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3D-MCN: A 3D Multi-scale 
Capsule Network for Lung Nodule 
Malignancy Prediction
Parnian Afshar1, Anastasia Oikonomou   2, Farnoosh Naderkhani1, Pascal N. Tyrrell3, 
Konstantinos N. Plataniotis4, Keyvan Farahani5 & Arash Mohammadi   1 ✉

Despite the advances in automatic lung cancer malignancy prediction, achieving high accuracy remains 
challenging. Existing solutions are mostly based on Convolutional Neural Networks (CNNs), which 
require a large amount of training data. Most of the developed CNN models are based only on the main 
nodule region, without considering the surrounding tissues. Obtaining high sensitivity is challenging 
with lung nodule malignancy prediction. Moreover, the interpretability of the proposed techniques 
should be a consideration when the end goal is to utilize the model in a clinical setting. Capsule 
networks (CapsNets) are new and revolutionary machine learning architectures proposed to overcome 
shortcomings of CNNs. Capitalizing on the success of CapsNet in biomedical domains, we propose a 
novel model for lung tumor malignancy prediction. The proposed framework, referred to as the 3D 
Multi-scale Capsule Network (3D-MCN), is uniquely designed to benefit from: (i) 3D inputs, providing 
information about the nodule in 3D; (ii) Multi-scale input, capturing the nodule’s local features, as 
well as the characteristics of the surrounding tissues, and; (iii) CapsNet-based design, being capable of 
dealing with a small number of training samples. The proposed 3D—MCN architecture predicted lung 
nodule malignancy with a high accuracy of 93.12%, sensitivity of 94.94%, area under the curve (AUC) 
of 0.9641, and specificity of 90% when tested on the LIDC-IDRI dataset. When classifying patients as 
having a malignant condition (i.e., at least one malignant nodule is detected) or not, the proposed 
model achieved an accuracy of 83%, and a sensitivity and specificity of 84% and 81% respectively.

According to recent statistics on cancer types published by the International Agency for Research on Cancer of 
the World Health Organization (WHO)1, lung cancer is ranked first worldwide for mortality and is among the top 
three cancer types for incidence. Lung cancer together with breast cancer lead worldwide for the number of new 
cases with approximately 2.1 million diagnoses estimated in 2018. Lung cancer is also responsible for the largest 
number of deaths (1.8 million deaths, 18.4% of the total), with a low 5-year survival rate (18%)2. This high mor-
tality rate is mainly due to the fact that lung cancer is diagnosed in more than half of the cases at advanced stages2. 
In recent years, significant technological advancements in medical imaging, especially Computed Tomography 
(CT), have improved the detection rate of lung tumors3. Analyzing and interpreting these images, however, is 
time consuming4, and subject to inter-observer variability. Furthermore, intrinsic tumor heterogeneity can sig-
nificantly contribute to the cancer diagnosis and may not be always visible to the human eye5.

The aforementioned shortcomings of human-centered cancer diagnosis have encouraged the development 
of a relatively new field in medical imaging, referred to as “radiomics”6–8, which has shown promising results 
in cancer diagnosis9. Radiomics is the machine extraction of hundreds of quantitative and semi-quantitative 
features from radiographic images10 based on the hypothesis that these features can provide more information 
to the unaided eye. The goal of radiomics analysis, in cancer, is to improve detection, diagnosis, or prediction 
of the treatment outcome in each case. Radiomics analysis has been recently categorized in two main groups: 
namely hand-crafted and deep learning-based radiomics. In the former category11–14, a set of pre-defined engi-
neered features are extracted from medical images. These features are, consequently, passed to an analysis tool 
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to calculate the desired output such as the probability of cancer, its stage, and/or the estimated survival time. 
Although hand-crafted features have shown considerable correlation with clinical outcomes, they have several 
weaknesses15 limiting their applicability and reliability. First, while hand-crafted features can be stable and robust 
in some tasks, this group of features is, usually, extracted from the annotated region of interest, which can only be 
provided by the experts. Therefore, not only does their calculation require extensive time and effort but also their 
stability and reproducibility highly depend on the pre-processing steps and segmentation16. Second, hand-crafted 
radiomics are pre-defined and need prior knowledge on the types of features to be extracted, which is often 
unavailable. Furthermore, there is no guarantee that the extracted features are useful for the task at hand (cancer 
prediction, diagnosis, and/or classification), as defining the features is independent from the analysis process.

The shortcomings of the hand-crafted radiomics have led to the emergence of the deep learning-based radi-
omics17–20 where features are not pre-defined. In fact, deep learning-based radiomic features are learned in an 
end-to-end fashion while taking specifics of the desired output into account. In other words, the model learns 
to extract features that can best distinguish the classes. Convolutional Neural Networks (CNNs) are one of the 
most popular deep networks in the field of radiomics21. These networks benefit from several useful properties22; 
for example, sharing trainable weights over the input that significantly reduces the training time and enables 
the model to extract local features from the whole input image. The CNNs, however, require large datasets, and 
cannot generalize well in the absence of a large number of images, which is usually the of case a clinical cohort of 
patients23 and included in the problem of lung cancer classification. Another limitation is the “black box” model, 
which does not allow the researcher to identify which features are actively playing a role in the classification or if 
there are any differences between the impact of the features in subgroups of the population. Determining positive 
or negative samples may be sufficient but often the radiologist will contribute to treatment decisions that depend 
on more than identifying cancer. For instance, depending on texture, tumor size, and growth rate, various treat-
ment options will be considered for the patient.

Capsule networks 24 (also referred to as CapsNets) are relatively new and revolutionary deep learning archi-
tectures that are capable of identifying spatial relations between different objects in an image. They eliminate the 
need for a large number of samples by including all the possible rotations and transformations of the underlying 
objects. Therefore, CapsNets are potentially applicable in medical domains25, where very large datasets are una-
vailable. In our recent works25,26, which can be considered the first attempts at applying CapsNets in a biomed-
ical domain, Capsule networks were designed for the purpose of brain tumor type classification via magnetic 
resonance imaging (MRI) data. Capitalizing on the success of CapsNets for brain tumor-type classification and 
the importance of lung cancer malignancy prediction, we propose in this paper a novel and advanced CapsNet 
architecture designed specifically for lung malignancy prediction based on computed tomography (CT). The 
proposed 3D multi-scale CapsNet (3D—MCN) model takes 3D patches of the nodules at three different scales as 
inputs and predicts the nodule’s malignancy. The rationale is that the morphological characteristics of the nodule 
are not the only ones predicting its malignancy, and incorporation of information obtained from the surrounding 
tissues and vessels play a critical role in determining the type of the nodule. In brief, the 3D—MCN benefits from: 
(i) CapsNets-based design, utilizing unique characteristics of this revolutionary deep learning model in handling 
small datasets and object transformations; (ii) 3D inputs, which give the model access to 3D features of the nod-
ule; (iii) multi-scale inputs, helping the CapsNet to assess the local and global features, and; (iv) not requiring the 
nodule detailed annotation and pre-defined features.

The aim of this work is to investigate whether the proposed 3D-MCN can solve several fundamental chal-
lenges of lung nodule malignancy prediction: the first is that most of the traditional nodule prediction models 
required an exact annotation, leading to inter-observer variability, along with features that are not consistent 
and reproducible; the second is the insufficiency of the features extracted from the nodule region alone. The 
surrounding tissues, containing valuable information for the nodule prediction, are carefully taken into account 
in the 3D-MCN; the third is to assess whether the capsule network framework, embedded in the 3D-MCN, can 
operate efficiently without requiring a large dataset while yielding acceptable diagnostic accuracy. Finally, the last 
challenge to address is the model’s interpretability, for which the 3D-MCN features and their correlations with 
features used in clinical practice are investigated as building trust between the model and its clinical users is of 
paramount importance.

Results
Proposed 3D-MCN Model for lung nodule classification.  3D-MCN consists of three independent 
CapsNets, each of which takes nodule patches at a different spatial scale as input. Therefore, we refer to it as a mul-
ti-scale learning architecture. Here, scale refers to the visible area of the tissue surrounding the nodule. Each input 
is a 3D nodule crop centered at the nodule annotation. The output vectors of the three CapsNets are concatenated, 
and the result goes through a fusion module consisting of a set of fully connected layers. The final output is the 
probability of the nodule being benign or malignant.

We performed several experiments on two independent training and test sets from the Lung Image Database 
Consortium (LIDC) and Image Database Resource Initiative (IDRI) dataset27–29. This dataset consisted of the 
CT scans of 1018 subjects. The images were annotated and labeled by one to four radiologists. Each marked 
region was either nodule or non-nodule. Nodule cases were further divided into two categories. The first category 
contained the nodules that were less than 3 mm in size. The second category included those that were equal to 
or larger than 3 mm. For the latter category, radiologists identified the degree of malignancy on a scale of 1 to 5, 
where the larger the number, the higher the possibility of malignancy. In this work, we categorized nodules 3 mm 
or larger as either benign (low degree of malignancy) or malignant (high degree of malignancy). Figure 1 shows 
illustrative examples of available marked regions in the dataset used for evaluation purposes of the proposed 
3D—MCN framework.
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Performance of the proposed 3D multi-scale CapsNet (3D—MCN).  Among the five available 
malignancy labels in the dataset, we followed recent studies5,30–33 and decided to discard the nodules for which 
the average malignancy ratings given by the radiologists (rounded to the nearest integer) was 3 (indeterminate 
malignancy). The remaining four labels were divided into two groups, where labels 1 and 2 were re-labeled as 0 
(unlikely to be malignant), and labels 4 and 5 were re-labeled as 1 (likely to be malignant). Therefore, a binary 
classification problem was constructed for a total of 2283 nodules. Nodules were, consequently, grouped into two 
independent sets for testing (30%) and training (70%). We confirmed that there were no shared patients between 
the two underlying sets. We trained the single-scale models and the proposed multi-scale architecture based on 
the training set, and evaluated its performance over the test set. In addition, we trained a fully-connected neu-
ral network (having the same architecture as the one in the multi-scale model), as the base-line model, on four 
hand-crafted features; namely volume, diameter, center-of-mass x coordinate, and center-of-mass y coordinate. 
These four features accompany the IDC-IDRI dataset to ensure all research groups use the same size-selected 
nodules. To have a more insightful comparison, we also designed and implemented a 3D-CNN architecture that 
had inputs at the three scales (similar in nature to the 3D-MCN but without the Capsule design). We tried to keep 
the complexity of the 3D-CNN as similar as possible to the proposed 3D-MCN. We utilized three independent 
CNNs, each of which was trained on a specific scale. The final layer of all the three CNNs was a softmax layer to 
predict the lung tumor malignancy. However, to be able to combine the CNNs before making the final decision, 
for all the three networks, we took the layer before the softmax, consisting of 32 nodes (similar to the dimension 
of the final capsule in the proposed 3D-MCN), and concatenated them to go through the fully connected net-
work. The details of the implemented 3D-CNN architecture was as follows:

•	 The input to each CNN was a 3D lung nodule patch at a specific scale, similar to the setting utilized in the 
3D-MCN.

•	 The first layer was a convolutional one, with filters of size 9 and stride of 1, outputting 256 feature maps.
•	 The second layer was a convolutional one, with filters of size 9 and stride of 2, outputting 256 feature maps.
•	 The third layer was a fully-connected one, with 32 nodes.
•	 The final layer consisted of two nodes to decide on the malignancy of the lung nodule.
•	 CNNs at different scales were trained independently.
•	 For all three CNNs, the layers before the final one were concatenated.
•	 The resulting vector went through a set of fully-connected layers, as utilized in the 3D-MCN.
•	 The final fully-connected layer made the final decision.

The designed 3D-CNN was trained and tested on exactly the same training and test sets as used for the eval-
uation of the 3D-MCN.

Four measurements based on the performance of the test set were calculated: area under the curve (AUC), 
accuracy, specificity, and sensitivity. The results are provided in Table 1, which shows that the 3D—MCN frame-
work outperforms not only the single-scale models, but also the 3D-CNN, which takes the exact multi-scale 
patches as inputs. Moreover, even the single-scale Capsule models outperformed the 3D-CNN, which further 
illustrates on the superiority of the Capsule design. Specificity was higher for the second scale model. However, 
we believe that sensitivity is of greater importance, as the consequences of misclassification are worse for malig-
nant cases. Furthermore, typically in clinical practice, suspected malignant cases will go over complementary 
examinations34, which can identify whether the underlying case was a false positive. Figure 2 illustrates the 
Receiver Operating Characteristic (ROC) curve for the single-scale models, as well as the multi-scale one, and 
the base-line.

In clinical applications, where false positives and false negatives are not treated equally, a threshold can be 
selected based on the ROC curve to set a desired sensitivity and specificity. Another strategy to tune these meas-
ures is to assign different weights in the objective function. In this work, the proposed 3D multi-scale CapsNet 
was trained with the objective of minimizing the binary cross entropy loss35,36. As such, we modified the loss as 
follows to put different weights on the loss function terms (specificity and sensitivity)

Figure 1.  Examples of available marked regions in the LIDC-IDRI dataset27. Each region was classified as 
nodule or non-nodule. Nodules were categorized based on their size. Nodules larger than 3 mm were further 
sub-categorized based on their malignancy ratings.
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where y is the target, and p is the predicted probability of Class 1. Terms α and β denote the weights given to 
the false positives and false negatives, respectively. We trained the multi-scale model with three settings: equal 
weights, more weight assigned to the false positive, and more weight given to the false negative. Table 2 shows the 
obtained results.

We inspected the cases in the test set for which our proposed approach failed to predict the correct label. 
We observed that 28% of such failure cases were nodules that were marked by only one radiologist. There was 
no agreement on these cases being nodules between different radiologists. Although all other failure cases were 
nodules identified by at least two radiologists, there was a common pattern between most of them, i.e., the malig-
nancy labels were not consistent, and moreover, there was at least one label 3 among the provided labels. In other 
words, although the average malignancy was not 3 to be discarded, there was a high probability that the malig-
nancy status of the nodule cannot be determined (malignancy is indeterminate).

As stated previously, the motivation behind our multi-scale approach was that the morphological character-
istics of the nodule were not the only indicators of its malignancy. In fact, the surrounding tissues and vessels 

Model
Area Under the 
Curve (AUC) Accuracy Specificity Sensitivity

Proposed 3D—MCN 0.964 93.12% 90% 94.94%

First Scale of the 3D—MCN 0.9633 91.65% 90% 92.21%

Second Scale of the 3D—MCN 0.96 91.65% 91.33% 91.82%

Third Scale of the 3D—MCN 0.96 91.40% 89.33% 92.60%

3D-CNN 0.9562 89.43% 90% 89.10%

Base-line Model (Hand-Crafted) 0.9524 87.47% 86.66% 87.93%

Table 1.  Performance of the proposed 3D Multi-scale CapsNet along with performance of the three underlying 
single scale-models and the described 3D-CNN on the independent test set. The 3D—MCN approach 
outperformed others in terms of the AUC, accuracy, and sensitivity.

Figure 2.  The ROC curve for the single-scale, multi-scale, and the base-line model (i.e., fully connected 
layers trained on hand-crafted features only), showing that the proposed 3D−MCN approach was capable of 
achieving the highest AUC.

Weight Setting
Area Under the 
Curve (AUC) Accuracy Specificity Sensitivity

Equal Weights 0.964 93.12% 90% 94.94%

α=2 and β=1 0.9641 93.12% 87.33% 96.49%

α=1 and β=2 0.9638 92.87% 92% 93.38%

Table 2.  Effects of changing the weights associated with the terms in the modified loss function controlling the 
false positives and false negatives. Assigning more weight to the false positive loss increased the sensitivity, while 
putting higher weight to the false negative loss increased the specificity.
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played an important role in determining the benign or malignant status of the nodule37. To further illustrate the 
importance of having multi-scale inputs, we extracted the cases where the output was different for different scales. 
Figure 3 presents four nodules from three different scales. The figure also indicates the scale which has been 
successful in classifying the nodule. Having a correct prediction was not possible without including all the scales.

In another experiment, we calculated the correlation between the CapsNet-extracted features from all three 
scales with the four hand-crafted features of volume, diameter, x center-of-mass, and y center-of-mass, as shown 
in Fig. 4. Volume and diameter are important factors of the nodule malignancy. Therefore, most of the learned 
features were highly (positively or negatively) correlated with these two features. The centers of mass are, however, 
calculated from the whole images, and as the model was being fed with only the cropped nodule slices via differ-
ent scales, the learned features could not represent these two characteristics.

When extracting deep learning-based radiomics features, it is crucially important to consider their capability 
in distinguishing the classes. We projected the high dimensional feature space of the CapsNet into a lower dimen-
sional space, using a t-Distributed Stochastic Neighbor Embedding (t-SNE)38. The resulting feature space for both 
the training and test sets are shown in Fig. 5, according to which, features are distinctive even in the simplified 
2D space.

Patient-level classification.  In clinical practice, radiologists label a patient as having a malignancy when 
even one malignant tumor is detected. Therefore, we tested the performance of the 3D—MCN model, in classify-
ing patients. We labeled patients in the test set as having malignancy or not, where not having malignancy refers 
to a patient whose detected nodules are all benign. The accuracy of the 3D—MCN model in classifying patients 
was 83%, and sensitivity and specificity were 84% and 81% respectively.

Figure 3.  Cases, where not all the single-scale models provided correct predictions. The check sign indicates 
the successful scale. This figure illustrates the necessity of including all the three scales in the final model.

Figure 4.  Correlation between the CapsNet features and the hand-crafted features. Most of the features were 
positively or negatively correlated with volume and diameter. However, the correlation with x and y centers was 
low, as the model was fed with cropped nodule slices in different scales, and the location with respect to the 
whole image was not accessible to the model.

https://doi.org/10.1038/s41598-020-64824-5
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Discussion
In this paper, we presented our work on lung nodule malignancy prediction based on a 3D multi-scale capsule 
network. Our results showed that the proposed 3D—MCN approach can reach higher accuracy compared to 
previous studies. The model has several properties that improved the performance of the nodule malignancy 
prediction task including: (i) incorporation of 3D inputs to ensure that all the available information about the 
nodule was being used; (ii) three independent networks were trained on three different spatial scales to ensure 
that the network had access to not only the local features of the nodule and its shape, but also the extended 
features extracted from the surrounding tissues (having multi-scale input becomes more important when the 
radiologist has reviewed the tumor with a knowledge of the other nodules and surrounding tissues); (iii) The 
main architecture was the CapsNet, which, in contrast to CNNs, is able to handle smaller datasets and it is less 
prone to over-fitting; and (iv) the 3D—MCN framework did not rely on the hand-crafted features and detailed 
annotations, resulting in time-efficiency, and was not subject to inter-observer variability.

We explored different scenarios of using the LIDC-IDRI dataset for lung nodule malignancy prediction 
before arriving at the final model. First,we considered each 2D slice of the nodule as a separate sample, where the 
assigned label was the malignancy label of the corresponding nodule. This technique, although having the advan-
tage of increasing the size of the dataset, was not successful, as whole nodules were not well represented in single 
2D slices. Second, we considered only the central slice (slice taken from the middle of the nodule) as the input 
to the network. This strategy also failed to generate satisfactory predictions since one single slice cannot provide 
enough information about the nodule. However, it is faster because 2D inputs require far less trainable parameters 
compared to the 3D ones. Third, We tried single-scale instead of the multi-scale models, resulting in relatively 
poorer performance. Finally, for each identified nodule by any of the radiologists, we used the label provided by 
that radiologist instead of averaging over all the ratings of the corresponding nodules. This approach was also not 
as successful as the proposed 3D—MCN, since the network cannot handle the existing inconsistencies.

As stated previously, we discarded the tumors labeled as indeterminate (label 3). In practice, however, the 
model may still encounter these indeterminate cases. We investigated the output of the model when fed with these 
nodules. As shown in Fig. 6, while the model was relatively confident about benign and malignant nodules, it was 
mostly unconfident about the indeterminate ones, where confidence was defined as the probability the model 
assigns to the output class. This lack of confidence can be used as a sign that these cases should be referred to an 
expert for further examination.

There are two general paths to use the LIDC-IDRI dataset. The first one is to rely on the labels from the diag-
nosis data, which were obtained from different examinations including image review, biopsy, and surgical resec-
tion at a nodule level. This approach was explored by Kumar et al.21 for lung nodule malignancy prediction by 
training a CNN on the pathologically-proven diagnostic data and resulting in an accuracy of 77.52%, sensitivity 
of 79.06%, and specificity of 76.11%. A multi-view CNN for lung nodule classification, described by Liu et al.39, is 
another example of using the diagnostic data, that has achieved an AUC of 0.981 and error rate of 5.41%.

The second approach (also followed in our work) is to adopt the ratings provided by experienced radiologists 
at the time of reviewing the CT scans. Causey et al.5 applied a CNN based architecture to distinguish between 
benign and malignant nodules, and reported an AUC of 0.938, accuracy of 87.9%, sensitivity of 87.9%, and spec-
ificity of 87.9%. The authors have further improved the performance to an accuracy of 93.2% by incorporating 
the hand-crafted features. A Random Forest (RF) classifier was trained on the combination of hand-crafted and 
deep learning-based features to predict the nodule malignancy. Although the obtained accuracy was on a par with 
that of our proposed framework, it requires the nodules’ fine annotations, from which our model was completely 
independent. Table 3 presents a list of studies that have used the same setting of the LIDC-IDRI as we did, along 
with their proposed method and obtained results.

Figure 5.  T-SNE plot of the CapsNet learned features in 2D,showing that the features were capable of 
distinguishing between the two classes.
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A significant challenge in comparing different studies on the LIDC-IDRI dataset is that different researchers 
have used different cohorts of training and testing. One solution to this challenge is to cross-validate the results, 
instead of using the fixed sets. This strategy, however, should be used with care, not to include nodules from the 
same patient in both sets. Furthermore, in the case of using deep learning models, such as the one we proposed 
in this study, cross validation can be computationally expensive. Another challenge of comparing the studies is 
the difference between reported performance measurements. Accuracy, which is the only metric provided in 
several studies, is not informative enough, as it gives no details on the portions of positive and negative samples, 
and a highly biased model can lead to a high accuracy. Our proposed 3D Multi-scale CapsNet model achieves 
high accuracy, as well as high sensitivity and specificity, showing that it is not biased towards positive or negative 
samples. Another limitation of most of the previous models is that they require a larger number of samples and 
they rely on heavy data augmentation. However, the model proposed here was based on the CapsNet, which was 
capable of interpreting small datasets. This study shows that good performance may be achievable even without 
large datasets, which is often the case in medical imaging.

In conclusion, the proposed 3D-MCN model, which was a multi-scale version of the capsule network, was 
shown to be advantageous over single-scale models, 3D-CNN, and previous studies on the LIDC-IDRI dataset. 
Although there is still a long way to go until deep learning-based radiomics can be reliably used in clinical appli-
cations, we believe the proposed model in this study was a big step forward to this end, by offering complemen-
tary information to guide lung nodule malignancy prediction.

Methods
Dataset description.  The LIDC-IDRI is a collection of 1018 CT scans from 1010 patients. The nodules 
in this collection are identified and annotated through a two-phase process. In the first phase, 12 radiologists 
independently reviewed the scans and marked the lesions as nodule ≥3 mm, nodule ≥3 mm, and non-nodule. 
Radiologists annotated the ones identified as nodule ≥3 mm. In the second step, radiologists had access to the 
results of other radiologists to refine their own marks or leave them unchanged. After this phase, radiologists 
independently assessed several characteristics of the nodules ≥3 mm, including the likelihood of malignancy, 
shape, margin, and internal structure. Malignancy was rated from 1 to 5, where 1 indicates the lowest malignancy 
likelihood and 5 denotes the highest.

Figure 6.  Histogram of the model’s confidence in classifying the tumors. 1 indicates a complete confidence, 
whereas 0.5 is a random assignment.

Method
Area Under the 
Curve (AUC) Accuracy Specificity Sensitivity

Proposed model 0.964 93.12% 90% 94.94%

CNN5 0.938 87.9% 87.9% 87.9%

CNN in combination with hand-
crafted features5 0.971 93.2% 98.5% 87.9%

Deep residual network30 0.9459 89.90% 88.64% 91.07%

Deep belief network31 — 81.19% — —

CNN in combination with hand-
crafted features32 — 86.79% 95.42% 60.26%

Multi-crop CNN33 0.93 87.14% 93% 77%

Table 3.  A list of studies that have used LIDC-IDRI to predict lung nodule malignancy based on the ratings 
provided by radiologists. Note that some of the studies (refs.5,32) included hand-crafted features, requiring 
expert annotations.

https://doi.org/10.1038/s41598-020-64824-5
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Nodule patch selection and processing.  In this work, we chose nodules ≥3 mm to classify them as 
benign (rating of 1 and 2) or malignant (rating of 4 and 5) based on ratings provided by radiologists in the 
LIDC-IDRI study. We included all the marked nodules, in either the training or the test set, even if the nodule 
was identified by only one radiologist, to have a model that is more robust to noisy inputs. Keeping these noisy 
samples was useful in the sense that it represented the overlap between the two distributions of nodule and 
non-nodule, which contributes to random error. The labels of the nodules that were identified by more than one 
radiologist were the average over all the available ratings, rounded to the nearest integer. Consequently, nodules 
with an average malignancy of 3 (indeterminate malignancy) were discarded.

For each nodule, we extracted three different 3D patches around the nodule center, where 3D patch refers 
to extracting one patch from the central slice, and two from the two immediate neighbors. Each 3D patch was 
extracted at three different scales. The first scale completely fits the nodule boundary, based on the provided 
annotation. As nodules are associated with different sizes, all extracted patches were zero padded up to the fixed 
size of 80 × 80 (the largest possible width and height based on the training data). The second scale was extracted 
by allowing a margin of 10 pixels at each side. The patches were zero padded to the fixed size of 100 × 100, and 
down-sampled, using the bi-linear method, to 80 × 80, to be consistent with the first scale and reduce the com-
plexity. For down-sampling, we used the “bi-linear” approach, which is an extension of linear interpolation, where 
linear down-sampling (weighted average of the two immediate neighbors) was first performed in one direction, 
followed by the down-sampling in the other direction. Similarly, the third scale was extracted by allowing a 
margin of 20 pixels at each side. The patches were zero padded to the fixed size of 120 × 120 and down-sampled 
to 80 × 80. At the end, data was normalized between 0 and 1. The training set was shuffled and augmented by 
including random flipping. Finally, we ended up with three sets of training (at three scales), three sets of test, one 
set of training label, and one set of test label. Each training set was fed to an independent CapsNet along with 
its corresponding test set. It is worth mentioning that although increasing the number of scales would possibly 
improve the performance by capturing more detailed inter and intra-tumoral heterogeneity, it comes with extra 
computational overhead requiring advanced memory resources. Taking patches at three scales, therefore, is the 
commonly used approach40. While small patches offer more consistency, they cannot capture the object-whole 
relations. Large patches, on the other hand, lose the object details41. The three scales used in our study represent 
information from fine, medium, and coarse nodule boundaries42.

Capsule network.  CNNs have been the state-of-the-art in object recognition for many years. These net-
works, generally, benefit from the shared weights across the input, enabling them to detect local features with 
far less trainable parameters. However, the embedded pooling layers are shown to lose the exact information on 
spatial relations. Therefore, CNNs are not robust to transformation and rotation, and they need to be fed with all 
the possible inputs in order to learn the translations. CapsNets, on the other hand, are more capable of handling 
transformations and rotations through the capsule layers and “routing by agreement” process.

A CapsNet is a neural network consisting of several capsules. A capsule is a group of neurons that, together, 
predict the probability of presence and instantiation parameters of a specific object at a specific location. In con-
trast to CNNs, CapsNets preserve the spatial information throughout the network. The core process of a CapsNet 
is similar to that of conventional neural networks, where each neuron contributes to the output of the neurons in 
the layer above. Each capsule in a CapsNet predicts the output of all the capsules in the next layer. These predic-
tions, however, are not treated equally, as in a conventional network. The contribution of each lower level capsule 
depends on its success in predicting the output of the next layer’s capsules. The process, through which the 
weights for the predictions are determined, is called “routing by agreement” and forms the main idea behind the 
CapsNets. This process enables the network to consider the spatial relations between the low level and high level 
instances, without looking at all possible translations and being fed a huge dataset. Since, large datasets are not 
typically accessible in medical fields, CapsNet is an appropriate choice for the problem of lung nodule classifica-
tion. In general, a Capsule i predicts the output of the next layer’s Capsule j, denoted by û j i, where predictions are 
learned through a back-propagation process, the same as the learning approach in a conventional neural network, 
as follows

=û W u , (2)j i ij i

where ui denotes the instantiation parameters of the capsule i, and Wij is the weight matrix used for the predic-
tion, learned through the back-propagation. This prediction process is similar to what happens in a CNN. The 
output of Capsule j, denoted by sj, is a weighted summation over all the incoming predictions (û j i), with different 
weighting coefficients, which are learned thorough the routing by agreement procedure. Routing is what distin-
guishes the CapsNet from a CNN, and helps with identifying the spatial relations. This procedure can be summa-
rized as follows

∑= . = + =
∑

=| |^ ^a b b a c
exp b

exp b
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ij j j i ij ij ij ij
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where aij measures the degree of similarity between sj and its prediction û j i, by calculating their inner product, 
and cij denotes the coupling coefficient associated with the prediction. The final output sj typically goes through a 
non-linear squashing function to prevent it from exceeding one. Finally, it should be noted that the loss function 
specifically proposed for the CapsNet is slightly different from the common loss functions such as the 
cross-entropy. The CapsNet loss function, lk, associated with capsule k, is calculated as follows
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λ= − || || + − || || −+ −l T max m T max ms s(0, ) (1 ) (0, ) , (4)k k k k k
2 2

where Tk is one whenever the class k is present and zero otherwise. Terms m+, m−, and λ are the hyper param-
eters of the model. Term sk for each last layer Capsule k is associated with a particular class (benign or malig-
nant), determining both the probability of the class and the instantiation parameters. The CapsNet-based model 
(3D-MCN) that we developed for malignancy prediction of lung nodules is shown in Fig. 7. In this framework, 
we have trained three independent CapsNets on three different scales, and obtained the sk s for all three CapsNets 
and both output classes, on both the training and test set, to be fed to our multi-scale network. The CapsNet 
architecture that we used for a single scale is shown in Fig. 7 with an asterisk. This architecture consists of a con-
volutional layer, a primary capsule layer that predicts the output of the next layer, and a classification capsule layer 
that outputs the probability of each class along with the instantiation parameters (sk s).

Multi-scale model.  Our multi-scale model was a fully connected neural network with 3 three hidden layers 
of sizes 1028, 512, and 256. The input to this network was the combination of all the output instantiation vectors 
from the three CapsNets. For each CapsNet, the output vector of the lower probability class was masked (set to 
zero). The CapsNet architecture is shown in Fig. 7 with an asterisk. Each output class is of dimension 16. Having 
two output classes (benign and malignant) results in a vector of dimension 32 for each CapsNet, and having three 
CapsNets results in an input of size 96 to the multi-scale network. The output of this network was the probability 
of the nodule being benign or malignant, based on the information from all the three scales.

We have implemented our model using the Keras43 software package. The multi-scale network objective was a 
cross entropy loss function optimized using the Adam optimizer.
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