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Abstract
Epstein–Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen 
that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this 
purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and 
viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune 
control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be 
able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will 
be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only 
vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed 
efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies 
suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement 
the very same immune control that protects healthy EBV carriers.
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Importance of EBV as a vaccination target

The Epstein–Barr virus (EBV) is a common human 
γ-herpesvirus with the most potent host cell transforming 
capacity of all infectious disease agents in vitro [1]. It was 
discovered 55 years ago in Burkitt’s lymphoma [2, 3] and is 
associated with epithelial-, lymphocyte- and smooth muscle-
derived tumors in humans [4]. The most prominent EBV-
associated tumors are in addition to the still most common 
Sub-Saharan childhood tumor Burkitt’s lymphoma, post-
transplant lymphoproliferative disease (PTLD), diffuse 
large B cell lymphomas (DLBCL), Hodgkin’s lymphoma, 
nasopharyngeal carcinoma and the 10% of gastric carcinoma 
that are positive for this virus [5]. Around 2% of all malig-
nancies in humans are associated with EBV with an annual 

incidence rate of 200,000 [6]. In addition to these EBV-asso-
ciated malignancies, this virus causes immune pathologies 
that result from a hyperactivation of EBV-induced T cell 
responses [7]. These include syndromes that result from 
CD8+ T cell lymphocytosis during symptomatic primary 
EBV infection called infectious mononucleosis (IM) [8], 
from virus-induced cytokine production for the hyperacti-
vation of myeloid cells resulting in hemophagocytic lym-
phohistiocytosis (HLH) [9] and possibly also the autoim-
mune disease multiple sclerosis (MS) [10]. Along the lines 
of EBV possibly setting up a pro-inflammatory environment 
in the brain of some MS patients, it was recently reported 
that encephalitis in at least one patient under immune check-
point treatment blocking the inhibitory receptor PD-1 on T 
cells was associated with elevated EBV loads in blood and 
cerebrospinal fluid, as well as clonal expansion of T cells 
with EBV-specific T cell receptors in the brain [11]. Accord-
ingly, loss of EBV-specific T cell-mediated immune control 
was observed upon PD-1 blockade in a preclinical model of 
EBV infection in mice with reconstituted human immune 
system components (HIS mice) [12]. Thus, both EBV-asso-
ciated malignancies and immune pathologies justify the 

Cellular and Molecular Life Sciences

 *	 Christian Münz 
	 christian.muenz@uzh.ch

1	 Viral Immunobiology, Institute of Experimental 
Immunology, University of Zürich, Winterthurerstrasse 190, 
CH‑8057 Zürich, Switzerland

2	 Ludwig Institute for Cancer Research, Nuffield Department 
of Medicine, University of Oxford, Oxford, UK

http://orcid.org/0000-0001-6419-1940
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-020-03538-3&domain=pdf


4316	 J. Rühl et al.

1 3

development of a vaccine against EBV, but which individual 
or combination of viral antigens should be targeted.

For the choice of vaccine antigen, the life cycle of EBV 
and its gene expression in the various virus-associated dis-
eases needs to be considered. EBV is primarily transmitted 
via saliva exchange and most likely crosses the mucosal epi-
thelial cell barrier by transcytosis to infect B cells in submu-
cosal secondary lymphoid tissues like tonsils [13, 14]. In B 
cells EBV expresses latent viral gene products from its cir-
cularized and increasingly chromatinized multi-copy extra-
chromosomal DNA [15]. Initial expression of six nuclear 
antigens (EBNAs) and two membrane proteins (LMPs) in 
the so called latency III program is curtailed with further 
B cell differentiation to just EBNA1, LMP1 and 2 (latency 
II) in germinal center B cells and to finally no viral protein 
expression in memory B cells (latency 0), the site of EBV 
persistence [16]. In homeostatically proliferating memory 
B cells, EBNA1 is transiently expressed as the only viral 
protein (latency I) [17]. The latent EBV proteins drive B 
cell proliferation allowing dissemination of the virus in the 
human body. From the reservoir in memory B cells EBV can 
reactivate upon plasma cell differentiation [18], and then 
presumably amplifies virion production by lytic replication 
in epithelial cells for more efficient shedding into the saliva 
and further transmission [19]. EBV-associated pathologies 
originate from these different stages of the EBV life cycle. 
For example, PTLD and some DLBCL express latency III, 
Hodgkin’s and Burkitt’s lymphoma emerge from germinal 
centers with latency II or latency I, respectively, and early 
lytic EBV antigen-specific CD8+ T cells expand mainly dur-
ing IM. Furthermore, early lytic EBV antigen expression has 
recently been recognized to enhance virus-associated tumor 
formation [1]. These considerations identify latent and early 
lytic EBV antigens as promising candidates for vaccines, but 
also envelope proteins are explored as targets of neutralizing 
antibody responses that could curb transmission.

Protective immune responses against EBV 
infection

With the classes of EBV antigens that could be targeted for 
vaccination against EBV- associated diseases in mind, the 
question arises which type of immune responses should be 
elicited. Information about protective immune responses 
against EBV can be gleaned from preclinical in vitro and 
in vivo models and clinical observations. Among the most 
informative clinical observations are primary immunode-
ficiencies that identify genetic lesions that predispose for 
EBV-associated diseases [20, 21]. These point towards cyto-
toxic lymphocytes as the main immune compartment that 
exerts immune control over EBV infection. The respective 
lymphocytes need to be positive for the cytotoxic granule 

machinery, including perforin, Munc13-4 and Munc18-2 
[22–24]. They need to carry the co-stimulatory molecules 
CD27, SLAM protein family members like 2B4, 4-1BB 
and NKG2D, as well as the co-inhibitory CTLA-4 recep-
tor in combination with the main activating receptors CD16 
or the T cell receptor [25–35]. Furthermore, they need to 
expand well after activation and depend on GATA2 and 
MCM4 for their differentiation [36–39]. In contrast, EBV-
specific immune control does not seem to depend on type 
I and II interferons, antibody production and MHC class II 
restricted T cell responses [20]. Particularly the absence of 
EBV-associated pathologies in patients with B+ hypogam-
maglobunemia and Ig class-switch recombination deficien-
cies is surprising [40, 41]. Furthermore, since MHC class II 
deficiencies do not predispose for complications with EBV 
infection [42, 43], MHC class I-restricted helper T cell 
functions might compensate to maintain cytotoxic lympho-
cytes. These considerations point to CD8+ T cells, natural 
killer (NK), NKT and γδ T cells as pillars of EBV-specific 
immune control. Indeed, all of these cytotoxic lymphocyte 
populations have been shown to restrict EBV infection in 
the preclinical model of HIS mice [44–49]. In addition the 
EBV- specific CD8+ T cells might have a particular PD-
1+Tim-3+KLRG1+CXCR5+TCF-1+ and BATF3+ phenotype 
that allows them to control EBV-infected B cells in germinal 
centers [12, 50, 51]. These CD8+ T cells recognize predomi-
nantly latent and early lytic EBV antigens [7]. T cell lines 
have also been adoptively transferred to treat EBV-associated 
malignancies, initially primarily PTLD [52]. With respect to 
individual antigens EBNA1, LMP1- and LMP2-specific T 
cell lines have proven clinically efficacious in EBV- associ-
ated lymphomas and nasopharyngeal carcinoma [53–55]. 
Interestingly, T cells with these specificities have also been 
infused into MS patients with some clinical success [56, 57]. 
Lytic EBV replication is in addition targeted by early differ-
entiated CD56dimNKG2A+KIR− partially CD16+ NK cells 
[45, 58, 59]. Both CD8+ T cells and NK cells significantly 
expand during IM [8, 59–62]. In addition to early differenti-
ated NK cells, Vγ8Vδ2 T cells are elevated in a subset of 
children [63]. They preferentially respond to Burkitt lym-
phoma cells with a latency I EBV gene expression. Finally, 
NKT cells preferentially respond to Hodgkin’s lymphoma 
and nasopharyngeal carcinoma cell lines [64]. Thus, while 
CD8+ T cells target all EBV latencies and early lytic EBV 
replication, NK, NKT and γδ T cells seem to restrict lytic, 
latency II and latency I EBV infection, respectively. These 
might be the cytotoxic lymphocyte compartments on which 
immune control of EBV infection depends and that should 
be stimulated by EBV-specific vaccination.
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Recombinant viral vector vaccines

Recombinant viral vector vaccines are live viruses that are 
engineered to express additional proteins, against which 
immune responses are desired [65, 66]. These vaccine 
platforms are relatively new and have several advantages 
over traditional vaccines. First, viral vector vaccines can 
induce a broad range of immune responses, particularly 
in CD8+ cytotoxic T lymphocyte (CTL) responses that 
are important in clearing virally infected and tumor cells. 
This contrasts with most of the existing vaccine formula-
tions that are designed to elicit primarily a humoral anti-
body response. The viral vector infects target cells and 
leads to antigen expression in the cytosol, where it can 
gain easy access to the classical MHC class I-processing 
pathway, and subsequent presentation of the resulting pep-
tide epitopes on MHC class I molecules to stimulate an 
antigen-specific CD8+ CTL response. Second, viruses are 
naturally immunogenic and therefore adjuvants themselves 
as they express a range of pathogen-associated molecular 
patterns (PAMPs) to initiate an inflammatory response. 
This adjuvant effect is crucial for enhancing the protective 
immune response elicited by vaccines. Third, viral vector 
vaccines have a high gene transduction efficiency [67] and 
can deliver the antigens to different cell types depending 
on the tropism of the used viral vectors.

Many different viral vectors have been developed to use 
as vaccine candidates, including poxviruses, adenoviruses 
and yellow fever virus [65]. The choice of viral vectors for 
vaccine development mostly depends on the vector’s prop-
erties with respect to immunogenicity, safety and infectiv-
ity. Furthermore, the pre-existing immunity against the 
viral vectors in humans is often considered. Vaccinia virus 
and adenovirus are among the most widely used viral vec-
tors, mainly due to their ability to induce antigen-specific 
T cell responses. Currently many clinical trials are ongo-
ing to test diverse viral vector vaccines in different disease 
settings, mainly infectious diseases [68, 69].

The first EBV vaccine tested in humans used live 
recombinant vaccinia virus expressing the EBV mem-
brane antigen BLLF1 (gp350) [70]. While there were no 
significant EBV titer variations between vaccinated and 
unvaccinated adults, only three of nine vaccinated infants 
were infected with EBV within 16 months after vaccina-
tion compared to ten out of ten in the unvaccinated control. 
However, this vaccine platform is no longer accepted due 
to the risk of adverse effects [71]. A safer alternative is the 
multiplication-incompetent-attenuated pox viral vector of 
modified vaccinia virus Ankara (MVA) [72, 73]. Indeed, 
a MVA vaccine encoding the EBV antigens EBNA1 and 
LMP2 (MVA-EL) has been developed as a therapeutic vac-
cine against EBV-positive cancer [74, 75]. This vaccine 

has been evaluated for safety and immunogenicity in phase 
I clinical trials in EBV-positive nasopharyngeal carcinoma 
(NPC) patients. MVA-EL was well tolerated and there was 
an increase in T cell responses against at least one antigen 
after vaccination in 8 of 14 patients in the UK and 15 of 
18 patients in Hong Kong. However, the therapeutic effi-
cacy of the MVA-EL has yet to be shown. A recombinant 
adenovirus vector has also been developed to induce EBV-
specific T cell responses. However, instead of using it as a 
direct vaccination, facing pre-existing adenovirus immu-
nity, the respective vectors encoding LMP polyepitopes 
with or without EBNA1 were used to infect DCs or EBV-
transformed B lymphoblastoid cell lines in vitro, to either 
expand EBV-specific T cells and infuse these back into 
patients or to adoptively transfer the infected DCs as cel-
lular vaccination [55, 76–78]. Considering the complexity 
of cellular vaccine approaches, adenovirus vectors that are 
shielded against pre-existing immunity and encoded EBV 
antigens should be explored for direct vaccination against 
EBV (Fig. 1).

Heterologous prime‑boost vaccination

Early work on adenovirus vaccines used serotypes such as 
human adenovirus 5 (hAd5), but pre-existing immunity that 
can neutralize the viral vector is widespread in the human 
population, thus limiting its potency and hampering its clini-
cal use. Chimpanzee adenovirus vectors were then devel-
oped to avoid this pre-existing neutralizing immunity [79, 
80]. Unfortunately, the immunogenicity of these vectors can 
establish neutralizing responses that limit its capacity for 
secondary injections, requiring the use of different viral vec-
tors during boost vaccination. Indeed, heterologous prime-
boost strategies using two antigen formulations have been 
regarded as an improved way of immunization [81, 82].

Different combinations of heterologous prime-boost 
vaccines have been tested in animal models and some are 
undergoing efficacy testing in clinical trials, mainly against 
infectious diseases [82–84]. Among these, the combina-
tion of chimpanzee adenovirus and MVA has been shown 
to induce a strong CD8+ T cell response that correlates 
with efficacy in humans against a liver-stage malaria anti-
gen [85]. The same strategy has been applied to vaccine 
development against additional diseases, including hepatitis 
C virus (HCV), Ebola virus and prostate cancer [86–88]. 
Our group has also demonstrated that adenovirus prime and 
MVA boost vaccination against EBNA1 are efficient in elic-
iting comprehensive CD4+ and CD8+ T cell responses which 
can translate into protection against EBV antigen expressing 
lymphomas [89].

Though viral vectors generally elicit a higher magni-
tude of T cell responses, they are expensive to produce and 



4318	 J. Rühl et al.

1 3

usually take a long time to manufacture. In contrast to these, 
protein-based vaccines are generally safer and cheaper to 
produce. Our lab has developed a vaccine platform to deliver 
the EBV antigen EBNA1 to antigen presenting cells by fus-
ing the antigen to a monoclonal antibody against the DC 
endocytic receptor DEC-205 [90–92]. This recombinant 
protein vaccine, adjuvanted with the double-stranded RNA 
polyI:C, has been shown to induce robust T cell responses, 
but mostly CD4+ T cell responses and lacking CD8+ T cell 
responses when tested in vivo [89, 91]. As viral vector vac-
cines are known for their superiority in inducing CD8+ T 
cell responses, we combined this approach with viral vec-
tor vaccines to stimulate strong CD4+ and CD8+ T cell 
responses [89]. We have shown that this heterologous prime 
boost vaccination strategy is more efficient in inducing a 
protective T cell response than the homologous prime boost. 
The combination of the protein vaccine targeting DEC-205 
and the adenovirus is only slightly less efficient than the 
adenovirus prime and MVA boost in protecting mice from 
T cell lymphoma challenge, with the later, however, being 

superior against B cell lymphomas. These findings are con-
sistent with previous studies, indicating that human immu-
nodeficiency virus (HIV) antigen targeting to DEC-205 had 
to be boosted with a recombinant poxviral vaccine to elicit 
protective responses in nonhuman primates [93]. Thus, het-
erologous prime-boost approaches should be considered in 
the future for the development of a vaccine against EBV that 
aims to elicit T cell mediated immune control.

Virus‑like particles

Virus-like particles (VLPs) are defined as virus particles 
which do not contain any viral nucleic acids. The research 
efforts of the last decades led to the development of VLP 
vaccines, including human papillomavirus VLPs against 
cervical carcinoma and Plasmodium falciparum antigen 
displaying alfalfa mosaic virus VLPs against malaria [94, 
95]. Because of their safety attributes and their ability to 
elicit virus-specific innate and adaptive immune responses 

Fig. 1   EBV vaccine candidates. EBV-specific vaccination aims to 
either stimulate protective T cell responses (top half) or neutralizing 
antibodies (bottom half), that target latent and lytic EBV-infected B 
cells or prevent B and epithelial cell infection, respectively. For EBV-
specific T cell stimulation, recombinant adenoviruses encoding latent 
EBV antigens are explored for dendritic cell infection, followed by T 
cell expansion in vitro for adoptive transfer or injection into patients 
with EBV-associated malignancies. Furthermore, latent EBV antigen 
targeting to dendritic cells with antibodies is investigated. Moreover, 
recombinant modified vaccinia virus Ankara (MVA) vectors express-

ing latent EBV antigens have been developed and tested in patients. 
Finally, EBV-derived virus-like particles (VLPs) have shown promis-
ing results in preclinical models, lowering EBV titers when a latent 
EBV antigen was transgenically expressed in the viral tegument. 
Neutralizing antibodies were also elicited with VLPs or EBV enve-
lope proteins. These antibody responses were more potent after multi-
merization of the respective glycoproteins or their incorporation into 
nanoparticles. This figure was created in part with modified Servier 
Medical Art templates, which are licensed under a Creative Com-
mons Attribution 3.0 Unported License: https​://smart​.servi​er.com

https://smart.servier.com
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without harming the host, VLPs were also investigated as 
versatile tools for EBV vaccine development.

In 2015, a novel Newcastle disease virus (NDV) VLP 
platform displaying the EBVgp350/220 ectodomain was 
shown to elicit strong, long-lasting neutralizing antibody 
responses in BALB/c mice, which were, however, not signif-
icantly higher than responses induced by soluble gp350/220 
[96]. The NDV VLP platform was subsequently used to 
incorporate additional EBV envelope and latent antigens. 
The combination of gH/gL-EBNA1 and gB/LMP2 into 
VLPs both led to the generation of high neutralizing titers 
and EBV-specific T cell responses in vaccinated BALB/c 
mice [97]. A different, but possibly even more promising 
approach, is to use VLPs based on the EBV particle. To 
reduce oncogenicity of EBV for vaccination, genetic ele-
ments and/or proteins involved in DNA packaging were 
deleted [98]. Already 20 years ago, the first generation of 
cell lines that produce EBV VLPs was created by removing 
the terminal repeats (TRs), which previously had been iden-
tified as packaging signals of EBVs DNA [99–101]. Those 
first EBV VLPs were able to bind human B and epithelial 
cells and did contain large amounts of viral particles, but 
no viral DNA. In 2011, Ruiss et al. developed EBV-derived 
VLPs in which the deletion of TRs was complemented with 
the deletion of potential EBV oncogenes namely EBNA2, 
3A, 3B and 3C, LMP1 and BZLF1 for additional safety 
[102]. Those EBV VLPs were shown to be assembled and 
released via the endosomal sorting complex for transport 
(ESCRT). Infected B cells were capable of presenting mul-
tiple EBV antigens to CD8+ and CD4+ T cells, which led to 
significant T cell expansions in vitro. In immunized BALB/c 
mice, the EBV VLPs elicited EBV-specific humoral and cel-
lular immune responses [102].

Despite strong evidence of immune activation and a 
good safety profile in mice, the risk of remaining infec-
tious oncogenic genomes in the early EBV VLPs remained 
high. Therefore, the development of EBV VLPs was further 
improved through the deletion of the viral packaging and 
nuclear egress proteins BFLF1/BFRF1A or the portal pro-
tein BBRF1 for viral DNA insertion into the capsid. In 2012, 
Pavlova et al. managed to create fully DNA-free EBV VLPs. 
The BFLF1/BFRF1A mutant EBV strain elicited compa-
rable CD4+ T cell responses as the EBV wildtype in vitro 
[103]. Through these deletions, the pathogenic potential of 
the EBV VLPs was reduced, however the responses against 
structural and lytic components of EBV may not be sufficient 
for the creation of an effective EBV vaccine.

Therefore, more immunogenic EBV VLPs were created 
by fusing latent antigens such as EBNA1 and EBNA3C 
to the abundant major tegument protein BNRF1. Through 
this approach, the EBV VLPs were able to stimulate potent 
CD4+ T cell responses against structural as well as latent 
EBV epitopes. In ex vivo cultures with human peripheral 

blood mononuclear cells, the EBV VLPs, which contained 
EBNA1 latent EBV antigen, could inhibit the outgrowth of 
EBV-infected B cells more proficiently than their counter-
parts without latent antigen. This partial inhibition of EBV 
infection in B cells could also be shown in vivo in HIS mice, 
while 100% of the PBS-treated mice got infected after EBV 
challenge, only 14% of the VLP-EBNA1-immunized mice 
had detectable viral loads in their peripheral blood [104]. 
Therefore, EBV-derived VLPs might need to contain latent 
antigens in addition to the structural proteins to elicit protec-
tive immune responses. Despite the improved safety profile 
of EBV-derived VLPs themselves, the low titers of these that 
can be produced by most cell lines and contaminants in the 
respective preparations that derive from the human producer 
cells remain concerns for this vaccination approach.

Envelope protein formulations to elicit 
neutralizing antibodies

Gp350/220 is an EBV glycoprotein, which initiates the 
attachment of EBV to susceptible host, primarily B cells 
expressing the complement receptor type 2 (CD21) and/or 
type 1 (CD35) [105]. Binding is further strengthened by the 
gp42 envelope protein interacting with MHC class II [106]. 
While these glycoproteins are specific for EBV, fusion of the 
viral envelope with cellular membranes is finally mediated 
by the gH/gL and gB proteins that are conserved among the 
herpesviruses [107]. Being crucial in the first step of EBV 
latent infection, gp350/220 is one of the antigenic candi-
dates often in the focus of exploration for the development 
of a prophylactic EBV vaccine. In the past, multiple potent 
antibodies against the EBV gp350 protein were found in 
human blood [108]. The neutralizing antibody that has been 
mainly characterized is the monoclonal 72A1 antibody. The 
broad interest in the 72A1 antibody led to the development 
of a humanized anti-gp350 antibody which blocked EBV 
infection of B cells in vitro to equivalent levels as the mouse-
human chimeric 72A1 antibody construct [109]. However, 
immunizing with the gp350 protein alone did not lead to a 
prevention of infection with EBV in a phase II clinical trial, 
but only to a partial reduction of acute IM [110, 111]. There-
fore, improvements of the gp350 protein vaccination were 
conceived [112] and dimers, trimers and tetramers of gp350 
elicited significantly higher neutralizing antibody titers in 
mice [113, 114]. Multimerized gp350 therefore seems to 
elicit more potent B cell responses.

Improvement of gp350 protein vaccines was not only 
achieved by multimerization, but also by the addition of 
immune-stimulating adjuvants. A study of Heeke et  al. 
included the use of GLA/SE as an adjuvant in addition to 
the vaccination with gp350 in mice and rabbits. GLA/SE 
is composed of the synthetic TLR4 agonist glucopyranosyl 
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lipid A (GLA) integrated into a stable emulsion (SE). Mice 
and rabbits that were vaccinated with GLA/SE-adjuvanted 
gp350 vaccines showed elevated EBV-neutralizing antibody 
titers. Also, high IgG titers and robust anti-gp350 CD4+ T 
cell responses could be detected in vaccinated mice [115]. 
Furthermore, by epitope mapping, it was found that the 
immune response against EBV’s gp350 protein is mainly 
directed against one dominant neutralizing epitope of gp350. 
In an approach to focus the antibody response on this potent 
epitope, gp350 mimetic peptides with strong ionic, elec-
trostatic or hydrogen bonds to the neutralizing region of 
the monoclonal antibody 72A1 [116] were generated by 
computer modeling [117]. In mice, those gp350 mimetic 
peptides elicited antibody responses that were able to block 
the interaction of 72A1 antibody and gp350. This technique 
may lead to more potent peptide vaccines which could con-
tain the neutralizing epitopes of multiple EBV envelope 
glycoproteins.

In addition to improving EBV gp350-specific vaccination, 
antigen formulations have been extended to the other enve-
lope proteins. Cui et al. compared the vaccination of rabbits 
with recombinant monomeric as well as multimeric EBV 
gH/gL and gB proteins to gp350 protein vaccines. The group 
found that vaccination with EBV gH/gL or gB protein vac-
cines elicited higher neutralization titers than gp350 protein 
vaccines [118]. These antibody titers were even increased 
when gH/gL and gB proteins were multimerized. Recently, 
Snijder et al. also used the proteins from the EBV fusion 
machinery as targets and the group isolated neutralizing 
human antibodies from memory B cells [119]. An anti-gH/
gL antibody, AMMO1, showed potent inhibition of infection 
of B and epithelial cells in vitro. Therefore, vaccination for 
gp350 plus the herpesviral fusion complex might elicit the 
most comprehensive humoral immune responses to EBV,

Another promising approach for EBV vaccination, which 
also mainly focuses on the generation of neutralizing anti-
bodies against viral glycoproteins, is the use of nanoparticles 
for the delivery of mutimerized and optimally spaced EBV 
antigens. In 2015, nanoparticles containing a portion of the 
ectodomain of gp350 including the complement receptor 
2 binding site were used to vaccinate mice and monkeys 
[120]. Vaccinated mice developed anti-gp350 titers that were 
about 1000-fold higher than in mice that received a soluble 
monomeric gp350 vaccine and were protected against a chal-
lenge with vaccinia virus expressing gp350. Cynomolgus 
macaques immunized with the gp350 nanoparticles also gen-
erated anti-gp350 titers that were three- to ten-fold higher 
than with soluble monomeric gp350 protein [120]. More 
recently, the same group investigated the immunization of 
nonhuman primates with gH/gL- and gH/gL/gp42-based 
nanoparticles. Those highly immunogenic vaccines elicited 
virus-neutralizing antibody responses that were maintained 
for at least 3 months after vaccination. It could be shown that 

the vaccination-induced antibodies were able to inhibit the 
viral fusion with B and epithelial cells [121]. Because the 
vaccinated animals cannot be infected with EBV, it remains 
unclear whether these neutralizing antibody titers would 
inhibit EBV infection in vivo.

Conclusions and outlook

From the many approaches summarized above, it is clear 
that the time is ripe for vaccination against EBV-associated 
pathologies. From the frequent reinfections of healthy virus 
carriers with EBV [122, 123], it seems also clear that steri-
lizing immunity against EBV infection is probably utopic. 
Such immune protection would also have to be watertight, 
because if it would be transient and just delay primary EBV 
infection, the ensuing initial encounters with the virus would 
carry a higher risk for IM [8]. Therefore, establishing or 
maintaining immune control of asymptomatic persistent 
EBV infection should probably be the goal for EBV vacci-
nation. In patients with already established EBV-associated 
malignancies, therapeutic vaccination might be an uphill 
battle due to established immunosuppressive mechanisms. 
Furthermore, prophylactic vaccination against these patholo-
gies might be difficult to assess in initial clinical trials due 
to their low incidence rate, usually ranging below 50 per 
100′000 individuals [4]. Therefore, the most likely scenario 
to test EBV-specific vaccine candidates is adolescents or 
young adults that are still EBV seronegative (around one 
third of this population) and who have a high risk to acquir-
ing EBV with IM (30–50%) [8], followed by an increased 
risk for Hodgkin’s lymphoma and MS [124, 125]. Even so 
natural immune control of EBV primarily relies on cytotoxic 
lymphocytes [20, 21], vaccine-induced EBV-neutralizing 
antibodies could convert IM into asymptomatic infection, 
because the elevated viral shedding into the saliva and CD8+ 
T cell lymphocytosis driven by early lytic EBV antigens sug-
gest that uncontrolled lytic replication contributes to IM [7]. 
Therefore, all the above discussed EBV vaccine candidates 
could prevent IM and provide the proof of concept that 
immunization against EBV is possible. In the end, however, 
vaccination or the endogenous immune response to asymp-
tomatic EBV infection probably needs to establish long-lived 
immune control by cytotoxic CD8+ T cells, which form the 
required cornerstone of natural immunity to this tumor virus. 
Thus, the development of an EBV-specific vaccine offers 
the possibility to design formulations that selectively elicit 
such cell-mediated immune control, which then also could 
be adapted to tumors that are not associated with viruses.
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