as possible sample set of the 
total of 33 available cancer types of tissue types primary 
solid tumor (TP), recurrent solid tumor, additional-new 
primary, metastatic (TM), additional metastatic and solid 
tissue normal were used to generate a pan-cancer normal-
ized dataset. Normalization was performed within lanes, 
to correct for gene-specific effects (including GC-con-
tent and gene length) and between lanes, to correct for 
sample-related differences (including sequencing depth) 
using R package EDASeq (Exploratory Data Analysis 
and Normalization for RNA-Seq) (V.2.12.0) and quan-
tile normalized using preprocessCore (V.1.36.0). After 
normalization, samples were extracted to obtain a single 
primary tumor tissue (TP) sample per patient. For skin 
cutaneous melanoma (SKCM) patients without avail-
able TP sample, a metastatic sample (TM) was included. 

Finally, the pan-cancer normalized dataset was filtered 
to remove duplicate patients and samples that did not 
pass assay-specific QCs as defined previously,7 data were 
log2 transformed. Clinical data were sourced from the 
TCGA Pan-Cancer Clinical Data Resource.25 Mutation 
rate and predicted neoantigen load were obtained from 
the recent immunogenomic analysis by Thorsson et al.7 
The dataset published by Ellrott et al was used for muta-
tion data analysis.26 Hematological cancer types Acute 
Myeloid Leukemia (LAML) and Lymphoid Neoplasm 
Diffuse Large B-cell Lymphoma (DLBC) were excluded 
from the analysis.

Raw fastq files of datasets GSE7822027 and GSE7822028 
were downloaded from National Center for Biotech-
nology Information (NCBI) storage replication adapter 
(SRA) servers, quality control and adapter trimming was 
performed using Trim_Galore (https://​github.​com/​
FelixKrueger/​TrimGalore). Reads were aligned to hg19 
using STAR.29 GenomicFeatures and GenomicAlign-
ments Bioconductor packages were used to generate raw 
counts. The raw counts were normalized with EDASeq30 
and log2 transformed. The dataset phs000452.v2.p131 was 
downloaded, already normalized, from Tumor Immune 
Dysfunction and Exclusion (TIDE) (http://​tide.​dfci.​
harvard.​edu). TCGA segmented copy number varia-
tion (CNV) files were downloaded from Genomic Data 
Commons (GDC) (https://​portal.​gdc.​cancer.​gov) to run 
Genomic Identification of Significant Targets in Cancer 
(GISTIC).32

ICR classification
Consensus clustering based on the 20 ICR genes 
(figure  1A) was performed for each cancer type sepa-
rately using the ConsensusClusterPlus (V.1.42.0) R 
package with the following parameters: 5000 repeats, a 
maximum of six clusters and agglomerative hierarchical 
clustering with ward criterion (Ward.D2) inner and 
complete outer linkage. The optimal number of clus-
ters (≥3) for best segregation of samples based on the 
ICR signature was determined heuristically using the 
Calinski-Harabasz criterion33 (source function available 
on GitHub repository,34 see cancer datasheets (https://​
figshare.​com/​articles/​Cancer_​Datasheets/​7937246) 
for plots with local maximum). As we were intending to 
compare cancer samples with a highly active immune 
phenotype with those that have not, the cluster with the 
highest expression of ICR genes was designated as ‘ICR 
High’, while the cluster with the lowest ICR gene expres-
sion was designated ‘ICR Low’. All samples in interme-
diate cluster(s) were defined as ‘ICR Medium’. Samples 
were annotated with an ICR score, defined as the mean 
of the normalized, log2 transformed expression values 
of the ICR genes. For generation of the ICR Heatmaps 
(figure 1A and the cancer datasheets), a modified version 
of heatmap.3 function was used.34

For the landmark analyzes, we used a per-cancer clus-
tering approach for ICR cluster assignment, as opposed 
to pan-cancer clustering, for two main reasons: (1) 
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Figure 1  Immunological classification of 31 cancer types based on expression of ICR gene signature A. Consensus cluster 
matrix of SKCM samples based on RNA-seq expression values of ICR genes (left panel). RNA-seq expression heatmap of ICR 
genes annotated with ICR consensus clusters (n=469). Clusters with intermediate ICR gene expression levels (ICR Medium1 
and ICR Medium2) were combined to obtain ICR high, medium and low groups (HML classification). ICR genes reflect four 
components of immune mediated tissue rejection: Th-1 signaling, CXCR3/CCR5 chemokines, immune effectors and immune 
regulatory functions (right panel). (B) Boxplot of ICR scores across ICR clusters in 31 cancer types. Cancer types are ordered by 
mean ICR score per cancer. (C) Forest plot showing Hrs (overall survival) of ICR low versus high, p value and number of patients 
(N) for each of the cancer types. ICR-enabled cancer types (HR >1; p<0.1) are indicated with orange asterisks and ICR-disabled 
cancer types (HR <1; p>0.1) are indicated with purple asterisks. Cancer types pCpG, THYM and TGCT are excluded from the 
plot, because CIs ranged from 0 to infinite due to low number of deaths in these cancer types. (D) Kaplan-Meier curves showing 
OS across ICR groups in ICR-enabled and ICR-disabled cancer types. ((A) Kaplan-Meier curves for each individual cancer type 
are available in the cancer datasheets). ICR, immunologic constant of rejection; OS, overall survival; Th-1, T helper 1. ACC: 
Adrenocortical Carcinoma; BLCA: Bladder Urothelial Carcinoma; BRCA: Breast Invasive Carcinoma; CESC: Cervical Squamous 
Cell Carcinoma and Endocervical Adenocarcinoma; CHOL: Cholangiocarcinoma; COAD: Colon Adenocarcinoma; ESCA: 
Esophageal Carcinoma; GBM: Glioblastoma; HNSC: Head and Neck Squamous Cell Carcinoma; KICH: Kidney Chromophobe; 
KIRC: Kidney Renal Clear Cell Carcinoma; KIRP: Kidney Renal Papillary Cell Carcinoma; LGG: Low Grade Glioma; LIHC: Liver 
Hepatocellular Carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma; MESO: Mesothelioma; OV: 
Ovarian Serous Cystadenocarcinoma; PAAD: Pancreatic Adenocarcinoma; PCPG: Pheochromocytoma and Paraganglioma; 
PRAD: Prostate Adenocarcinoma; READ: Rectum Adenocarcinoma; SARC: Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: 
Stomach Adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: Thyroid Carcinoma; THYM: Thymoma; UCEC: Uterine 
Corpus Endometrial Carcinoma; UCS: Uterine carcinosarcoma; UVM Uveal Melanoma.
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categorization pan cancer does not allow assessment of 
the prognostic value of ICR in tumor types with an overall 
low or high ICR expression; (2) using a pan-cancer 
clustering approach, the ICR assignment will change 
depending on the selection of tumor types included, 
as result of centroid shifting, making this classification 
inconsistent between analyzes. Pan-cancer clustering was 
performed as explorative/comparative analysis.

t-distributed stochastic neighbor embedding (t-SNE) 
plot t-SNE35 was used as dimension reduction technique 
on the complete RNA expression matrix using R package 
Rtsne (V.0.15) (settings perplexity=15, theta=0.5). t-SNE 
plot was annotated for SKCM primary, SKCM metastasis 
and uveal melanoma (UVM) samples.

Survival analysis
OS from the TCGA Pan-Cancer Clinical Data Resource25 
was used to generate Kaplan-Meier curves using a modi-
fied version of the ggkm function.36 Patients with less 
than 1 day of follow-up were excluded and survival data 
were censored after a follow-up duration of 10 years. HRs 
between ICR low and ICR high groups, including corre-
sponding p values based on X2 test, and CIs were calcu-
lated using the R package survival (V.2.41–3). The forest 
plot (figure 1C) was generated using the R package forest-
plot (V.1.7.2). Cancer types, Pheochromocytoma and 
Paraganglioma (PCPG), Thymoma (THYM), Testicular 
Germ cell tumors (TGCT), were excluded before gener-
ation of the plot, as the number of deaths in the compar-
ison groups was too small for survival estimation.25 Cancer 
types with a HR >1 with a p<0.1 were termed ICR-enabled 
and cancer types with an HR <1 with a p<0.1 were termed 
ICR disabled. The forest plot was annotated manually 
with indicators for ICR-enabled and ICR-disabled cancer 
types. Cox proportional hazards regression analysis was 
performed with the R package survival with the AJCC 
pathological tumor stage as described in the TCGA Pan-
Cancer Clinical Data Resource.25 Factors added in the 
multivariate analyzes (overall and stratified according 
to the ICR-enabling categories) include representative 
oncogenic pathways (proliferation and transforming 
growth factor beta (TGF-ß) signaling), mutation rate, 
aneuploidy, stage or histological grade.

For simplification, stage categories were reduced to 
‘stage I”’, ‘stage II’, ‘stage III’ and ‘stage IV’ for subcate-
gories (eg, stage IIA, stage IIB, stage IIC, etc). For lower 
grade glioma’s (LGG) and glioblastoma multiforme 
(GBM), histological grade was used instead of stage as 
this is not applicable to these tumors.

For the selection of variables to be included in the 
final (stratified) multivariate Cox models, a lenient inter-
pretation of the violation of the proportional hazard 
assumption (PHA) was considered appropriate. Such an 
approach was undertaken in order to allow for a correct 
performance of the model and, at the same time, to avoid 
the unwarranted exclusion of biologically relevant vari-
ables with a statistically significant, although minimal, 
PHA violation due to the large sample size of the study 

cohorts. The Pearson product-moment correlation (rho) 
between the Schoenfeld residuals and the transformed 
(log) survival time was computed using the ​cox.​zph R 
function. Using the same package, the tolerance of the 
PHA violation was assessed by taking into account the 
p value of rejecting the null hypothesis of the PHA and 
by graphically inspecting the slope of the line repre-
senting the smoothing-spline fit of the scaled Schoenfeld 
residuals plotted against the transformed survival time 
as a dependent variable. The variables were grouped 
into three categories: (A) p≥0.05 and minimally curved 
fit line=PHA true; (B) p<0.05 and minimally curved fit 
line=minimal PHA violation, tolerated; (C) p<0.05 and 
curved fit line=significant PHA violation (online supple-
mentary figure 1). Cox proportional hazard models were 
stratified for variables with a significant violation (cate-
gory C). For symmetry, stratification was applied for such 
variables across all multivariate models, although not 
technically required for all.

Gene set enrichment analysis
To define the enrichment of specific gene sets, either 
reflecting immune cell types (figure 2A) or specific onco-
genic pathways (figure 2B), single sample gene set enrich-
ment analysis (ssGSEA)37 was performed on the log2 
transformed, normalized expression data. Immune cell-
specific signatures as described in Bindea et al13 were used 
as gene sets using this method to deconvolute immune 
cell abundance. Gene sets to define enrichment of specific 
tumor-related pathways were obtained from the multiple 
sources. We started with a selection of 24 Hallmark path-
ways,38 which are regularly expressed in cancer. Subse-
quently, only non-redundant IPA pathways were added 
to this collection (http://www.​ingenuity.​com, Ingenuity 
System, Redwood City, California, USA), resulting to the 
inclusion of 21 IPA pathways with minimal gene overlap. 
Finally, several pathways were added that have previously 
been hypothesized to associate with cancer immune 
phenotypes, including Hypoxia/Adenosine Immune Cell 
Suppression, immunogenic cell death, NOS1 Signature, 
PI3Kgamma signature and SHC1/pSTAT3 signatures 
as described by Lu et al,39 barrier genes as described by 
Salerno et al,40 the proliferation metagene as described 
by Miller et al9 and genes upregulated in MAPK mutated 
breast cancer.41

Correlation matrix
The correlation matrices of ICR genes (online supple-
mentary figure 2) and correlation between ICR score and 
enrichment score (ES) of selected pathways (figure 2B) 
were calculated using Pearson test and plotted using corr-
plot (V.0.84).

Somatic alteration analysis
Mutation rate and predicted neoantigen count data7 were 
log10-transformed and distribution across ICR clusters 
was plotted using R package ggplot2 (V.3.2.1). Differ-
ences between ICR high and low clusters were calculated 

https://dx.doi.org/10.1136/jitc-2020-000617
https://dx.doi.org/10.1136/jitc-2020-000617
http://www.ingenuity.com
https://dx.doi.org/10.1136/jitc-2020-000617
https://dx.doi.org/10.1136/jitc-2020-000617


5Roelands J, et al. J Immunother Cancer 2020;8:e000617. doi:10.1136/jitc-2020-000617

Open access

Figure 2  Deconvolution of immune cell populations and enrichment of oncogenic pathways through single sample GSEA. (A) 
Heatmap of enrichment values for cell-specific immune-signatures as described by Bindea et al.13 Samples are ordered by ICR 
cluster and ordered by cancer type within ICR clusters. (B) Pearson coefficient of correlation between ICR score and enrichment 
scores of oncogenic pathways per cancer. pathways that have a positive correlation with ICR are green and those with an 
inverse correlation are blue. GSEA, gene set enrichment analysis; ICR, immunologic constant of rejection.
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through t-test, using a cut-off p<0.05. For specific muta-
tion analysis, a set of 470 frequently mutated genes in 
cancer42 was selected. An elastic net regularized43 model 
was built to predict the ICR score as function of muta-
tions in each sample and using the tumor-type as a 
covariate. The accuracy of the model was evaluated in a 
10-fold cross-validation setting computing the correlation 
between the model prediction and the true ICR scores, 
finally obtaining a Spearman correlation of 0.669±0.012 
(p<10-400).

The R package ComplexHeatmap (V.1.17.1) was used 
to plot ICR score ratios between mutated versus wild-type 
(WT) groups. For cancer type/gene combinations with 
a number of samples of <3 in the mutated group, ratios 
were not calculated (NA; gray color in plot). A ratio >1 
implies that the ICR score is higher in the mutated group 
compared with WT, while a ratio <1 implies that the ICR 
score is higher in subset of tumors without mutation.

CNV analysis was performed for selected genes (PTEN 
and CTNNB1). For both genes, CNVs were categorized as 
deep deletions, hemideletions, WT, gain and amplifica-
tion (GISTIC scores of -2,–1, 0, 1 and 2, respectively).32 
For PTEN deletion, CNV-low versus CNV-high categories 
were also defined using a Log R ratio cut-off of −0.4, previ-
ously optimized in melanoma.44 Additionally, a focused 
CTNNB1 mutation analysis was performed by only 
selecting mutations in exon 3 (amino acids positions 29 to 
49), for which strong functional data exists.45 Differences 
in ICR scores between PTEN/CTNNB1 somatic mutations 
and CNVs were assessed by t-test.

Aneuploidy
Aneuploidy scores for each individual cancer were 
taken from Taylor et al.46 Briefly, each tumor was scored 
for the presence of aneuploid chromosome arms after 
accounting for tumor ploidy. Tumor aneuploidy scores 
for each cohort were then compared with ICR scores via 
linear model with and without purity adjustment. Purity 
adjustment entailed correlating ICR score and tumor 
purity (as estimated via ABSOLUTE)47 and using the 
residuals to evaluate the postadjustment relationship 
between ICR score and tumor aneuploidy. In particular, 
we made use of the precomputed aneuploidy scores and 
ABSOLUTE tumor purity values. ICR and aneuploidy 
score associations were evaluated by linear model in R via 
the lm() function for each cohort independently. Purity 
adjusted ICR and aneuploidy score associations were eval-
uated by first modeling ICR score by tumor purity, then 
taking the ICR score residuals and assessing the associa-
tion with aneuploidy score via linear model. Cohorts with 
model p values below 0.01 for adjusted or unadjusted ICR 
score and aneuploidy, regardless of the directionality of 
the association, were included in figure 3C.

Differential GSEA and stratified survival analysis
Differential ES analysis between samples of ICR-
enabled and those of ICR-disabled cancer types was 
performed using t-tests, with a cut-off of false discovery 

rate (FDR)-adjusted p value (ie, q-value)<0.05 (online 
supplementary table 1). Tumor intrinsic pathways that 
were differentially enriched between ICR-enabled and 
disabled cancer types were selected. The heatmap used 
for visualization of these differences was generated using 
the adapted heatmap.3 function.34 For each of these 
selected pathways, samples were categorized pan-cancer 
as pathway-High (ES >median ES) or pathway-low (ES 
<median ES). Associations between ICR and survival were 
defined for each pathway ‘high’ and pathway ‘low’ group 
separately using the survival analysis methodology as 
described above. Pathways for which a significant associa-
tion between ICR and survival was present in one group, 
but not in the other one, were selected (online supple-
mentary table 2). Similarly, these pathways were used to 
categorize samples per individual cancer type in pathway-
high (ES >cancer specific median ES) and pathway-low 
(ES <cancer-specific median ES). Differences between 
HRs of groups in individual cancer types were calculated 
and plotted using ComplexHeatmap.

Predictive value ICR score in immune checkpoint datasets
ICR scores, or the mean expression of ICR genes, were 
compared between responders and non-responders to 
immune checkpoint therapy. For the Chen et al dataset, 
performed on Nanostring platform, ICR score was calcu-
lated using the 17 ICR genes available in the Nanostring 
panel. Difference in mean ICR score between groups was 
tested using two-side t-test (cut-off p<0.05). For datasets, 
GSE78220,28 GSE7822027 and Prat et al,48 the response 
category includes both partial and complete clinical 
responders according to respective publications. For the 
Chen et al dataset, clinical responders also included stable 
disease, as described by Chen et al.49 In the van Allen et 
al dataset, response was defined as patients with clinical 
response or long-term survival after treatment.31 Samples 
of the van Allen dataset were dichotomized based on 
median ES of (1) genes of the proliferation metagene 
and (2) TGF-ß signaling signature. Stratified analysis was 
performed in each of the categories. ICR high, medium 
and low groups were defined according to ICR score 
tertiles, to obtain groups of sufficient size. Stratified 
survival analysis was performed using the same approach 
as applied to the TCGA data.

Results
Prognostic impact of ICR classification is different between 
cancer types
RNA-seq data of samples from a total of 9282 patients 
across 31 distinct solid cancer types were obtained from 
TCGA. To classify cancer samples based on their immune 
orientation, we performed unsupervised consensus clus-
tering for each cancer type separately based on the expres-
sion of the ICR immune gene signature. This signature 
consists of 20 genes that reflect activation of Th-1-signaling 
(IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and IRF1), 
CXCR3/CCR5 chemokine ligands (CXCL9, CXCL10, and 

https://dx.doi.org/10.1136/jitc-2020-000617
https://dx.doi.org/10.1136/jitc-2020-000617
https://dx.doi.org/10.1136/jitc-2020-000617
https://dx.doi.org/10.1136/jitc-2020-000617
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Figure 3  Association of ICR with nonsilent mutation rate, predicted neoantigen load, and tumor aneuploidy. (A) Scatter plot 
of log transformed non-silent mutation count per ICR cluster for each cancer type. (B) Log transformed predicated neoantigen 
load per ICR cluster for each cancer type. (A, B) Red cross-bar represents the mean value per ICR cluster. Cancer types are 
ordered by mean nonsilent mutation count per cancer. Non-silent mutation rate and predicted neoantigen load were obtained 
from Thorsson et al.7 (C) Correlation between aneuploidy score and raw/purity adjusted ICR score for all cohorts with significant 
relationships between ICR and aneuploidy. ICR, immunological constant of rejection.

CCL5), cytotoxic effector molecules (GNLY, PRF1, GZMA, 
GZMB, and GZMH) and compensatory immune regula-
tors (CD274/PD-L1, PDCD1, CTLA4, FOXP3 and IDO1) 
(figure  1A).3 19 22 23 Expression of these genes showed 
a positive correlation with each other across all cancer 
types (online supplementary figure 2). The ICR signa-
ture highly correlates with other immune signatures that 
aim to reflect a highly active immune tumor microenvi-
ronment, including the tumor inflammation signatures 

(r=0.97)5 (online supplementary figure 3). As a represen-
tative example, consensus clustering and cluster assign-
ment of SKCM is shown in figure 1A. Analogous figures 
for each of the 31 cancer types are available as cancer 
datasheets at Figshare (https://​figshare.​com/​articles/​
Cancer_​Datasheets/​7937246).

As shown in figure  1B, the mean expression of ICR 
genes, or ICR score, varies between cancer types, reflecting 
general differences in tumor immunogenicity between 

https://dx.doi.org/10.1136/jitc-2020-000617
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cancers. While brain tumors (brain LGG and GBM) 
typically display low immunological signals,50 SKCM 
and head and neck squamous cell carcinoma (HNSC) 
display high levels of immune activation.7 51 52 In addi-
tion, the distribution of ICR scores among patients and 
the difference between the highest and lowest ICR scores 
varies between cancers. Accordingly, the proportions of 
patients assigned to specific ICR clusters are dependent 
on the cancer type. Even more clinically relevant, the 
relation of the different immune phenotypes to survival 
is dissimilar among cancer types (figure 1C,D). While the 
ICR high phenotype (hot) shows a significant survival 
benefit compared with the ICR low phenotype (cold) for 
various cancer types (Breast Invasive Carcinoma (BRCA), 
SKCM, Uterine Corpus Endometrial Carcinoma (UCEC), 
Sarcoma (SARC)), the ICR high cluster is associated with 
significantly reduced OS in other cancer types (UVM, 
LGG, Pancreatic Adenocarcinoma (PAAD), Kidney 
Renal Clear Cell Carcinoma (KIRC)) (figure 1C). Similar 
results were obtained when Cox regression analysis was 
performed on ICR score as a continuous variable (online 
supplementary table 3). To explore biological differences 
in cancer types in which a highly active immune pheno-
type is mostly associated with favorable survival, versus 
cancer types in which this phenotype is mostly associated 
with decreased survival, we categorized cancer types in 
ICR-enabled (BRCA, SKCM, UCEC, SARC, Liver Hepato-
cellular Carcinoma (LIHC), HNSC, Stomach Adenocar-
cinoma (STAD), Bladder Urothelial Carcinoma (BLCA)) 
and ICR-disabled (UVM, LGG, PAAD, KIRC) groups, 
respectively (figure 1C). All other cancer types in which 
ICR did not show an association or trend were catego-
rized as ICR neutral. Of important note, this classifica-
tion was used for explorative purposes, and a role for the 
immune-mediated tumor rejection cannot be precluded 
in ICR-neutral cancer types as their classification be the 
result of not-ideal survival follow-up or limited power.

In case of SKCM, tSNE plots on the whole RNA-seq 
matrix showed that melanoma samples (either primary 
or metastatic) have a distinct transcriptional pattern as 
compared with other tumor types, confirming that cell-
of-origin origin patterns drive the molecular classifica-
tions of solid tumors53 (online supplementary figure 
4). However, a certain degree of segregation between 
metastatic and primary lesions was observed, and ICR 
score was significantly higher in metastatic lesions. When 
survival analysis was stratified according to SKCM status, 
similar results were obtained in primary and metastatic 
tumors, despite the low sample size of the SKCM-primary 
group. These findings justify the inclusion of both SKCM 
categories in the enabled tumors. Aggregate analysis for 
ICR-enabled and ICR-disabled tumor types using ICR 
categories defined by a pan-cancer clustering approach 
(see the Methods section) returned similar results as 
compared with the ones obtained using the per-cancer 
ICR clustering (online supplementary figure 5).

We explored whether the ICR scores and their distri-
butions were different among these defined groups of 

cancer types. Mean ICR score is low for most ICR-disabled 
(ranging from 3.97 to 8.34) compared with ICR-enabled 
cancer types (ranging from 7.26 to 8.36) (online supple-
mentary figure 6A). This observation is most noticeable 
for ICR-disabled cancer types LGG and UVM. Moreover, 
the difference (delta) between ICR scores in ICR high 
compared with ICR low groups is higher in ICR-enabled 
cancer types (range: 2.98–4.97) compared with ICR-
neutral (range: 1.48–4.49) and ICR-disabled cancer types 
(range: 2.29–3.35) (online supplementary figure 6B). To 
evaluate whether the differences in the dynamic range 
of the ICR score in ICR-enabled versus ICR-disabled 
cancers, could negatively impact correlative analyzes and 
lead to spurious associations, the coefficient of variation 
(SD/mean) was calculated for each cancer type (online 
supplementary figure 6C,D) and plotted in relation to 
the ICR score. ICR distribution was simil-Gaussian in all 
cancer types, although in LGG was slightly skewed to the 
left. ICR score dispersion (represented by the coefficient 
of variation) was the highest in LGG and UVM, which had 
overall low values of ICR. It is possible that in these tumors 
the quantification of ICR score is less accurate compared 
with other tumors due to the scant leukocyte infiltration. 
Still, the acceptable data distribution of ICR score in each 
tumor type reassures validity of downstream analyzes.

To define whether tumor stage or grade (for LGG and 
GBM) might interact with the association between ICR 
and OS, we fitted a Cox proportional hazards model 
for each group of ICR-enabled, ICR-neutral and ICR-
disabled cancer types (table  1). Overall, including ICR 
high and ICR low samples from all cancer types, ICR 
has significant prognostic value independent of AJCC 
pathologic stage/grade. For ICR-enabled cancer types, 
the ICR high group also remains significantly associated 
with improved survival after adjusting for tumor patho-
logic stage. For ICR-disabled cancer types, ICR high was 
associated with worse survival in univariate analysis (HR 
<1). However, in multivariate models, this negative prog-
nostic value of ICR was mostly lost (HR 0.7702; 95% CI 
0.591 to 1.005, p=0.054). Kaplan-Meier plots stratified by 
pathologic stage showed that within individual pathologic 
stages, ICR was not associated with OS for ICR-disabled 
cancers (online supplementary figure 7.1). In fact, in the 
ICR-disabled tumors (but not in the ICR-enabled ones), 
ICR was significantly higher (p=10 e-7) in advanced 
versus early stages (online supplementary figure 7.2). 
Similarly, a progressive enrichment of ICR high samples 
was observed with more advanced stages/grades in the 
ICR-disabled tumors UVM and KIRC, and in LGG with 
more advanced grades.

For ICR-neutral cancer types, while ICR was not associ-
ated with survival in univariate analysis, multivariate anal-
ysis indeed identified a positive prognostic value of the 
ICR classification, though less robust than observed for 
ICR-enabled cancer types.

Similar results were obtained by using Cox multivariate 
models stratified by stage/grade in consideration of the 
significant violation of the HPA for this variable in the 
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Table 1  Univariate and multivariate overall survival Cox proportional hazards regression including ICR cluster and stage, in all 
samples, ICR-enabled, ICR-disabled and ICR-neutral samples

Variables

Univariate Multivariate Stratified multivariate

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

ICR overall (n=4735)

 � ICR cluster (ICR low vs 
high)

1.203 (1.081 to 1.339) 0.00073*** 1.232 (1.093 to 1.390) 0.00067*** 1.217 (1.079 to 1.373) 0.00143**

 � Stage/grade 1.839 (1.731 to 1.954) <2e-16*** 1.838 (1.729 to 
1.952)†

<2e-16*** Strata

Samples from ICR-enabled 
cancer types (n=1742)

ICR cluster (ICR low vs high) 1.631 (1.374 to 1.937) 2.26e-8*** 1.488 (1.233 to 1.795) 3.35e-05*** 1.494 (1.238 to 1.804) 2.94e-
05***

 � Stage 1.817 (1.644 to 2.008) <2e-16*** 1.798 (1.628 to 
1.987)†

<2e-16*** Strata

Samples from ICR-disabled 
cancer types (n=721)

 � ICR cluster (ICR low vs 
high)

0.6194 (0.480 to 
0.799)

0.000229*** 0.7702 (0.591 to 
1.005)

0.0543 0.7253 (0.5527 to 
0.9519)

0.0206*

 � Stage/grade 1.632 (1.418 to 1.879) 8.74e-12*** 1.5703 (1.358 to 
1.816)

1.12e-09*** Strata

Samples from ICR neutral 
cancer types (n=2272)

 � ICR cluster (ICR low vs 
high)

1.160 (0.983 to 1.369) 0.0789 1.247 (1.017 to 1.530) 0.034* 1.23 (1.001 to 1.51) 0.0485*

 � Stage/grade 1.944 (1.772 to 2.132) <2e-16*** 1.921 (1.751 to 
2.108)†

<2e-16*** Strata

ICR cluster entered as categorical (factor) variable (factor levels: ‘ICR high’, ‘ICR low’). Stage is coded as stage I=1; stage II=2; stage III=3; stage 
IV=4. Histological grade was used for gliomas (LGG and GBM) instead of stage (LGG grade 2=2; LGG grade 3=3, grade 4 (GBM)=4). Only samples 
with all the variables available are included in the univariate and multivariate analyses.
*P<0.05, **P<0.01, ***P<0.001.
†Significant violation of proportional hazards assumption. HRs for death.
GBM, glioblastoma multiforme; ICR, immunological constant of rejection; LGG, lower grade glioma’s.

models including the entire cohort or the enabled and 
neutral tumors.

ICR reflects antitumor immune activity and is inversely 
correlated with tumor-related pathways associated with 
immune escape
To further explore differences between cancer types, we 
aimed to compare the density of leucocyte subpopula-
tions between ICR high and low samples across cancers. 
Gene expression signatures specific to 24 cell types13 
were used to deconvolute the abundance of immune 
cells in tumor samples by performing ssGSEA.37 Cell-
specific ESs for each patient demonstrated a clear enrich-
ment of transcripts specific to T and B cells in ICR high 
patients (figure 2A). More specifically, ICR high samples 
showed increased expression of transcripts associated 
with cytotoxic T cells, T-regulatory (T-reg) cells, Th-1 
cells, NK CD56dim cells, activated dendritic cells (DC) 
and macrophages, compared with ICR medium and ICR 
low samples. This observation is consistent across cancer 
types, in both ICR-enabled and ICR-disabled cancers. So, 
in addition to the immune functional molecular orienta-
tion, the ICR gene signature is a good reflection of overall 
antitumor immune cell infiltration.39 To quantitatively 

compare immune cell enrichment between individual 
cancer types, the mean ES was calculated for each cancer 
type (online supplementary figure 8). Overall, no single 
consistent difference in terms of immune cell enrichment 
can be observed that can discriminate ICR-enabled from 
ICR-disabled cancer types. Lower grade glioma (LGG) 
and UVM show an overall low immune infiltration, consis-
tent with our reported low ICR scores.

We then proceeded to examine which tumor intrinsic 
attributes correlate with immune phenotype as reflected 
by ICR gene expression. We performed ssGSEA to iden-
tify enrichment of transcripts of common tumor-related 
pathways.22 39 40 Not surprisingly, immune-related path-
ways including TNFR1 Signaling and ICD showed a 
strong positive correlation with expression of ICR genes 
(figure  2B). This implies that our immune signature 
captures the antitumoral immunological processes well 
across a wide range of cancer types. Interestingly, a few 
pathways were identified that inversely correlated with ICR 
gene expression, potentially representing mechanisms by 
which immune silent tumors develop their phenotype. 
These pathways include WNT -β catenin,54 55 barrier genes,40 
AMPK (5' AMP-activated protein kinase) signaling,56 mismatch 

https://dx.doi.org/10.1136/jitc-2020-000617
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repair, telomerase extension by telomerase, Notch signaling and 
Hedgehog signaling pathways. Of special note, genes that we 
previously found to be upregulated in MAP3K1/MAP2K4-
mutated versus WT breast cancer which perfectly segre-
gated ICR high versus low samples in the BRCA TCGA 
cohort (MAPK (mitogen-activated protein kinase)-up genes),22 
were also inversely correlated with ICR in a significant 
proportion of cancers (ie, Adrenocortical carcinoma 
(ACC), THYM, glioblastoma multiforme (GBM), LGG 
and TGCT).

Characterization of tumor mutational load and aneuploidy in 
relation to ICR immune phenotypes
Next, we aimed to identify genomic attributes related to 
the ICR immune phenotypes.

As previously observed,7 mean neoantigen count of 
each cancer type strongly correlated with mean mutation 
rate (online supplementary figure 9A,B). While mean 
non-silent mutation rate was significantly higher in ICR 
high tumors for some cancer types, no clear association 
was observed in most of them. Results for predicted 
neoantigen load were similar (figure  3A,B and online 
supplementary figure 9C,D). Overall, mean non-silent 
mutation rate and mean neoantigen load were higher 
in ICR-enabled cancers compared with ICR-disabled 
cancers. However, these differences cannot fully explain 
the divergent association of ICR with survival, as values 
for ICR-enabled cancers SARC and BRCA are in the same 
range as ICR-disabled cancers LGG, PAAD and KIRC.

Similarly, we studied the association between genomic 
instabilities, or aneuploidy and ICR. Specifically, we 
compared the individual tumor aneuploidy score and the 
ICR score across cohorts. Aneuploidy score was calculated 
as in Taylor et al.46 As has been reported previously, we 
found a broad negative association between aneuploidy 
and unadjusted or tumor purity adjusted ICR score57 
(figure  3C). Interestingly, this negative association was 
most strongly supported in ICR-enabled cancers, with six 
cancers out of eight showing a significant negative asso-
ciation between aneuploidy score and purity adjusted 
ICR (p<0.01). In ICR-neutral cancers, a small fraction 
of cancer types showed a negative association (4 of 18, 
with an additional 4 showing a non-significant but sugges-
tive negative association). Three cohorts (GBM, Kidney 
Chromophobe (KICH) and Prostate adenocarcinoma 
(PRAD)) showed a suggestive positive association. Simi-
larly, in the ICR-disabled cohorts only KIRC showed a 
significant negative association, while LGG showed a 
strongly significant positive association (p<10-8).

Specific mutations associate with ICR immune phenotypes
To define the association of specific oncogenic muta-
tions with ICR immune phenotypes, we first selected 
a set of 470 frequently mutated genes in cancer,42 then 
trained an elastic net43 model to predict the ICR score 
as function of mutations in each sample and using the 
tumor type as covariate. The positive non-zero coeffi-
cients of the trained model were used to identify genes 

whose mutation are associated with an increase of the 
ICR and negative non-zero coefficients identify the genes 
whose mutations are associated to a decrease of the ICR 
score (figure 4A,B). The use of tumor type as covariate 
tends to limit the effect of the enrichment of muta-
tions in specific cancer types and their correlation with 
ICR score. The coefficients of the tumor type were all 
different from zero, with the exception of BLCA, BRCA, 
Cholangiocarcinoma (CHOL), Colon Adenocarcinoma 
(COAD), Rectum adenocarcinoma (READ) and SARC 
and retained in the final model. We evaluated the accu-
racy of the model in a 10-fold cross-validation computing 
the correlation between the model prediction and the 
true ICR scores and obtaining a Spearman correlation of 
0.669±0.012 (p<10-400). Genes associated with a decrease 
of ICR score include: FOXA2, NSD1, PSIP1, HDAC3, 
ZNF814, FRG1, SOX17, CARM1, GATA3, FKBP5, FGFR3, 
MAT2A, PPP2R5A, MECOM, SMAD2, MED17, WNT5A, 
KRAS, ADAM10, PRKAR1A, DIS3, PRRX1, MFNG, TNPO1, 
SPOP, KDM6A, EGFR, IRF7, NRAS, SUZ12, RPSAP58, 
SF3B1, THRAP3, SH2B3, APC, NTN4 and FOXA1.

Interestingly MAP3K1 mutations, whose effect on ICR 
low has been described in breast cancer,22 were also asso-
ciated to ICR low tumors pan-cancer. The top genes of 
which mutations positively correlate with ICR reflect 
immune-evasion mechanisms that follow immunolog-
ical pressure such as mutations of antigen-presenting 
machinery transcripts previously described (ie, B2M, 
HLA-A, HLA-B and CASP8).12

To better compare the association between specific 
mutations and ICR groups within individual cancer types, 
we calculated, for each of the identified genes, the mean 
ICR score in the mutated group divided by the mean 
ICR score in the WT within each individual cancer type. 
For most cancer types, the genes with a positive coeffi-
cient consistently showed a higher ICR score in mutated 
samples, supporting their association with an ICR high 
phenotype (figure 4A,B, right panels). On the other hand, 
genes with a negative coefficient (genes associated with an 
ICR low phenotype) as identified at the pan-cancer level, 
do show some clear deviations between cancer types. 
While for most cancer types, ICR score is indeed lower 
in the mutated group, results for cancer types COAD, 
UCEC and STAD show the reverse (figure  4A–B, right 
panels). Interestingly, a common characteristic of these 
three cancer types is frequent hypermutation as a conse-
quence of microsatellite instability (MSI).58 This hyper-
mutator phenotype could be responsible for the observed 
increased ICR score in the mutated group, as the genes 
with negative coefficient could be mutated in the context 
of hypermutation. We indeed observed an increased ICR 
score in the MSI-high group compared with MSI-low and 
microsatellite stable groups in COAD and STAD datasets 
for which sufficient data on MSI status were available58 
(online supplementary figure 10A,B).

Mutated genes were frequently part of multiple path-
ways, suggesting impact on various tumor biological 
systems (online supplementary figure 11).
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Figure 4  Relationship between ICR score and mutations in individual genes. Mutated genes with negative (A) and positive (B) 
non-zero coefficients identified by a trained elastic net model. Contributions of each individual cancer type to the coefficient 
in trained elastic net model are proportionally indicated by size of the bars. Ratio of mean ICR score in mutated samples 
and ICR score in WT samples (right panels). Cancer types are ordered manually based on patterns of calculated ratios. ICR, 
immunological constant of rejection; WT, wild type
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PTEN and CTNNB1 somatic alterations (either muta-
tions or CNVs) have been associated with differential 
response to immunotherapy (PTEN)44 59–62 and intratu-
moral immune response (PTEN44 and CTNNB1).45 63 As 
these genes were not selected by our model, we assessed 
them individually (online supplementary figures 12,13).

As for PTEN, a statistically significant association was 
found between low ICR score and decreased copy number 
in eight cancer types (including SKCM) and in the aggre-
gate pan-cancer analysis by comparing PTEN CNV-low 
versus PTEN CNV-high samples (Log R ratio cut-off of 
−0.4, see the Methods section) (online supplementary 
figure 12). Less pronounced trends were observed using a 
classification based on five GISTIC CNV categories (deep 
deletion, hemideletion, WT, gain and amplification). PTEN 
mutations, however, were associated with higher ICR score 
in four individual cancer types (LGG, BRCA, COAD and 
Lung Adenocarcinoma (LUAD)) and in the pan-cancer 
analysis (online supplementary figure 12). As for CTNNB1, 
a significant association between higher copy number and 
lower ICR was found in five cancer types (KIRP, Ovarian 
Cancer (OV), BLCA STAD and TGCT). Such association 
was detected also in the pan-cancer analysis, but it was lost 
after normalizing ICR score within cancer type (online 
supplementary figure 13). CTNNB1 mutations (either in 
all positions or in exon 3) were associated with lower ICR 
in ACC, with a non-significant trend in SKCM, PRAD and 
LGG (online supplementary figure 13). No statistically 
significant associations between CTNNB1 and ICR scores 
were observed pan-cancer.

Prognostic impact of ICR classification is dependent on the 
expression of cancer-related pathways
Although we observed interesting differences between 
ICR high and ICR low immune phenotypes across 
different cancer types, these do not explain the divergent 
association between immune phenotype and survival as we 
observed in ICR-enabled versus ICR-disabled cancer types 
(figure  1C,D). As previously stated, an active immune 
phenotype has different impacts on survival depending 
on molecular subtype (eg, breast cancer9). To examine 
tumor intrinsic differences between ICR-enabled and 
ICR-disabled cancer types, we compared the enrichment 
of tumor intrinsic pathways between these two groups. 
Differentially enriched pathways (t-test; FDR<0.05; 
online supplementary table 1) between ICR-enabled 
and disabled cancer types were selected and used for 
pan-cancer hierarchical clustering. Interestingly, a wide 
variety of pathways were differentially enriched between 
both groups. Whereas enrichment for pathways involved 
in proliferation were mostly upregulated in ICR-enabled 
cancer types (proliferation metagene,9 E2F targets, G2M 
checkpoints and mismatch repair), a large number of 
tumor intrinsic pathways (n=43) were enriched in ICR-
disabled cancer types. Visualization of ES for these path-
ways across different cancer types in a heatmap confirms 
these findings. Hierarchical clustering based on ES of 
tumor intrinsic pathways differentially dysregulated by 

ICR-enabled and ICR-disabled cancer types segregates 
specimens into two main clusters (figure  5A). As antic-
ipated, pan-cancer survival analysis of all samples that 
formed a cluster along with samples of the ICR-disabled 
cancer types, named the ICR non-beneficial cluster, 
revealed no survival benefit of a high ICR expression. 
On the other hand, survival analysis of all samples in the 
other cluster, named the ICR beneficial cluster, showed a 
clear survival benefit for ICR high samples (figure 5B). Of 
note, the prognostic significance of ICR was higher in this 
ICR beneficial cluster (HR 1.82; p =4.13-9; 95% CI 1.49 
to 2.23) compared with the prognostic significance of all 
samples of ICR-enabled cancer types combined (HR 1.63, 
p=2.26-8; 95% CI 0.88 to 1.14), suggesting that tumor 
intrinsic attributes beyond the tumor site of origin are 
important to determine the relevance of cancer immune 
phenotypes. Interestingly, samples from ICR-neutral 
cancers, in which no clear trend was observed between 
ICR and survival (figure 1C), and which were not used 
in calculation of differentially enriched pathways, were 
divided across the ICR beneficial and ICR non-beneficial 
clusters. To evaluate whether the prognostic impact of the 
ICR was relevant to a subset of samples from ICR-neutral 
cancer types, subgroup analysis was performed for samples 
of ICR-neutral cancer types. Indeed, for all samples from 
ICR-neutral cancer types that clustered to the ICR non-
beneficial cluster, ICR was not associated with survival. On 
the other hand, for samples of ICR-neutral cancer types 
which clustered to the ICR beneficial cluster, ICR showed 
a significant positive association with survival (figure 5C), 
indicating that the ICR has prognostic relevance in this 
subgroup of cancer patients as well.

To better clarify this concept, we selected two of the 
differentially expressed pathways that were of special 
interest. First, the proliferation signature was used to classify 
all samples independent of tumor origin in proliferation-
high and proliferation-low categories, defined as an ES 
value >median or <median of all samples, respectively. This 
52-gene cluster described by Nagalla et al10 has previously 
been associated with the prognostic value of immune gene 
signatures in breast cancer.9 As represented by a histogram, 
the proportion of samples with high proliferation signa-
ture enrichment was larger in ICR-enabled cancer types 
compared with ICR-disabled cancers (figure 6A). This very 
basic binary classification was already capable of segre-
gating samples in a group in which ICR has a positive prog-
nostic value from a group in which ICR is not associated 
with survival (figure  6B). As a second illustration, TGF-ß 
signaling was used to classify samples based on this pathway 
using the same approach. For this oncogenic pathway, ICR-
enabled cancer types typically had a lower enrichment of 
this pathway compared with ICR-disabled cancer types 
(figure 6C). This classification could also divide samples in 
a group in which ICR has a positive association with survival 
and a group in which this association is absent (figure 6D).

As proliferation positively correlates with tumor muta-
tional load (Pearson’s correlation coefficient=0.49) 
(online supplementary figure 14), we investigated 
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Figure 5  Pan-cancer clustering based on oncogenic pathway enrichment segregates ICR-enabled and ICR-disabled cancer 
types. (A) Heatmap of enrichment scores of selected oncogenic pathways, samples are hierarchically clustered in two main 
clusters: one cluster consists mostly of ICR-enabled cancer types (ICR beneficial cluster), while the second cluster contains all 
samples from ICR-disabled cancer types (ICR non-beneficial cluster). (B) Kaplan-Meier OS curves for ICR high, medium and 
low clusters for samples in the ICR beneficial and ICR non-beneficial cluster separately. (C) Subgroup survival analysis of all 
samples of ICR-neutral cancer types clustered in the ICR beneficial cluster and ICR non-beneficial cluster. ICR, immunological 
constant of rejection; OS, overall survival.
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Figure 6  Examples of pan-cancer binary classifications based on enrichment of individual tumor intrinsic gene signatures and 
corresponding stratified pan-cancer survival analysis. (A) Histogram showing pan-cancer classification based on median pan-
cancer enrichment value of the proliferation signature as described by Miller et al9 (Proliferation low: ES is lower than median 
ES observed pan-cancer; proliferation high: ES is higher or equal to median ES observed pan-cancer). (B) Pan-cancer Kaplan-
Meier curves of ICR groups stratified by proliferation high (left panel) and proliferation low (right panel) groups corresponding to 
classification as shown in panel A. (C) Histogram showing pan-cancer classification based on pan-cancer enrichment values 
of the hallmark pathway TGF-ß signaling. (D) Pan-cancer Kaplan-Meier curves stratified by TGF-ß signaling-low (left panel) 
and TGF-ß signaling-high (right panel) groups corresponding to classification as shown in panel C. ES, enrichment score; ICR, 
immunological constant of rejection; TGF-ß, transforming growth factor beta.
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whether tumor proliferation independently contributes 
to the prognostic value of ICR. Therefore, we segregated 
pan-cancer samples in four categories based on both muta-
tion rate and proliferation (online supplementary figure 
15). Interestingly, in the proliferation high group, ICR 
high was associated with significantly improved survival 
independent of mutation rate. A similar observation is 
made for the mutation rate high group, ICR high is asso-
ciated with better survival independent of proliferation. 
These finding suggest that mutation rate and enrichment 
of proliferation-related transcripts provide additive infor-
mation to define the prognostic value of ICR. Further-
more, in a multivariate Cox proportional hazards model 
including ICR classification, proliferation, TGF-ß signaling, 
tumor mutation rate, stage/grade and aneuploidy, all 
parameters but aneuploidy remain statistically significant 
(online supplementary table 4; ICR: p=1.73e-6, prolifera-
tion, p=4.44.e-12, TGF-ß signaling, p=1.64e-12, stage/grade 
<2e-16, mutational rate p=2.6e-03). Similar results were 
observed within the ICR-enabled tumors, where ICR, 
stage, proliferation and TGF-ß signaling remained signifi-
cant while only proliferation, TGF-ß signaling and stage/
grade were significant in ICR-disabled tumors. Superim-
posable results were obtained when the Cox multivariate 
models were stratified by ‘Stage/grade’, which was the 
only variable that demonstrated a significant violation 
of the HPA (stratified multivariate Cox models, online 
supplementary table 4). Moreover, similar results were 
returned by normalizing continuous covariates by cancer 
types (online supplementary table 4).

This confirms the conditional prognostic role of ICR 
according to oncogenic pathway dispositions.

We then continued by verifying whether these tumor 
intrinsic attributes that interact with the prognostic impact 
of ICR when evaluated pan-cancer, could also translate to 
individual cancer types. For each individual cancer type, 
samples were divided by median ES for each of the selected 
pathways. ICR HRs (ICR low vs ICR high) were compared 
between each pathway-high and pathway-low group for each 
cancer type (online supplementary figure 16A,B). Overall, 
we indeed observed an increased HR for samples with a 
high enrichment of ICR enabling pathways for most cancer 
types. For samples with a high enrichment of ICR disabling 
pathways, the HR was indeed lower (online supplementary 
figure 16C).

These data confirm an association between the prog-
nostic impact of ICR classification and enrichment of 
oncogenic pathways in individual cancer types as well as 
pan-cancer. Of note, these interactions between the prog-
nostic significance of ICR and tumor intrinsic pathways 
were mostly present in enabled and neutral cancer types. 
Within disabled cancer types, with the exception of KIRC, 
similar associations were not found.

Predictive value of ICR score in immune checkpoint therapy is 
dependent on proliferation and TGF-ß signaling
To define the clinical relevance of classification of ICR 
immune phenotypes, in the setting of immune checkpoint 

treatment, we first evaluated the predictive value of ICR 
score across multiple public datasets of anti-CTLA4 and 
anti-PD1 treatment. A significantly increased expression 
of ICR in responders compared with non-responders was 
observed across most of the datasets (figure 7A).27 28 31 48 49 
The conditional activation of the prognostic impact of the 
ICR was tested in the Van Allen dataset, which was the only 
one for which survival information was available. Strikingly, 
in the proliferation-high subgroup, ICR score was signifi-
cantly higher in pretreatment samples of patients with long-
survival or response (p=0.021), whereas this difference was 
not significant in proliferation low samples (figure  7B). 
Cohort dichotomization based on TGF-ß signaling, again 
demonstrated the reverse trend: a significant difference 
in ICR score was only observed in the TGF-ß-Low group 
(p=0.0044), not in the TGF-ß-high group. Stratified survival 
analysis in these categories confirmed that the prognostic 
impact of ICR depends on proliferation and TGF-ß signaling 
(figure  7C). These findings confirm a conditional prog-
nostic and predictive impact of ICR-based immune infil-
tration estimates in the setting of immune checkpoint 
treatment and demonstrate that these findings might have 
important clinical implications.

Discussion
Understanding the relationship between cancer cells and 
the host bearing the disease is of paramount importance 
for developing more efficient therapeutic approaches 
and stratification systems.64 In our pan-cancer system-
atic analysis, we demonstrated, for the first time, that the 
prognostic impact of Th-1/cytotoxic transcripts used to 
characterize hot/immune active tumors is restricted to 
tumor characterized by distinct oncogenic dysregulations. 
Furthermore, we identified novel and robust relation-
ships between cell-intrinsic and immunologic signaling 
pathways consistent across different cancer types.

Transcriptional signatures used to define the continuum 
of cancer immune surveillance and the functional orien-
tation of a protective antitumor immunity typically reflect 
common immune processes and include largely overlap-
ping genes.14 15 18 19 22 65–68 We termed this signature as the 
ICR.3 14 22–24

Across and within different tumors, the coordinated 
overexpression of ICR genes identifies a microenviron-
ment polarized toward a Th-1/cytotoxic response, which 
was then used to define the hot/immune active tumors.

In tumor types with medium/high mutational burden, 
the mutational or neoantigenic load tended to be higher 
in hot (ICR high) versus cold (ICR low) tumors while 
this association was not observed within cancer types with 
overall low mutational burden. By adding granularity 
to previous observations that described an overall weak 
correlation between immunologic correlates of anti-
tumor immune response and mutational load,5 7 12 69 70 
we demonstrated here that the differences in term of 
mutational load was especially evident in tumors types 
known to be constituted by a significant proportion of 
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Figure 7  Conditional predictive value of ICR for response to immune checkpoint treatment. (A) Predictive value of ICR 
across public datasets with response to immune checkpoint treatment indicated by p value of two-sided t-test comparing ICR 
score in samples of responding versus non-responding patients. ICR score was highest in response group for all significant 
comparisons. Response was defined as long-survival or response in the Van Allen dataset, stable disease, partial response 
(PR) and complete response (CR) in the Chen dataset, and as PRCR in Riaz, Hugo and Prat datasets. (B) Boxplot of ICR score 
in ‘non-response’ compared with ‘long-survival or response’ to anti-CTLA4 treatment in van Allen dataset (left). Boxplots of 
subgroup analysis of proliferation groups (middle) and TGF-ß signaling groups (right). P value of t-test comparing means are 
indicated in the plot. (C) Kaplan-Meier curves showing os across ICR tertiles in all samples (left), across proliferation (middle), 
and TGF-ß signaling subgroups (left). ICR, immunological constant of rejection; TGF-ß, Transforming growth factor beta.
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microsatellite instable cases, such as COAD, STAD and 
UCEC. It is likely that, in hypermutated tumors, the excess 
of neoantigens plays a major role in the immune recog-
nition, while in the other cases, additional mechanisms 
such as cell-intrinsic features, play a major role in shaping 
the anti-tumor immune response.22 Overall, a high muta-
tional/neoantigen load was neither sufficient nor neces-
sary for displaying an active immune microenvironment.

When the ICR score was intersected with the enrich-
ment of oncogenic signals as predicted by the transcrip-
tional data, interesting associations emerged. Although 
some differences in terms of the degree of the correlation 
were observed across cancers, few tumor-cell intrinsic 
pathways displayed a coherent progressive enrichment in 
the immune-silent tumors. The top pathways associated 
with the absence of the Th-1/hot immune phenotype 
included, barriers genes, WNT-ß catenin, mismatch repair, telo-
merase extension by telomerase, Notch, Hedgehog and AMPK 
signaling pathways. Barrier genes encode for molecules 
with mechanical barrier function in the skin and other 
tissues and include filaggrin, tumor-associated calcium 
signal transducer 2, desmosomal proteins (DST, DSC3, 
DSP, PPL, PKP3 and JUP).40 Their expression was associ-
ated with a T-cell excluded phenotype in melanoma and 
ovarian cancer,40 and here, we extended our previous 
observation across multiple tumors. The cell-intrinsic 
WNT-ß catenin activation impairs CCL4-mediated recruit-
ment of BATF3-dependent DCs, followed by absence of 
CXCL10 mediated T-cell recruitment, and was described 
initially associated with T-cell exclusion in melanoma, 
and recently, in other tumor types.45 63 CTNNB1 somatic 
alterations leading to WNT-ß catenin activation (ie, 
amplifications and somatic mutations preventing proteo-
lytic ß-catenin degradations) have been associated with a 
non-T cell inflamed immune phenotype in melanoma and 
across different tumor types.45 63 Interestingly, neither the 
elastic model nor the single-gene level analysis selected 
CTNNB1 mutations in relationship to ICR expression, 
while associations between CTNNB1 amplifications and 
low ICR score were observed across several cancer types. 
Similarly, no associations between CTNNB1 mutations 
and intratumoral immune response were detected by 
two pan-cancer studies assessing an immune signature 
closely related to ICR and the level of cytolytic activity 
(PRF1 and GZMA).12 70 Differences might be related to 
the approach selected for the analysis (ie, using contin-
uous vs categorical variables and different metrics to 
quantify the immune response). Interestingly, in addition 
to a negative (although modest) correlation between ICR 
score and mutations of APC (an inhibitor of the WNT-ß 
catenin pathway),45 we detected a stronger correlation 
between WNT5A mutations and decreased ICR score. 
High expression of WNT5A has been associated with 
decreased response to immune checkpoint inhibition in 
melanoma.27 However, associations between the WNT5A 
mutations and decreased intratumoral immune response 
were not previously checked in WNT-ß catenin-focused 
analyzes.45 63 The correlation between WNT5A mutations 

and immune suppression might deserve mechanistic 
investigation considering the complexity of this pathway. 
In fact, tumor-cell-derived WNT5A has recently been 
described to induce immune suppression by activating 
ß-catenin pathway in DC resulting in IDO transcriptional 
expression and T-reg generation.71

Loss of PTEN (a negative regulator of the PI3K-AKT 
pathway), due to somatic mutations or deletions has 
been associated with decreased response to checkpoint 
blockade in melanoma, glioblastoma, lung cancer and 
uterine sarcoma.59–62 In melanoma, PTEN deletions 
have been associated with reduced T-cell infiltration.44 
We extended this observation across different tumor 
types. Paradoxically, PTEN mutations have not been 
associated with decreased intratumoral immune infiltra-
tion12 70 but rather with an increased leukocyte fraction 
across tumors,7 and an increased expression of immune-
suppressive signature in glioblastoma.59 Consistently, 
PTEN mutations were found to be associated with higher 
ICR score across cancers when PTEN mutational status 
was evaluated as a single variable. The lack of selection of 
PTEN mutations by the elastic model might be explained 
by the co-occurrence with mutations in other genes with 
higher coefficient selected by the model.59 Overall, these 
findings suggest a differential immune-regulatory role of 
PTEN mutations and deletions.

The efficiency of our approach in capturing previously 
described oncogenic pathways indicates the robustness 
of the analysis. At the same time, our integrative pipe-
line unveiled additional relevant pathways: telomere exten-
sion by telomerase and mismatch repair, Notch, Hedgehog and 
AMPK signaling. Our findings suggest that the lack of 
expression of transcripts involved with mismatch repair, 
in addition to their genetic integrity,72 might influ-
ence immunogenicity. Telomere dysfunctions result 
in various disease, including cancer and inflammatory 
disease.73 To our knowledge, this is the first time that 
telomerase activity has been linked to differential intra-
tumor immune response. The Notch pathway can regu-
late several target genes controlled by the NFκB, TGF-β, 
mTORC2, PI3K and HIF1α pathways74 and is involved 
in the induction of cancer stem cells, but has not been 
described to be associated with differential intratumoral 
immune response so far. As for the Hedgehog pathway, in 
breast cancer models, inhibition of this signaling induces 
a marked reduction in immune-suppressive innate and 
adaptive cells paralleled with an enrichment of cytotoxic 
immune cells.75 Intriguingly, the AMPK pathway was the 
most coherently dysregulated pathway in relationship to 
the ICR score. In lung cancer mouse models, the dele-
tion of Lkb1, an upstream modulator of AMPK pathway, 
was associated with decrease T-cell tumor infiltration, 
and impaired production of pro-inflammatory cyto-
kines, which was mediated by induction of STAT3 and 
IL-6 secretion.76 77 The strength of the inverse association 
between the AMPK pathway and ICR score strongly calls 
for in-depth investigation of the immune-modulatory 
role of this pathway. Overall, we identified novel putative 
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hierarchically relevant cancer-cell intrinsic pathways asso-
ciated with immune evasion mechanisms in humans that 
might warrant further mechanistic investigations and 
that might be explored as targets for reprogramming the 
tumor microenvironment.

The biological relevance here is substantiated by the 
consistency of the associations across tumor types, in 
which each cohort can be seen as an independent vali-
dation. The coherence of the associations rules out the 
possibility of a spurious correlation.

As for somatic mutations, the top ten genes associated 
with the immune silent phenotype include IDH1, IDH2, 
FOXA2, NSD1, PSIP1, HDAC3, ZNF814, MAP3K1, FRG1 
and SOX17. Findings of IDH1 and NSD1 are consistent 
with the report of Thorsson et al,7 in which these have 
been associated with decreased leukocyte infiltration, 
and are complemented here by additional identification 
of IDH2. Interestingly, MAP3K1 mutations were previ-
ously associated with low ICR in breast cancer in our 
previous work.22 41 Remarkably, mutations of other genes 
of the RAS/MAPK pathways such as FGFR3 (previously 
associated with T-cell exclusion in bladder cancer78 and 
diminished leukocyte infiltration pan-cancer7), EGFR, 
NRAS and KRAS were associated with a low ICR score, 
substantiating their potential role in mediating immune 
exclusion. FOXA2 is involved in both neoplastic transfor-
mation and epithelial-mesenchymal transition79 and Th 
differentiation80 but its role in modulating antitumor 
immune response is unknown. Similarly, no data exist on 
the effect of HDAC3, PSIP1 and ZNF814 on tumor immu-
nogenicity. Considering the strength of the association, 
further investigations should mechanistically address the 
role of these signaling pathways in mediating immune 
evasion mechanisms. Other mutations associated with 
the immune silent phenotype include WNT5A, corrobo-
rating the immune-suppressive role of the WNT ß catenin 
pathway45 and GATA3, which was also previously associ-
ated with low leukocyte infiltration.7 Mutations of FKBP5, 
MAT2A, PPP2R5A, MECOM, SMAD2, MED17, ADAM10, 
PRKAR1A, DIS3, PRRX1, MFNG, TNPO1, KDM6A, IRF7, 
SUZ12, RPSAP58 and SF3B1 represent additional novel 
findings. Similar to previous observations, we found HLA-
A, HLA-B, B2M, CASP8 and FAS to be associated with an 
ICR High immune phenotype.7 12 70 81 82 These mutations 
are probably the result of immune escape mechanisms 
triggered by immunologic pressure.

B2M mutations have been associated with disease 
progression following immune checkpoint therapy.83–86 
In immune-active tumors (ICR high), the immunolog-
ical pressure might have limited the chance of seeding 
metastases in distant organs. The occurrence of B2M 
mutations might indicate an early phase of immune 
editing, which however did not completely compromise 
the protective effect of the immunological pressure at 
this early phase of tumor evolution. This is consistent 
with recent observations in colon cancer,87 in which 
immune-edited metastases have a decrease risk of 
relapse as compared with the non-immune edited ones.

As for genomic instability, tumors with high aneu-
ploidy are associated with decreased ICR score in a 
major subset of cancer types.57 This observation is also in 
agreement with negative association of a chromosome-
instable type with an immune signature that predicts 
response to immunotherapy with MAGE-A3 antigen 
as well as response to anti-CTLA-4 treatment in mela-
noma.70 The only exceptions we found were brain 
tumors LGG and GBM in which a positive association 
between aneuploidy and ICR score was detected. In 
LGG tumors, however, ICR scores positively correlate 
with tumor grade (online supplementary figure 7), 
and it is possible that the observed positive correlation 
between aneuploidy and ICR is actually driven by the 
higher genomic instability characterizing the more 
advanced tumors.

To compare cancer types based on the prognostic 
value of ICR, we categorized them into two groups: one 
for which ICR high was associated with increased OS 
and one for which ICR was associated with worse OS. For 
the first group, multivariate analysis confirmed a posi-
tive prognostic value of ICR independent of pathologic 
tumor stage. SKCM, BRCA, UCEC, LIHC, SARC, HNSC, 
STAD and BLCA are consequently referred to as ICR-
enabled cancer types. For the second group, including 
UVM, LGG, PAAD and KIRC (ICR-disabled tumors), 
survival analysis showed a detrimental (univariate anal-
ysis) or neutral (multivariate analysis with stage) role 
for ICR. In case of ICR-neutral tumors, it is possible 
that the lack of correlation between ICR and survival is 
due to the limited power of analysis as consequence of 
the scant number of events in some tumor types. This 
is especially true for KICH, PRAD, READ and THCA 
(Thyroid Carcinoma), in which the use of OS has been 
cautioned.25 The use of OS has been cautioned also for 
BRCA. However, in this tumor type, the conditional 
prognostic value of ICR and/or immune signatures 
reflecting lymphocyte infiltration according to the 
status of proliferation/TGF-ß and has been validated in 
several thousands of samples beyond TCGA.9 10 24

The discrepancies in term of prognostic connotation 
of intratumoral immune response across different cancer 
types have been observed in independent investigations 
based on transcriptomic analysis7 88 89 or immunohisto-
chemistry90 but never explained.

The first notable difference we observed between 
ICR-enabled and disabled cancer types was the overall 
lower ICR value in the disabled cancer cohorts. In 
particular for UVM and LGG, this low ICR could be a 
partial explanation for the lack of positive prognostic 
value of the ICR. On the other hand, mean ICR score 
of PAAD and KIRC was not different compared with the 
other cancer types. Therefore, other factors must have 
an effect on the prognostic value of the ICR. When we 
compared enrichment of tumor-cell intrinsic pathways 
in ICR-enabled and disabled cancer types, as much as 43 
of 54 analyzed pathways showed differential enrichment 
between the two groups. While ICR-enabled cancer 
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types are typically more enriched in proliferation-
related signatures, ICR-disabled cancer types have high 
enrichment of pathways generally attributed to tumor 
signaling including pathways known to be associated 
with immune suppression such as TGF-ß.91 In fact, when 
samples of the entire cohort were segregated according 
to representative enabling and disabling pathways (ie, 
proliferation and TGF-ß signaling, respectively), the prog-
nostic role of ICR was restricted to proliferation-High/
TGF-ß-low tumors (figure  6). Hierarchical clustering 
based on the enrichment of transcripts of these differ-
entially enriched pathways segregated most samples of 
ICR-enabled cancer types from samples of ICR-disabled 
cancer types. Interestingly, this clustering was even 
relevant to samples of ICR-neutral cancer types. The 
pan-cancer survival analysis of samples of ICR-neutral 
cancer types showed that for samples that coclustered 
with samples of ICR-enabled cancer types (the ICR 
beneficial cluster), ICR high was associated with signif-
icant prolonged survival. Adding the mutational load 
component further refined this stratification. In fact, 
the positive prognostic role of ICR was present also 
in a subset of samples with low proliferation and high 
mutational load but absent only in tumors with both 
low proliferation and low mutational load. Multivar-
iate analyzes confirmed these observations. In partic-
ular by adding stage, proliferation, TGF-ß, mutational 
rate and aneuploidy to the ICR survival model (table 1 
and online supplementary table 4), the ICR status in 
ICR-disabled tumors resulted to be neutral rather than 
detrimental, being the negative correlation observed 
between ICR and survival in univariate analysis the 
result of the association between stage/grade, ICR and 
oncogenic pathways.

We hypothesize that, in tumor with high mutational 
burden and/or high proliferative capacity, the high 
level of ICR captures a true protective antitumoral 
immune response, while in the other cases, such as in 
tumors dominated by cancer signaling, the high ICR 
captures a bystander, or heavily suppressed, lymphocyte 
infiltration with no protective effect.

Therefore, it is possible to speculate that a proportion 
of transcriptionally immune active tumors are function-
ally immune silent. Single cell RNA sequencing, spatial 
transcriptional analysis and T-cell receptor sequencing 
might be employed to characterize with higher fidelity 
the true functional orientation of human tumors.87 92–94 
The first two of these approaches could also define the 
source (eg, stroma vs tumor cells) of immune suppres-
sive signaling such as TGF-ß.

The clinical relevance of the observed conditional 
impact of ICR was confirmed in the setting of anti-
CTLA4 treatment, in which the predictive value of ICR 
was demonstrated to be dependent on tumor intrinsic 
pathways, such as TGF-ß and proliferation. To the best 
of our knowledge, we are the first to report an inter-
action between tumor intrinsic pathways and the prog-
nostic value of the immune phenotype in a pan-cancer 

analysis. An association between proliferation and the 
prognostic value of the immune phenotype has previ-
ously been identified in breast cancer.9 In non-small-
cell lung cancer, proliferation was shown to improve 
prediction of immune checkpoint inhibitors response 
in PD-L1 positive samples (data recently presented at 
SITC annual meeting 201895). Our study clearly demon-
strates that such interactions between tumor intrinsic 
attributes and prognostic and potentially predictive 
value of immune phenotypes are also relevant in a 
pan-cancer context. Moreover, we defined additional 
tumor intrinsic attributes beyond tumor proliferation 
to correlate with the prognostic significance of immune 
signatures reflecting a Th-1 immune response. Prog-
nostication algorithms should be refined by inclusion 
of tumor intrinsic attributes in order to define the prog-
nostic impact of the immune signatures.

In conclusion, we observed a clear relationship 
between enrichment of tumor intrinsic pathways and 
the prognostic and predictive significance of immune 
signatures and identified novel cell-intrinsic features 
associated with immune exclusion. These findings 
can be used to prioritize candidates for immunogenic 
conversion41 and to refine stratification algorithms.
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missing, and a supplementary txt file was incorrectly converted to a pdf file. 3) 
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