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Abstract

Background and Purpose: Selection of acute ischemic stroke (AIS) patients for endovascular 

treatment generally relies on dynamic susceptibility contrast (DSC) MRI or computed tomography 

perfusion (CTP). DSC MRI requires injection of contrast, while CTP requires high doses of 

ionizing radiation. The purpose of this work was to develop and evaluate a deep learning (DL)-

based algorithm for assisting the selection of suitable AIS patients for endovascular treatment 

based on 3D pseudo-continuous arterial spin labeling (pCASL).

Methods: A total of 167 image sets of 3D pCASL data from 137 AIS patients scanned on 1.5 

and 3.0T Siemens MR systems were included for neural network training. The concurrently 

acquired DSC MRI was used to produce labels of hypoperfused brain regions, analyzed using 

commercial software. The DL and 6 machine learning (ML) algorithms were trained with 10-fold 

cross-validation. The eligibility for endovascular treatment was determined retrospectively based 

on the criteria of perfusion/diffusion mismatch in the DEFUSE 3 trial. The trained DL algorithm 

was further applied on 12 3D pCASL data sets acquired on 1.5 and 3T GE MR systems, without 

fine-tuning of parameters.

Results: The DL algorithm can predict the DSC-defined hypoperfusion region in pCASL with a 

voxel-wise area under the curve (AUC) of 0.958, while the 6 ML algorithms ranged from 0.897 – 

0.933. For retrospective determination for subject-level endovascular treatment eligibility, the DL 

algorithm achieved an accuracy of 92%, with a sensitivity of 0.89 and specificity of 0.95. When 

applied to the GE pCASL data, the DL algorithm achieved a voxel-wise AUC of 0.94 and a 

subject-level accuracy of 92% for endovascular treatment eligibility.
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Conclusions: pCASL perfusion MRI in conjunction with the DL algorithm provides a 

promising approach for assisting decision-making for endovascular treatment in AIS patients.

Keywords

Acute ischemic stroke (AIS); Deep learning (DL); Pseudo-continuous arterial spin labeling 
(pCASL); Dynamic susceptibility contrast (DSC); Perfusion imaging; Endovascular treatment; 
Magnetic Resonance Imaging (MRI)

Subject Terms:

Ischemic Stroke; Revascularization; Treatment; MRI

Introduction

Recent clinical trials have shown that acute ischemic stroke (AIS) patients with specific 

patterns of penumbral tissue—the volume of brain tissue that is ischemic but not yet 

infarcted—can benefit from endovascular reperfusion therapy beyond the typical 6-hour 

treatment window from symptom onset1, 2. Computed tomography perfusion (CTP) imaging 

and dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) are 

commonly used to estimate the penumbral tissue to select suitable AIS patients for 

endovascular therapies. CTP is more commonly used in emergency settings due to its speed 

and accessibility. However, it requires a high dose of ionizing radiation due to the 

continuous X-ray exposure during the passage of iodinated contrast media, which has its 

own risk of allergic reactions (~0.2% incidence)3. There is also debate on the accuracy of 

CTP in delineating the infarct core of AIS4. Diffusion-weighted MRI is regarded as the 

imaging standard for defining the extent of infarct core. DSC perfusion MRI relies on the 

injection of gadolinium-based contrast agent (GBCA) that is not suitable for patients with 

renal dysfunction. As most AIS patients are aged persons presenting with vascular risks (e.g. 

diabetes mellitus), a mandatory step (and additional time) is required to rule out 

contraindications for GBCAs for DSC perfusion MRI.

Arterial spin labeling (ASL) MRI techniques can provide cerebral blood flow (CBF) 

measures without the use of contrast agent, and it has been shown to provide largely 

consistent results with DSC perfusion MRI in delineating hypoperfused brain regions in 

AIS5, 6. ASL may be particularly suitable for patients with renal dysfunction and/or 

vulnerable populations such as children and pregnant women who are at risk of strokes7, 8. 

The scan time for ASL is generally on the order of ~5min with CBF maps generated almost 

immediately with vendor or custom software. However, the precise delineation of 

hypoperfusion lesion and penumbra in ASL images remains challenging due to the low 

signal-to-noise ratio (SNR) and delayed arterial transit.

Recently machine learning (ML) methods have been applied for the diagnosis and 

management of stroke, such as the prediction of clinical outcome of AIS patients9, 10. 

Machine learning models use algorithms to parse data, learn features from that data, and 

make informed decisions based on the learning with some user guidance. Deep learning 

(DL) is an advanced ML method that takes the intelligent decision-making one step further 
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by using the neural network architecture resembling that is used for human visual 

perception11. Deep learning is able to capture the hierarchical and complex features of the 

input image automatically and can identify, classify, and quantify patterns in medical 

images12, 13. In this study, we developed and evaluated a DL-based algorithm to 

automatically identify the hypoperfusion lesion and penumbra in ASL images (in 

conjunction with diffusion MRI), using the perfusion lesions in DSC perfusion MRI as 

supervision.

Materials and Methods

The original data that support the findings of this study are available from the corresponding 

author upon request.

Patient selection

The present study included data from two AIS cohorts: data from the first cohort were 

collected from June 2010 to Sept 2013 in a registry of patients evaluated with diffusion-

perfusion MRI at the University of California, Los Angeles (UCLA) Medical Center. Data 

from the second cohort were collected from Aug 2014 to March 2018 at the Stanford 

University Medical Center. Patients with AIS were included in this study if: (1) they were 

adults (aged >18 years); (2) they received an established clinical diagnosis of AIS; (3) ASL, 

DSC, and diffusion weighted imaging (DWI) data were acquired, (4) acute ischemic lesion 

was detected in DWI, and (5) there was an absence of previous intracranial hemorrhage, 

brain surgery, or large territorial lesion. The Institutional Review Board (IRB) of UCLA 

approved this study and waived requirement for informed consent. The IRB of Stanford 

University approved this study and informed consent was obtained from the participants.

MRI protocols and analysis

All MRIs of the UCLA cohort were performed on Siemens 1.5 T Avanto or 3.0 T TIM Trio 

systems (Erlangen, Germany). A pseudo-continuous ASL (pCASL) pulse sequence with 

background suppressed 3D GRASE (gradient and spin echo) readout was applied with the 

following parameters: TR/TE/label time=4000/22/1500ms; field-of-view=22cm; matrix 

size=64×64, 26×5mm slices, post-labeling delay (PLD)=2000ms, scan time 4–5min5, 6. CBF 

maps were generated with custom software using Interactive Data Language (IDL, Boulder, 

CO, USA) that included motion correction, pairwise subtraction between label and control 

images, averaging to generate the mean difference image and the calculation of quantitative 

CBF maps5, 6.

All MRIs of the Stanford cohort were acquired on GE 1.5 and 3.0T SIGNA systems 

(Milwaukee, WI) using a 3D pCASL sequence with fast spin echo readout and stack-of-

spirals readout trajectory. Imaging parameters were: TR/TE/label time=4852/11/1500ms; 

PLD=2025ms, field-of-view=24cm; matrix size=64×64, 36×4mm slices, scan time ~5min. 

CBF maps were generated with vendor software14.

DSC images were acquired using a gradient-echo echo-planar imaging sequence with a 

timed contrast-bolus passage technique (0.1mg/kg contrast administered intravenously at a 

rate of 5ml/s), with a TR range of 1770 to 2890ms and average TE of 44±10.4ms, 
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matrix=128×128. Following motion correction and spatial smoothing, multiparametric 

perfusion maps including CBF, cerebral blood volume (CBV), time to the maximum of the 

tissue residue function (Tmax), and mean transit time (MTT) were generated using a method 

based on block-circulant singular value decomposition (cSVD) implemented in the 

commercial software OLEA (La Ciotat, France) for the UCLA cohort. The RAPID software 

(iSchemaView Inc, Menlo Park, CA)15 was used for analyzing DSC data from the Stanford 

cohort.

Diffusion weighted images were acquired with b value of 1000s/mm2, and range values of 

TR and TE were 3500–6000 and 78–118ms, respectively. The matrix size was 128×128. 

Apparent diffusion coefficient (ADC) images were calculated with vendor software. ASL 

CBF and DSC images were corregistered with DWI in each subject using SPM12 (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/), and normalized into the Montreal Neurological 

Institute template space using SPM12.

The flowchart for the training and evaluation of the DL algorithm is shown in Figure 1, 

which includes modules of data input, DL model architecture, voxel-level and subject-level 

evaluation. The following describes each step in detail.

Creating Label Images of DSC Perfusion Lesion

All calculated Tmax maps, extracted arterial input function (AIF), and venous outflow 

function (VOF) were inspected by an expert of perfusion MRI (DJW). Data were excluded if 

the AIF failed to show clear bolus passage and/or there were severe motion artifacts. The 

Tmax maps generated by the OLEA software for the UCLA cohort often contained speckle 

noise and/or residual motion artifacts on brain edges; therefore, the following denoising 

steps were applied to reliably identify the perfusion lesions: 1) skull-stripping using the BET 

program16; 2) brain segmentation using FSL FAST17 and ventricles masking with the 

segmented cerebrospinal fluid (CSF) regions; 3) manually setting a bounding box to include 

perfusion lesions; and 4) applying a threshold with Tmax≥6sec. The resultant binary maps 

were used as “label images” for training neural networks, with the foreground being 

hypoperfusion regions. For the Stanford cohort, the perfusion lesion with Tmax≥6sec was 

automatically generated by the RAPID software. In previous MRI and positron emission 

tomography studies18, 19, Tmax lesions>2sec often overestimated the volume of penumbral 

tissue, while stricter thresholds (>8sec) underestimated the volume of hypoperfused tissue. 

Based on these studies and recent clinical trials1, 18, 20, Tmax≥6sec was chosen to define 

hypoperfusion lesions in this study.

Deep Neural Network Architecture and Training

The network used in this project was the Highres3Dnet21, which offers compact end-to-end 

3D convolutional neural network (CNN) structures that maintain high-resolution multi-scale 

features (Figure 1). The Highres3Dnet was implemented using TensorFlow and NiftyNet22. 

It included 20 trainable layers with dilated convolution and dilating factors of 1, 2, and 4, 

respectively. Residual connections were employed for every two convolution layers. The 

network was trained on two Nvidia GeForce GTX 1080 Ti GPUs. CBF and ADC images 

were used as input, and the label image from Tmax served as the supervision. Volumes 
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(48×48×48, batch size=4) were randomly extracted from 3D preprocessed input and label 

images for training. Volume level augmentation was employed, including rotation with a 

random angle in the range of [−10°, 10°] for each of the three orthogonal planes and spatial 

rescaling with a random scaling factor in the range of [0.9, 1.1]. The Dice loss function23 

and Adam optimization method24 (learning rate=0.0001, β1 = 0.9, β2=0.999) were used. 

The total iteration numer was set to 70,000 to enable the training process to reach steady 

state. The hyperparameters of the network (e.g., layer number, volume size, and iteration 

number) were determined based on pre-training on a fixed validation dataset.

We performed the 10-fold cross-validation, in which individuals from the UCLA cohort 

were first divided into 10 groups. For each fold of the cross validation, 9 groups were used 

as the training set, and the remaining one designated as the testing set. After the process was 

repeated 10 times, the whole dataset was tested.

Machine Learning Models and Training

For comparison, six commonly used ML classifiers were trained on the same UCLA cohort, 

including linear regression classifier, ridge regression classifier, kernel ridge regression 

classifier, neural network classifier, Support Vector Machine (SVM) with Radial Basis 

Function (RBF) and random forest classifier25. The same 10-fold cross-validation scheme as 

used in the training of the DL model was applied: For each fold, ten thousand 13×13 patches 

were randomly selected from the training set, half of which the central voxel was positive 

voxels in the label image, and the other half of which the central voxel was negative. Once 

the models were trained on the ten thousand patches, inference was determined voxel by 

voxel on the testing set, where the classifier utilized the 13×13 patch around the central 

voxel to be inferred.

DL Model Performance Assessment

The DL model performance was evaluated on a subset of the UCLA cohort, herein referred 

to as the evaluation cohort. The inclusion criteria for the evaluation cohort were adopted 

from the DEFUSE 3 trial1: patients who had an occlusion of the intracranial internal carotid 

artery or the proximal middle cerebral artery, and the last known well time was within 16 

hours of the MRI. The performance assessment was done both at voxel-level and subject-

level. For voxel-level evaluation, the Dice coefficient was first calculated between the 

inference and the Tmax label for each subject, and the group average Dice was subsequently 

calculated for all subjects of the evaluation cohort. Then, 100,000 voxels were randomly 

selected from the DSC perfusion maps of evaluation cohort, of which 50,000 were picked 

from positive voxels in the label images, and the remaining 50,000 were negative voxels (to 

control for imbalanced positive and negative voxels in our data). Receiver Operating 

Characteristic (ROC) curves and Precision-Recall (PR) curves were calculated on the 

100,000 voxels for the DL and 6 ML models, and the corresponding Area Under the Curve 

(AUC) was calculated, respectively.

Subject-level performance assessment was based on the imaging criteria for endovascular 

thrombectomy of the DEFUSE 3 trial1: 1) The initial infarct volume (ischemic core), 

identified as regions of ADC<620×10−6 mm2/s, is less than 70mL26; 2) The volume of 
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ischemic tissue is 1.8x the volume of initial infarct volume or more; 3) The volume of 

potentially reversible ischemia (penumbra) is 15mL or more. For the evaluation cohort of 

AIS patients, the endovascular treatment eligibility was determined first with ADC and DSC 

Tmax label maps, then with ADC images and predicted ASL hypoperfusion lesion from the 

trained model. Confusion matrices, as well as sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), the total accuracy, and Cohen’s kappa 

coefficient were also calculated27 for the DL and 6 ML models, respectively.

The above subject-level evaluation used the optimal cut-off threshold determined by voxel-

wise training/evaluation of the 6 ML methods respectively, while 0.5 was used for the DL 

method. We further varied the threshold for binarizing the DL/ML model output and 

calculated the ROC curves for selecting subjects eligible for endovascular treatment within 

the evaluation cohort of AIS patients.

Evaluation of the Generalizability of DL Model

To further test the generalizability of our DL model, we applied the DL model on the 

Stanford cohort. Inference was made based on the ADC and CBF maps, without fine-tuning 

model parameters. Since the ten models built through the 10-fold validation generated 10 

hypoperfusion lesion probability maps for an individual, we used the consensus map of the 

10 predicted lesions for evaluation, which was generated by averaging the 10 probability 

maps of the 10 models and subsequently binarized with threshold=0.5. Both voxel-level and 

subject-level evaluations with the same criteria as described above were performed, except 

that for voxel-level evaluation, a smaller number of voxels (10,000) was sampled because 

the dataset was smaller compared with the UCLA dataset.

Results

Patients

For the UCLA cohort, a total of 167 image sets from 137 patients were included for network 

training (1.5T: n=93; 3T: n=74). Each patient had 1–3 MRIs. For the purpose of maximizing 

the training datasets and improving the robustness of the DL model when dealing with 

different subtypes of strokes, we used all available MRIs rather than only baseline scans or 

patients with anterior circulation stroke. For the Stanford cohort, 12 MRI (1.5T: n=1; 3T: 

n=11) from 12 patients were randomly selected for the evaluation of the generalizability of 

DL model. The clinical and demographic information of the UCLA cohort and Stanford 

cohort is listed in online supplement Table I and II, respectively.

Neural network identification of ASL hypoperfusion lesions

Figure 2 shows 4 representative cases at 1.5T and 4 representative cases at 3T from the 

UCLA cohort, respectively. For each case, ADC, DSC Tmax, and ASL CBF maps are 

displayed in the first 3 columns respectively. The predicted and Tmax label of perfusion 

lesions are overlaid on the T2w image of DWI (the 4th column). At each field strength, 2 

cases with predicted>Tmax label perfusion lesion (row 1, 2) and 2 cases with 

predicted<Tmax label (row 3, 4) are shown. Only the second case of 1.5T was misclassified. 
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Overall, the network could identify the perfusion lesion defined by Tmax images although 

there were discrepancies between the lesion volumes of ASL and DSC MRI.

Evaluation of DL Prediction Accuracy

Thirty-eight AIS patients of the UCLA cohort with large vessel occlusion in the anterior 

circulation met the inclusion criteria of DEFUSE 3, which served as the evaluation cohort. 

For voxel-level evaluation, the group average Dice coefficient was 0.47 ± 0.23. The ROC 

curves showed that our DL model was able to achieve significantly superior performance 

compared to the 6 traditional ML methods (p<0.001). The AUC of our DL model was 0.958, 

while the AUC of the 6 ML models varied from 0.897 to 0.933 (Figure 3A). The PR curves 

showed similar results with the DL model yielding the highest AUC=0.957, while the AUC 

of the 6 ML models varied from 0.790 to 0.932 (p<0.001) (Figure 3B).

Subject-level evaluation was performed according to the imaging criteria for endovascular 

thrombectomy of the DEFUSE 3 trial. The sensitivity, specificity, PPV, NPV, and Cohen’s 

kappa coefficient were 0.89, 0.95, 0.94, 0.90, and 0.84, respectively (the corresponding 

confusion matrix is shown in online supplement Table III). The accuracy was 0.92 (95% CI: 

[0.79, 0.98]). In comparison, the accuracy, sensitivity, specificity, PPV, NPV, and Cohen’s 

kappa coefficient (online supplement Table IV), were also calculated for the 6 ML methods. 

The highest accuracy among the 6 ML models was 0.84 (95% CI: [0.69, 0.94]). When the 

cutoff threshold was varied to generate ROC curves, although without significant 

differences, the DL model still yielded the highest AUC of 0.950, while the AUC of ML 

algorithms ranged from 0.915 to 0.949.

Cross-validation on Stanford cohort

Our pretrained DL models were tested on the 12 patients of the Stanford cohort scanned on 

GE 1.5 and 3T MR scanners, without any fine-tuning of parameters. The results from the 

consensus maps of the 10 models are reported here. Three cases are shown in Figure 4 with 

the same layout as Figure 2 (two correctly and one incorrectly classified for treatment). The 

average Dice coefficient was 0.43 ± 0.25. Voxel-level evaluation showed that the AUC of the 

ROC and PR curve was 0.942 (Figure 5A) and 0.931 (Figure 5B) respectively. Only one 

among the 12 tested subjects was classified incorrectly (the corresponding confusion matrix 

is shown in online supplement Table V). Subject-level evaluation yielded an accuracy of 

0.92 (95% CI: [0.62, 0.99]), with sensitivity, specificity, PPV, and NPV of 0.75, 1.00, 1.00 

and 0.89, respectively. Prediction of subject-level treatment eligibility in the Stanford cohort 

was highly reproducible as all the 10 DL models trained on the UCLA cohort yielded the 

same accuracy of 0.92.

The bottom row of Figure 4 shows the case that was incorrectly classified for treatment 

eligibility. The DL model still identified hypoperfusion lesions on ASL CBF, however the 

hyperperfusion signals (arrow) likely arising from delayed arterial transit effects restricted 

the predicted lesion volume to be below the threshold for perfusion/diffusion mismatch.
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Discussion

Recent randomized clinical trials have consistently reported positive outcomes by utilizing 

CTP and/or DSC MRI to identify and quantify the penumbral tissue, using automated post-

processing software such as RAPID1, 2, 28–30. In this project, we trained DL models to assist 

the decision-making for endovascular thrombectomy with non-contrast ASL images, using 

the hypoperfusion lesion observed on DSC MRI as the label. The DL models were able to 

consistently achieve an accuracy of 92% for imaging-based criteria for endovascular therapy 

in two independent cohorts of AIS patients scanned on Siemens and GE MRI scanners at 1.5 

and 3T. If verified in randomized clinical trials, DL based algorithms may have several 

advantages compared to existing methods using CTP and DSC MRI. With the proposed 

method, any AIS patients including the elderly, children, and pregnant women can be 

evaluated, as long as they do not have contraindications for MRI. As diffusion MRI is 

considered the gold standard for delineating the infarct core, an entirely non-invasive MRI 

protocol including ASL perfusion and diffusion MRI could potentially improve the 

diagnostic accuracy and ischemic tissue characterization for AIS patients compared to CTP. 

Past studies have shown that the infarct cores identified by diffusion MRI and CTP often do 

not match each other31, 32. Since AIS patients regularly undergo multiple MRIs without 

concerns of ionizing radiation, ASL scans can be repeated as often as required to follow 

disease progression. With sufficient clinical evidence, the proposed method may extend the 

treatment window to subacute stages and may assist in the management of reperfusion 

injury33, 34.

DL based prediction of hypoperfusion lesions is instantaneous (<1sec per subject), while the 

post-processing of CTP and DSC MRI takes a few minutes using RAPID software35; 

Although the net time for CTP and DSC MRI scanning is only 1–2min, additional time and 

staffing is required for the preparation of contrast injection and in the case of DSC MRI, to 

rule out contraindications for GBCAs. Therefore, the total time for ASL scanning (~5min), 

CBF calculation (seconds) and DL prediction of penumbra (<1sec) could be shorter than that 

required for CTP and DSC MRI scanning and post-processing. It is worth noting that fast 

ASL scanning within 1–2min is feasible with DL-based denoising36, 37. The potentially 

lower overhead for time and management of patient safety with the proposed method could 

be clinically significant in AIS treatment, given that “time is brain”.

Machine learning and in particular DL algorithms are ideally suited for ASL imaging in 

stroke. Although ASL has been shown to provide largely consistent results with DSC MRI 

in delineating hypoperfused brain regions in AIS5, 6, in practice ASL at a single PLD (e.g. 2 

seconds) tends to overestimate hypoperfusion lesion volume due to delayed arterial transit 

effects. On the other hand, delayed arterial transit effects in ASL images may indicate 

collateral flow38. However, there are no objective criteria for their radiographic definition 

and interpretation. The low SNR of ASL images also makes it difficult to determine the 

boundary of the hypoperfusion lesion. Although often criticized as a “black box”, advanced 

ML and DL algorithms offer powerful tools to extract complex features from multi-

dimensional data without explicit characterization of these features. In the present study, our 

DL model apparently realized multiple functions including denoising of ASL images, 

integration with diffusion MRI, and segmentation of hypoperfusion lesions. The DL 
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algorithm outperformed 6 ML methods which were trained on the same dataset acquired on 

Siemens MR scanners, and it was demonstrated that the DL algorithm can be generalized to 

an independent dataset collected on GE MR scanners. Although different commercial 

software packages (OLEA and RAPID) were used to generate the Tmax label of 

hypoperfusion lesions in the two cohorts respectively, our DL model was able to achieve a 

high accuracy of 92% in both cohorts. As a further validation, the mean pCASL CBF values 

increase from the infarct core, to the predicted penumbral tissue, and to the contralateral 

region at both 1.5 and 3T (see online supplement Table VI). These results strongly indicate 

that the proposed DL model is well suited and valid for identifying hypoperfusion lesions on 

ASL images in AIS patients, for two main field strengths and MRI platforms used clinically.

In the present study, we trained 10 models using the 167 image sets of the UCLA cohort 

with 10-fold validation. When evaluated on the Stanford cohort, the consensus or averaged 

probability map from the 10 models yielded a significantly higher AUC of ROC (0.942) 

compared with the 10 individual models (AUC of ROC: 0.897±0.050), while the subject-

level treatment eligibility results remain the same (0.92) for all the models. Therefore, 

although additional time (~8sec per subject) and storage (~140MB in total) is needed for 10 

models, we recommend using the averaged result of the 10 models for future applications.

It is important to note that the clinical decision to proceed with endovascular thrombectomy 

is not only based on the imaging criteria of diffusion-perfusion mismatch, but also on the 

individual patient’s medical history and clinical condition. While the ASL perfusion DL 

model cannot and should not be used independently for treatment decision-making, 

interventionists may consider utilizing it to supplement their assessment of stroke and 

treatment planning, when imaging with completely non-invasive MRI.

There are a few limitations and future directions of the present study. The detected 

hypoperfusion lesions on ASL did not match completely with that of DSC MRI with a 

moderate Dice coefficient of 0.47 in the UCLA cohort and 0.43 in the Stanford cohort. We 

noticed that the Dice coefficients were lower in patients with smaller hypoperfusion lesions 

due to their sensitivity to the mismatch between ASL and DSC MRI. There were 4 out of a 

total of 50 cases that were incorrectly classified for treatment eligibility, as shown in the 

bottom row of Figure 4. This discrepancy may arise from different mechanisms of ASL and 

DSC PWI, which merits further research in larger cohorts. The performance of our DL 

model is likely to be further improved with larger training datasets, as well as by integrating 

other clinical information such as demographics, electronic medical records, biomarkers, 

and real-time continuous monitoring using wearables39. Although we did not adjust our DL 

model to test the Stanford data (due to small sample size and also to avoid bias), it is also 

possible to fine-tune the model with a few cases when dealing with MRI data from different 

vendors. Finally, future clinical studies are needed to evaluate how well the DL penumbra 

can predict follow-up infarct in AIS patients when there is lack of reperfusion.

Conclusion

With a high accuracy of 92% for imaging-based criteria for endovascular treatment in two 

independent cohorts of AIS patients and superior performance compared to ML methods, 
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the proposed ASL perfusion DL model may provide a promising approach for assisting 

decision-making for endovascular treatment in AIS patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flowchart of the training and evaluation of DL model.
DSC MRI scans were first processed to generate parameter maps (CBF, ADC, and Tmax), 

then the data were used to train the Deep Neural Network. After training, inference was 

made and evaluated at voxel-level and subject-level. The UCLA cohort was used for both 

training and testing, while the Stanford cohort was only used for testing purposes.
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Figure 2. Four representative cases at each field strength showing the input images, label, and 
inference.
For each case, ADC, DSC Tmax, and ASL CBF are displayed in the first 3 columns, 

respectively. The predicted and Tmax label of perfusion lesions are overlaid on the T2w 

image of DWI. At each field strength, 2 cases with predicted>Tmax label perfusion lesion 

and 2 cases with predicted<Tmax label are shown. Only the second case of 1.5T was 

misclassified.
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Figure 3. A) ROC of the DL model and ML models on the evaluation voxel set.
With AUC=0.958, DL model showed significantly superior performance (p<0.001) 

compared with traditional ML models (AUC=0.897, 0.918, 0.930, 0.925, 0.924, and 0.933 

for the six methods in the legend, respectively). B) Precision-Recall curves of the DL model 

and ML models. Significantly superior performance of the DL model was confirmed by 

precision-recall curve (AUC = 0.957, p<0.001), compared to 6 ML models (AUC= 0.790, 

0.802, 0.809, 0.804, 0.806, and 0.932), respectively.
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Figure 4. Three representative cases of the Stanford cohort showing the input images, inference, 
and label.
The same layout is used as in Figure 2. The first two were correctly classified, while the 

third one was misclassified. The arrow indicates hyperperfusion signal likely arising from 

delayed arterial transit effects.
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Figure 5. ROC Curve (A) and Precision-Recall Curve (B) on evaluation voxel set of the Stanford 
cohort.
Without any parameter fine-tuning, our DL model achieved reasonable performance on the 

10,000-voxel evaluation set, with AUC=0.942 for the ROC curve and 0.931 for the 

precision-recall curve.
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