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Abstract

Recently, molecular fingerprints extracted from three-dimensional (3D) structures using advanced 

mathematics, such as algebraic topology, differential geometry, and graph theory have been paired 

with efficient machine learning, especially deep learning algorithms to outperform other methods 

in drug discovery applications and competitions. This raises the question of whether classical 2D 

fingerprints are still valuable in computer-aided drug discovery. This work considers 23 datasets 

associated with four typical problems, namely protein-ligand binding, toxicity, solubility and 

partition coefficient to assess the performance of eight 2D fingerprints. Advanced machine 

learning algorithms including random forest, gradient boosted decision tree, single-task deep 

neural network and multitask deep neural network are employed to construct efficient 2D-

fingerprint based models. Additionally, appropriate consensus models are built to further enhance 

the performance of 2D-fingerprintbased methods. It is demonstrated that 2D-fingerprint-based 

models perform as well as the state-of-the-art 3D structure-based models for the predictions of 

toxicity, solubility, partition coefficient and protein-ligand binding affinity based on only ligand 

information. However, 3D structure-based models outperform 2D fingerprint-based methods in 

complex-based protein-ligand binding affinity predictions.

I Introduction

Drug discovery is a multi-parameter optimization process, which involves a long list of 

chemical, biological, and physiological properties1. For a drug candidate, numerous drug-

related properties must be assessed, including binding affinity, toxicity, octanol-water 

partition coefficient (Log P), aqueous solubility (Log S), etc. Binding affinity assesses the 

strength of a drug’s binding to its target2,3, while, toxicity is a measure of the degree to 

which a chemical compound can damage an organism adversely4. In addition, a partition 

coefficient is defined as the ratio of concentrations of a solute in a mixture of two immiscible 

solvents at equilibrium and, in the case of log P, represents the drug-relatedness of a 

compound as well as its hydrophobic effect on human bodies5. Another relevant drug 

attribute is aqueous solubility which plays a vital role in distribution, absorption, and 
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biological activity, among other processes because 65–90 % of body mass is water6,7. Their 

importance to drug design and discovery has been emphasized by many recent surveys8,9. 

Indeed, unsatisfactory toxicity or pharmacokinetic properties are responsible for 

approximately half of drug candidate failures to reach the market10.

Traditional experiments for measuring drug properties are conducted either in vivo or in 

vitro. Such experiments are quite time consuming and expensive. Additionally, testing with 

animals can raise important ethical concerns. Therefore, various computer-aided or in silico 

methods become more attractive since they can produce quick results without sacrificing 

much accuracy in many situations. Among them, one of the most popular approaches is the 

quantitative structure-activity/property relationship (QSAR/QSPR) analysis. It assumes that 

similar molecules have similar bioactivities or physicochemical properties11. Based on this 

assumption, activities and properties of new molecules can be predicted by studying the 

correlation between chemical or structural features of molecules and their activities or 

properties, reducing the need for time-consuming experiments.

Molecular fingerprints are one way of encoding the structural features of a molecule. They 

play a fundamental role in QSAR/QSPR analysis, virtual screening, similarity-based 

compound search, target molecule ranking, drug ADMET prediction, and other drug 

discovery processes. Molecular fingerprints are property profiles of a molecule, usually in 

the form of vectors with each vector element indicating the existence, the degree or the 

frequency of one particular structure feature12–14. Various fingerprints have been developed 

for molecular feature encoding in the past few decades15–17. Most fingerprints are 2D 

fingerprints which can be extracted from molecular connection tables without 3D structure 

information. However, high dimensional fingerprints have also been developed to utilize 3D 

molecular structure and other information18.

There are four main categories of 2D fingerprints, namely substructure key-based 

fingerprints, topological or path-based fingerprints, circular fingerprints, and pharmacophore 

fingerprints. Substructure key-based fingerprints are bit strings representing the presence of 

certain substructures or fragments from a given list of structural keys in the compound. 

Molecular access system (MACCS)19 is one of the most popular substructure key-based 

fingerprint methods. Topological or path-based fingerprints are based on analyzing all the 

fragments of a molecule following a (usually linear) path up to a certain number of bonds, 

and then hashing every one of these paths to create one fingerprint. The most prominent 

ones in this category are FP220, Daylight21 and electro-topological state (Estate)22 

fingerprints. Circular fingerprints are also hashed topological fingerprints but rather than 

looking for paths in a molecule, they record the environment of each atom up to a pre-

determined radius. A well-known example for this class is extended-connectivity fingerprint 

(ECFP)15. Pharmacophore fingerprints include the relevant features and interactions needed 

for a molecule to be active against a given target, including 2D-pharmacophore23, 3D-

pharmacophore24 and extended reduced graph (ERG)25 fingerprints as examples. Since 2D 

fingerprints only rely on the 2D structures, their generation is easy, fast and convenient.

In addition to the four categories mentioned above, recent improvements in deep learning 

have enabled the creation of neural fingerprints26,27-where the mapping between fingerprints 
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and 2D structures is learned simultaneously with the parameters of the regression/

classification model that maps fingerprints to targets. These ‘learned’ fingerprints can 

potentially improve predictive performance on QSAR/QSPR tasks, but they must be 

relearned when trying to predict new properties across significantly different regions of 

chemical space. Since the focus of this work is on comparing 2D and 3D descriptors across a 

number of disparate tasks and chemically diverse datasets, we have chosen not to consider 

neural fingerprints.

Most commonly used 2D molecular fingerprints were derived over a decade ago and their 

validation was carried out using classical regression or classification algorithms, such as 

linear regression, logistic regression, logistic classification, naive Bayes, k-nearest 

neighbors, support vector machine, etc. On the other hand, new 3D structure-based 

fingerprints built from algebraic topology28,29, differential geometry30, geometric graph 

theory31,32, and algebraic graph theory33 have been developed in recent years. In particular, 

these new fingerprints were mostly paired with advanced machine learning algorithms, such 

as random forest (RF)34, gradient boosting decision tree (GBDT)35, single-task deep neural 

networks (ST-DNNs)36, multi-task deep neural networks (MT-DNNs)37, convolutional 

neural network (CNN), recurrent neural network (RNN), etc. methodology, which are now 

easily accessible to the scientific community via user-friendly deep learning frameworks in 

popular programming languages38,39. Often, these new methods have demonstrated higher 

accuracy or better performance than earlier methods in the literature, which are typically 

based on 2D fingerprints and/or simple machine learning algorithms for drug discovery 

related applications, such as protein-ligand binding28, virtual screening29, toxicity4, 

solubility5, partition coefficient5, as well as protein folding stability change upon 

mutation40. Additionally, recent results from D3R Grand Challenges, a community-wide 

annual competition series in computer-aided drug design, indicate that structure-based 

methods using sophisticated 3D structure-based fingerprints have an advantage over ligand-

based methods using 2D fingerprints in scoring and free energy predictions33,41. These 

developments raise an interesting question of whether 2D fingerprints are still valuable for 

drug design and discovery. Therefore, there is pressing need to reassess 2D fingerprints with 

advanced machine learning algorithms and compare their performance with the state-of-the-

art 3D structure-based fingerprints for drug discovery related applications.

The objective of the present work is to reassess the predictive power of eight popular 2D 

fingerprints for four important drug-related problems, namely, toxicity, binding affinity, Log 

P, and Log S, involving a total of 23 datasets. These problems are selected for the availability 

of reference results generated by the state-of-the-art 3D structure-based fingerprints in the 

literature. To optimize 2D fingerprints’ performance, advanced machine learning algorithms, 

including RF, GBDT, ST-DNN, and MT-DNN, are employed in the present study. 

Additionally, consensus models are constructed from appropriate combinations of 2D 

fingerprint-based predictions to further enhance their performance. The predictive power of 

each 2D fingerprint for certain functional groups is analyzed. Extensive numerical studies 

over 23 datasets using eight 2D fingerprints and four different machine learning algorithms 

indicate that the combination of appropriate machine learning algorithms and 2D 

fingerprint-based models, particularly consensus models, can bring significant 

improvements over previous 2D QSPR approaches especially on toxicity predictions42. 
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Moreover, 2D fingerprint-based models perform as well as the state-of-the-art 3D structure-

based fingerprints in the predictions of toxicity, solubility, partition coefficient and ligand-

based protein-ligand binding affinity. Finally, topology-based fingerprints extracted from 3D 

protein-ligand complexes have a significant advantage over 2D fingerprints in complex-

based protein-ligand binding affinity predictions. This is because 2D models can only take 

care of relatively simple geometry, so do not work well for macromolecules that have 

complex 3D structures43. We believe that the present performance analysis and assessment 

will provide a useful guideline on how to choose appropriate fingerprints and machine 

learning methods for drug discovery related applications.

II Methods

II.A 2D fingerprints

In the present work, we investigate eight popular 2D fingerprints, including FP2 fingerprint, 

MACCS fingerprint, Daylight fingerprint, Estate1 fingerprint, Estate2 fingerprint, ECFP4 

Fingerprint, 2D-pharmacophore (Pharm2D), and extended reduced graph fingerprint (ERG). 

They are chosen to represent four main 2D molecular fingerprint categories, namely key-

based fingerprints, topological or path-based fingerprints, circular fingerprints, 

pharmacophore fingerprints. These features are some of the most popular and commonly 

used ones. Table 1 summarizes the information related to these fingerprints. All 2D 

fingerprints were generated by Openbabel (version 2.4.1)20 and RDKit (version 

2018.09.3)44.

II.B Ensemble methods

Two popular ensemble methods were used in our work. The first method is random forest 

(RF), which constructs a multitude of decision trees during a training process. RF can be 

used to predict a classification label (classification model) or a mean prediction (regression 

model) of the individual trees. It is very robust against overfitting and easy to use. The 

second method is gradient boosting decision tree (GBDT). In this approach, individual 

decision trees are combined in a stage-wise fashion to achieve the capability of learning 

complex features. It uses both gradient and boosting strategies to reduce model errors. 

Compared to deep neural network (DNN) approaches, these two ensemble methods are 

robust, relatively insensitive to hyper parameters, and easy to implement. Moreover, they are 

much faster to train than DNN is. In fact, for small datasets, RF and GBDT can perform 

even better than DNN or other deep learning algorithms4,5. Therefore, these methods have 

been applied to a variety of QSAR prediction problems, such as toxicity, solvation, and 

binding affinity predictions4,28,42,46,47.

II.C Single-task deep neural network (ST-DNN)

A DNN mimics the learning process of a biological brain by constructing a wide and deep 

architecture of numerous connected neuron units. A typical deep neural network often 

includes multiple hidden layers. In each layer, there are hundreds or even thousands of 

neurons. During learning stages, weights on each layer are updated by backpropagation. 

With a complex and deep network, DNN is capable of constructing hierarchical features and 

model complex nonlinear relationships.
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ST-DNN is a regular deep learning algorithm. It only takes care of one single prediction 

task. Therefore, it only learns from one specific training dataset. A typical four-layer ST-

DNN is showed in figure 1, where Ni (i = 1, …, 4), represents the number of neurons in the 

ith hidden layer.

II.D Multitask deep neural network (MT-DNN)

The multitask (MT) learning technique has achieved much success in qualitative Merck and 

Tox21 prediction challenges48–51. In the MT framework, multiple tasks share the same 

hidden layers. However, the output layer is attached to different tasks. This framework 

enables the neural network to learn all the data simultaneously for different tasks. Thus, the 

commonalities and differences among various datasets can be exploited. It has been showed 

that MT learning typically can improve the prediction accuracy of relatively small datasets if 

it combines with relatively larger datasets in its training.

Figure 2 is an illustration of a typical four-layer MT-DNN for training four different tasks 

simultaneously. Suppose there are totally T tasks and the training data for the tth task are 

Xi
t, yit i = 1

Nt
, where t = 1,…,T, i = 1,…,Nt, Nt is the number of samples in the tth task, and Xi

t

is the feature vector for the ith sample in the tth task, yit is the label value of the ith sample in 

the tth task, respectively. The purpose of MT learning is to simultaneously minimize the loss 

function:

argmin ∑t = 1
T ∑i = 1

Nt L yit, ft Xit, θt

where ft is the prediction for the ith sample in the tth task by our MT-DNN, which is a 

function of the feature vector Xi
t, L is the loss function, and θt is the collection of machine 

learning hyperparameters. A popular cost function for regression is the mean squared error, 

which can be defined as:

L yit, ft Xit, θt = 1
Nt ∑i = 1

Nt yit − ft Xit, θt 2 .

In this study, MT learning technology is applied to the toxicity prediction. The ultimate goal 

of this MT learning is to potentially improve the overall performance of multiple toxicity 

prediction models, especially for the smallest dataset that performs relatively poorly in the 

ST-DNN. More concretely, it is reasonable to assume that different toxicity indexes share a 

common pattern so that these different tasks can be trained simultaneously when their 

feature vectors are constructed in the same manner. For our toxicity prediction, four different 

tasks (LD50, IGC50, LC50, LC50-DM data sets) are trained together. This leads to four output 

neurons in the output layer (See O1 to O4 in Figure 2), with each neuron being specific to 

one of four tasks.
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II.E Consensus of multiple model predictions

Consensus means the average value from multiple model predictions, which typically 

enhances the results from individual models.

II.F Hyperparameters

Ensemble hyperparameters—Both RF and GBDT were implemented by the scikit-

learn package (version 0.20.1)52. In this work, there are a total of 23 datasets with their 

training data size varying from 94 to 8199. RF has been showed to be consistent and robust 

with various datasets. However, if its parameters are carefully tuned based on the size of a 

given training set, GBDT can attain better performance than RF does in most cases. For all 

experiments in this work, the most essential parameters of GBDT are chosen as learning rate 

= 0.01, min_samples_split = 3, max_features=sqrt. Detail values of other parameters are 

given in Table 2.

Network hyperparameters—Since the numbers of features differ much in different 2D 

fingerprints, different network architectures have to be adopted. For example, Estate 1 

fingerprint has only 79 bits. Therefore a 4-layer network with the number of neurons in 

various hidden layers are chosen as 500, 1000, 1500, and 500. However, the Daylight 

fingerprint has as many as 2048 features, and thus a much larger network is needed. The 

network for this fingerprint still has 4 layers but there are 3000, 2000, 1000, and 500 neurons 

in the first, second, third and fourth hidden layer, respectively. Other network parameters are 

as followed: the optimizer is stochastic gradient descent (SGD) with momentum of 0.5. 2000 

epochs were run for all the networks. Mini-batch size is set to 4. The learning rate is set to 

0.01 in the first 1000 epochs and 0.001 for the rest epochs. Our tests indicate that adding a 

dropout or using L2 decay does not necessarily improve the accuracy, and thus, we omit 

these two techniques. All the network hyperparameters are summarized in Table 3. These 

hyperparameters are applied to both ST-DNN and MT-DNN. All the DNN training is 

performed by Pytorch (version 1.0)53.

III Results

III.A Toxicity prediction

Four toxicity datasets were studied in our work, namely oral rat LD50 (LD50), 40 h 

Tetrahymena pyriformis IGC50 (IGC50), 96 h fathead minnow LC50 (LC50), and 48 h 

Daphnia magna LC50 (LC50-DM). Among them, LD50 measures the amount of chemicals 

that can kill half of rats when orally ingested. IGC50 records the 50% growth inhibitory 

concentration of Tetrahymena pyriformis organism after 40 h. LC50 reports at the 

concentration of test chemicals in water in milligrams per liter that cause 50% of fathead 

minnows to die after 96 h. The last one is LC50-DM, which represents the concentration of 

test chemicals in water in milligrams per liter that cause 50% Daphnia maga to die after 48 

h. The unit of toxicity reported in these four datasets is -log10 mol/L. All of them are 

accessible from the recent publications42,54,55 and the public database (https://www.epa.gov/

chemicalresearch/toxicity-estimation-software-tool-test). The sizes of these four datasets 

vary from 353 to 7413 (See Table 4), which raises a challenge for a predictive model to 

achieve a consistent accuracy and robustness.
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III.A.1 The performance of ensemble methods—Because it is easy to implement 

and fast to train, two ensemble methods, RF and GBDT, were first tested. Since four datasets 

have very different sizes, different numbers of estimators in RF and GBDT models should be 

used. Specifically, for two relatively small sets, LC50 and LC50-DM, the numbers of 

estimators are set to 2000. For IGC50, 10000 estimators are used. For the largest set LD50, 

we have used 20000 estimators.

The accuracy is in term of the square of Pearson correlation coefficient (R2). Overall, 

GBDT’s performance is always better than that of RF, which agrees with early publication4. 

Among all the eight fingerprints we tested, Estate2, Estate1, Daylight, FP2, ECFP and 

MACCS usually work well on these four sets. Thus the consensus of these six fingerprints or 

say the average prediction of the six fingerprints, was also considered (“Top 6-cons” in 

Figure 4). The consensus model typically gives rise to a further improvement over all single 

fingerprints in most cases.

(a) LD50 test set: LD50 dataset is the largest set having as many as 7413 compounds. 

However, thi set has a higher experimental uncertainty of the values (See “Max value” and 

“Min value” in Table 4) and more importantly, as revealed by Figure 3(a), the ranges of the 

training set and test set are almost the same. The boundary values of the training set overlap 

with those of the test set, which brings difficulty for machine learning models. In our GBDT 

model, the best single fingerprint (MACCS) yields an R2 of 0.643, while the consensus of 

the top 6 fingerprints increases R2 to 0.679.

(b) IGC50 test set: IGC50 set is the second largest set (1792 compounds) among the four 

sets we investigated. As indicated in Table 4, this set has the smallest range of label. 

Moreover, Figure 3(b) shows that the test set has a smaller range than that of the training set, 

indicating a relatively easy case for machine learning models. Our results show that Estate2 

is the best single fingerprint with an R2 of 0.742, and the consensus of the top 6 fingerprints 

leads to an R2 of 0.785.

(c) LC50 test set: LC50 set is a relative smaller set (823 compounds). Figure 3(c) indicates 

that the ranges of the training set and test set are almost the same. In our GBDT model, 

estate2 fingerprint achieves the top performance, which yields an R2 of 0.662. The 

consensus of the top 6 fingerprint improves the R2 to 0.715.

(d) LC50-DM test set: Among the four sets, LC50-DM test set is the smallest one with 

only 283 training molecules and 70 test molecules, which is troublesome to build a robust 

model. Moreover, revealed by Figure 3(d), not only the boundary values of the training set 

overlap with those of the test set, but also the test set has a higher distribution at the left 

boundary, rendering a difficult case for machine learning. Specifically, the best single 

fingerprint Estate1 only has an R2 of 0.520. The consensus model even ruins the R2 a little 

bit with an R2 as low as 0.486. Similar difficulty is also faced by other recent work, such as 

the R2 of the 3D-topology based GBDT model only reaches 0.5054. Thus, there is a need for 

multitask deep learning when dealing with such a small dataset.
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III.A.2 The performance of single-task and multitask deep learning—On 

average, Estate2, Estate1, and Daylight are the top three fingerprints when using GBDT 

models in all the four sets. Thus, these three fingerprints were picked up to perform higher-

level ST-DNN and MT-DNN.

Since the lengths of the three fingerprints differ much, different DNN architectures are 

needed. Four hidden layers with 500, 1000, 1500, and 500 neurons are used for Estate1 and 

Estate2, whose fingerprints have 79 features. Four hidden layers with 3000, 2000, 1000, and 

500 neurons are used for Daylight, whose fingerprint has 2048 bits.

The pattern of ST-DNN results is similar to that of GBDT results. On four data sets, a ST-

DNN consensus model yields an average R2 of 0.658 (0.632, 0.791, 0.687, and 0.523 

respectively). As a comparison, the average R2 by a GBDT consensus model is 0.666 (0.679, 

0.785, 0.715, and 0.486 respectively). However, the performance can be largely enhanced by 

the multitask strategy because the two relatively smaller sets LC50 and LC50-DM can benefit 

much from two larger sets LD50 and IGC50. As shown in Table 5, while the MT-DNN model 

seldom changes the performance on LD50 and IGC50, it gives rise to a dramatic 

improvement on LC50 and LC50-DM, especially on LC50-DM. The consensus lifts the R2 

result from 0.523 to 0.725.

III.A.3 Systematic comparison with other toxicity predictions—A systematic 

comparison with other methods was provided in Table 6. The same datasets are also used to 

develop the Toxicity Estimation Software Tool (T.E.S.T). So many related results can be 

found in its user’s guide42, including hierarchical, single model, FDA, group contribution, 

nearest neighbor, and T.E.S.T consensus. Since T.E.S.T is also based on 2D descriptors, the 

comparison between the results from the present models and T.E.S.T can largely reflect the 

predictive power of the present models. As shown in Table 6, on the LD50, IGC50, LC50 sets, 

the present MT-DNN consensus always leads to a higher R2 than T.E.S.T consensus. 

Especially, on the IGC50 and LC50 sets, the present MT-DNN consensus models largely beat 

T.E.S.T (0.794 vs 0.764 and 0.765 vs 0.728), and the present GBDT results quite outperform 

T.E.S.T (0.679 vs 0.626) on the LD50 set. Even on the LC50-DM set, because the training 

set is so small (283), ensemble methods (RF and GBDT) and DNN methods are not suitable 

for it: R2 of ST-DNN and GBDT are, respectively, 0.523 and 0.486. However, the R2 of MT-

DNN is as high as 0.725 for LC50-DM dataset, which is quite comparable to the T.E.S.T 

result with an R2 of 0.739.

2D MT-DNN consensus has an average R2 of 0.731 for these four datasets, while the 

average of T.E.S.T model is 0.714, and the recent 3D structure-based topological MT-DNN 

consensus result is also 0.7314. These results confirm that 2D fingerprints integrated with 

MT-DNN model surpass the previous 2D models and are as good as the recent 3D structure-

based topological model4.

III.B Aqueous solubility (Log S)

For Log S, following the previous literature5,56, we test Klopman’s test set57 with the 

original train set. The unit of Log P in these sets is log unit. Since the size of the training set 

is 1290, 10000 estimators were used in the GBDT model.
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In the Log S test, the top 6 fingerprints are MACCS, FP2, Daylight, Estate1, Estate2, and 

ECFP, which perform much better than the other two fingerprints, Pharm2D and ERG. The 

consensuses of the top 6 fingerprints results in R and RMSE of 0.944 and 0.684, 

respectively. The consensus of top 3 is even better, which improves R and RMSE to 0.955 

and 0.648 (See Table 8). A systematic comparisons to other methods are included in Table 9. 

It indicates the present method outperforms all other state-of-the-art 3D and 2D methods.

III.C Partition coefficient (Log P)

Three Log P data sets were tested using the GBDT model. The training set has 8199 

molecules, which was originally compiled by Cheng et al.58. There are three test sets, 

namely FDA58, Star59, and Non-star59 respectively, which are given in Table 10. The Log P 

in these sets is by the unit of log10 mol/L. Due to the size of the training set, 20000 

estimators are used in the GBDT model.

In order to easily compare to the earlier literatures, accuracy on these three test sets are 

reported by R2 or acceptable rate. The acceptable rate here is defined as the percentage of 

molecules within error range < 0.560. Of all the three sets, the 2D fingerprints of Estate2, 

Estate1, MACCS, and ECFP are always the top 4. The consensuses of the top 4 fingerprints 

produce R2 up to 0.901 on the FDA set and attain an acceptable rate on Star set at 71.3%. On 

the Non-star set, the top 4 consensus is somehow worse than the best single fingerprint 

Estate1 but it is still in the second place with an acceptable rate of 46.5% (See Figure 5).

A detailed comparison with other Log P prediction methods was shown in Table 11. On the 

FDA data set, GBDT-ESTD+−2-AD5 and MT-ESTD-15 are based on 3D descriptors. GBDT-

ESTD+−2-AD model includes some molecules from the NIH-dataset in its training set. 

Therefore, its performance is slightly better than the present one. The 2D method 

ALOGPS58 also performs slightly better (0.908 vs 0.901) than the present one. However, a 

previous study56 has pointed out that for the PHYSPROP database61, the training set of 

ALOGPS actually contains all of the compounds in the FDA set. It is unclear how well it 

will perform if the overlapping compounds are removed from the training set. Unlike 

ALOGPS, XLOGP3’s training data is completely independent of the test set58. In this case, 

the present prediction is more accurate than that of XLOGP3 (0.901 vs 0.872).

The present results on the Star and Non-star sets are also systematically compared with other 

stat-of-the-art models as shown in Table 12. For the Star set, we achieve 71% of total 

number of molecules having the predicted error less than 0.5 (acceptable rate 71%). This 

result is quite satisfactory and is comparable to the 3D structure-based model developed by 

Wu et al.5 with an acceptable rate of 72% on the same training set (“MT-ESTD-1” in Table 

12). There are many commercial software packages developed to predict Log P such as 

AB/Log P60, S/Log P60, ACD/log P60, etc. However, we cannot validate whether the training 

sets used in these software packages overlap with the Star set. It is more meaningful when 

comparing the present model to XLogP3 software60 since its training dataset does not 

contain any molecules in the test set. Again, the present model outperforms XLogP3 

package on the Star set with the acceptable rates being 71% and 60%, respectively. In the 

Non-star set, all of the published methods perform as accurate as those in the FDA and Star 

data set, since the structures in the Non-star set are relatively new and complex. Thus, our 
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model also only achieves an acceptable rate of 47%. However, it is still tied for the third 

place among all predictors. This result is even better than some 3D structure-based models, 

though RMSE is relatively high due to a few large outliers.

III.D Protein-ligand binding affinity prediction

III.D.1 The S1322 dataset—To assess the predictive power of 2D-fingerprint based 

models, two protein-ligand binding affinity datasets were investigated. The first one is 

denoted as the S1322 set. It is a high quality data set with 1322 protein-ligand complexes 

involving 7 protein clusters (labeled as CL1, CL2, ···, CL7)29,47. It is a subset of the refined 

set of PDBbind v201562. The other dataset is PDBbind v201663, in which the refined set 

excluding the core set in PDBbind v2016 is used as a training data. The core set is a test set. 

These two sets are summarized in Table 13.

The ligand-based model is used in the present work. For the S1322 set, a 5-fold cross 

validation was conducted with the GBDT method. To be consistent with the results in the 

previous literature, accuracy is in term of Pearson correlation coefficient (R). Because the 

results from Daylight and Pharm2D fingerprints are relatively poor, their results are omitted 

here. The performance of the other six fingerprints (ECFP, FP2, Estate2, MACCS, Estate1, 

ERG) and their consensus are shown in Figure 6.

Figure 6 indicates that for all the seven clusters, the consensuses of the six fingerprints 

largely achieve better performance than that of any single fingerprint. Specifically, the R 
values of consensus models are 0.717, 0.847, 0.708, 0.718, 0.831, 0.777, and 0.760 on each 

of 7 clusters, respectively and 0.765 on average. These results are comparable to ones 

achieved by a ligand-based 3D topology and GBDT model28.

III.D.2 PDBbind v2016 refined set and core set—The present ligand-based model 

was also tested on PDBbind v2016. Rather than cross validation, this time the core set is 

regarded as a test set. Quite consistent with core validation on the S1322 set, the consensus 

of the six fingerprints leads to a large improvement than any single one, with an R of 0.747. 

These results indicate that the present model has a stable and reliable performance on 

different protein-ligand binding affinity data sets.

For protein-ligand binding affinity prediction, the present 2D fingerprint-based model is not 

competitive, because protein-ligand binding not only depends on the ligand, but also on the 

protein. Therefore, for a more accurate prediction, the information of the protein, at least the 

information of the binding site should be included. State differently, a complex based model 

is recommended. Recently, Wojcikowski et. al.64 reports 2D fingerprint-based complex 

models. In their work, a recently developed 2D fingerprint model is used to encode protein-

ligand complex information. When combined with DNN, their method gives rise to an R of 

0.817 on the PDBBind v2016 core set. Table 14 lists these results.
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IV Discussion

IV.A General analysis

In the present work, the predictive power of eight popular 2D fingerprints as well as their 

consensuses on four important drug-related properties (i.e., toxicity, Log S, Log P, binding 

affinity) was investigated. The present study reveals that with a proper machine learning 

algorithm, the 2D fingerprint-based models including their consensuses outperform other 2D 

QSPR approaches in the most cases, especially on the toxicity predictions. Additionally, 2D 

fingerprint-based models are comparable to state-of-the-art 3D structure-based models in 

most drug-related property predictions, except for protein-ligand binding affinity prediction. 

Considering 2D fingerprints are very “cheap” molecular descriptors that are easy and fast to 

generate, our results are very impressive. It means that 2D fingerprints with appropriate 

machine learning algorithms are still very valuable for practical problems, such as the 

prediction of toxicity, the aqueous solubility (Log S), and the partition coefficient (Log P). 

However, for protein-ligand binding affinity prediction, complex-based models using 3D 

topological fingerprints have a major advantage over the present 2D fingerprints, i.e., a 

GBDT model based on 3D topological fingerprints can achieve about 15% more accurate28.

IV.B The performance analysis of 2D fingerprints

IV.B.1 Analysis of 2D fingerprints for PDBbind v2016 core set predictions—
The performance of each 2D fingerprint can be systematically analyzed by comparing the 

difference between prediction errors of every pair of fingerprints as follows.

1. The relative absolute error for the fth fingerprint on the ith sample (molecule) in 

the test set is defined by

Errorf, i =
|prediction valuef, i − experimental valuei|

|experimental valuei|

2. For each molecule, the error difference between each pair of fingerprints is 

calculated.

3. Then, the differences for all molecules are ranked from the largest to smallest. 

The result for PDBbind v2016 core set of 290 complexes is plotted in Figure 8. 

We have shown all of 6 pairs for the top four 2D fingerprints.

4. To further analyze the strength of each fingerprint on certain molecules, we 

collect those molecules on which a fingerprint is able to outperform another 

fingerprint by 0.4 in the error difference.

5. Among these molecules for each fingerprint, we identify the top 10 most 

frequently occurring functional groups. The frequency of the occurrence of each 

functional group, along with the total of number of molecules, are given in Table 

15.

This analysis is quite significant as shown in Table 15. It indicates that different fingerprints 

have different performance on certain functional groups: some fingerprints perform better on 

some functional groups, while other fingerprints perform better on other functional groups. 
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Our explanation to this is, the different fingerprints are based on different chemical 

properties, since different functional groups have different chemical properties, different 

fingerprints are sensitive to different functional groups. One can find, in the columns for 

different fingerprints, the number of functional groups are different, this is because, in the 

table those molecules on which a fingerprint is able to outperform another fingerprint by 0.4 

in the error difference are collected, for different fingerprints, the number of such molecules 

are different.

One can select an appropriate fingerprint to represent a certain class of functional groups 

based on Table 15. For the FP2, Estate1, and Estate2 fingerprints, the top two functional 

groups are carbonyl groups and unfused benzene rings. However, the MACCS fingerprint is 

different. Its top two functional groups are bicyclic compounds and pyridine. The third top 

functional groups differ much for four fingerprints: bicyclic compounds for FP2, aniline for 

Estate1, carboxylate ion for Estate2, and ether for MACCS, which gives us more 

information to choose fingerprints. Such as, if one has a molecule including aniline, then 

Estate1 should be selected. Noticeably, some functional groups occur exclusively for one or 

two types of fingerprints. For example, F, Cl, Br, I is only on the lists of FP2 and Estate1. 

While azole appears only on the list of FP2 and MACCS and multiple non-fused benzene 

rings are only for FP2 and Estate 2. Moreover, phenol occurs only for Estate1 and furan 

occurs only for MACCS.

IV.B.2 Analysis of 2D fingerprints for the IGC50 toxicity data set prediction 
and also other data sets—Using the same 5-step procedure outlined above, we carry out 

a performance analysis for toxicity dataset IGC50, which is shown in Figure 9 and Table 16. 

The molecules in the toxicity data set are typically small and simple, leading to the 

functional groups in Table 16 also small. Moreover, since there are not too many functional 

groups in these relatively simple molecules, only top 8 functional groups are presented in the 

table. Similar to the performance on the binding affinity, for the top 4 fingerprints on the 

toxicity set, the carbonyl group is in the first place. Unfused benzene rings also have a high 

occurrence frequency, resulting in the second or third ranking. The difference between the 

performance of various fingerprints is mainly located on sulfide and aliphatic chains with 8 

or more members. FP2 fingerprint works well on sulfide, whereas, Daylight, Estate1 and 

Estate2 work well on aliphatic chains with 8 or more members.

The same performance analyses were also conducted for other toxicity and log P data sets, 

the results are shown in Tables S1 to S4. These tables indicate, for the toxicity data sets of 

LD50, LC50, LC50-DM, the performance of the Estate1 and Estate2 fingerprints are similar, 

they both work well on bicycle compounds; comparing to it, the FP2 fingerprint works better 

on aliphatic chains with 8 or more members, the daylight fingerprint has a better 

performance on amide. For log P data set, the ECFP and Estate2 fingerprints lead to a good 

performance on aniline, the Estate 1 fingerprints works better on bicycle compounds; 

MACCS fingerprint works better on unfused benzene ring.
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IV.C The predictive power of the consensus of 2D fingerprints

The consensus of several different fingerprints typically further enhances the performance of 

a single fingerprint. This enhancement can be quite significant. However, on the datasets of 

different drug-related properties, the best fingerprint combinations for the consensus are not 

consistent. One possible explanation is that different fingerprints are good at encoding 

certain functional groups, and datasets for different drug-related properties have different 

functional group distributions. This is also the reason why a consensus can enhance 

performance. The consensus can capture more functional groups and counter-balance the 

systematical bias from different fingerprints.

On toxicity prediction, the best combination for consensus is obtained with Estate2, Estate1, 

Daylight, FP2, ECFP, and MACCS. On the Log S prediction, the best combination is 

achieved with MACCS, Estate1, and Daylight. While on the Log P prediction, the best 

consensus involves Estate2, Estate1, ECFP, and MACCS. Finally, on the binding affinity 

prediction, the best consensus uses Estate2, Estate1, FP2, ECFP, MACCS, and ERG. It is 

worth noting that, Estate related (Estate1, Estate2 or both) models are always included in the 

best combinations. In fact, their single performances are relatively good. This finding is not 

surprising since Estate fingerprints encode the intrinsic electronic state of the atom as 

perturbed by the electronic influence of all other atoms. It is well-known that electronic state 

is important to drug-related properties.

IV.D Multitask deep learning

Multitask deep learning was utilized on our toxicity prediction. It turns out that the smallest 

set LC50-DM with only 283 training samples benefits dramatically from the multitask deep 

learning strategy. Its R2 value rises from 0.523 to 0.725. This is because, in the frame of 

multitask deep learning, different data sets (tasks) share similar structure-function 

relationships. When a small dataset is trained with a large dataset through shared neural 

networks, the statistics learned from the large datasets in the shared neurons can help predict 

the small dataset property. As a result, the other three large toxicity sets can share their 

patterns learned from training with the small toxicity set, enhancing its prediction. 

Therefore, multitask deep learning could be a useful strategy to train relatively small 

datasets.

IV.E The limitation and advantage of 2D fingerprints

Typically, 2D fingerprints only encode small molecules, such as ligands, although high level 

2D fingerprint models including both proteins and ligands have also been developed64,65. 

Theoretically, 2D fingerprints are more suitable for target-independent or target-unspecific 

problems involving small molecules, such as toxicity, solvation free energy, aqueous 

solubility, partition coefficient, permeability, etc. The current investigation confirms this 

point. For toxicity, aqueous solubility and partition coefficient, the present 2D-fingerprint 

based methods perform quite similar to or even somewhat better than 3D structure-based 

methods in some cases.

For protein-ligand binding affinity predictions, both ligand-based approaches and complex-

based are examined. For ligand-based approaches, 2D-fingerprint based methods can 

Gao et al. Page 13

Phys Chem Chem Phys. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perform as well as 3D structure-based models. However, 3D structure-based topological 

models29 outperform 2D-fingerprint based methods (i.e., R: 0.861 vs 0.747 for PDBbind 

v2016 core test). In fact, more sophisticated 2D fingerprint models that utilize the protein-

ligand complex information and DNN64,65 are still not as accurate as 3D topology-based 

models29(i.e., R: 0.817 vs 0.861 for PDBbind v2016 core test and 0.774 vs 0.808 for 

PDBbind v2013 core test). Essentially, algebraic topology is designed to simplify the 

geometric complexity of biological macromolecules. Therefore, it is able to extract vital 

information from protein-ligand complexes to predict their binding affinities.

When there is no available 3D experimental structure, 3D models can still largely 

outperform 2D models on the binding affinity prediction. An example occurs in D3R Grand 

Challenges (D3R GC)66, in which binding affinities are to be predicted without given 3D 

experimental structures. Therefore, 3D models can only be built from docking. Even in this 

circumstance, from GC1 to recent GC441,66–68, 3D models has been always proven to be 

more reliable than 2D models. For example, in recent GC466, our 3D model (receipt ID 

ar5p6) achieved the smallest RMSEc at 0.47 kcal/mol, while the best 2D model in that 

competition attained RMSEc as high as 0.53 kcal/mol. These results confirm the 3D 

structured-based model is superior to 2D counterpart in binding affinity prediction even 

there is no crystal structure.

Moreover, binding affinities typically depend on target (protein). The same ligand can have 

quite different binding affinities on different targets. The 3D models can take care of binding 

affinities on different targets but for most 2D models, because of lacking protein 

information, they work only for a single target.

In general, 2D models can only take care of simple geometry and do not work as well as 3D 

models do for macromolecules that have complex 3D structures43. The complexity of 

biomolecular structure, function, and dynamics often makes 2D models inconclusive, 

inadequate, inefficient and sometimes intractable. In contrast, 3D models can easily handle 

the complexity of biomolecular structures.

However, the advantage of 2D fingerprints is, they are much easier to generate than 3D 

structure-based fingerprints built from algebraic topology, differential geometry or various 

graph theory. Therefore, 2D-fingerprint based models can be useful tools for preliminary 

drug screening studies.

V Conclusion

Two-dimensional molecular fingerprints, or 2D fingerprints, refer to molecular structural 

patterns, such as elemental composition, atomic connectivity, functional groups, 2D-

pharmacophores etc. extracted from a molecule without taking into account the 3D-

structural representation of these properties. 2D fingerprints have been a main workhorse for 

cheminformatics and bioformatics for decades. However, their validations in various datasets 

were typically carried out long time ago with earlier machine learning algorithms. Recently, 

new 3D structure-based molecular fingerprints built from algebraic topology28,29, 

differential geometry30, geometric graph theory31,32, and algebraic graph theory33 have 
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found much success in drug discovery related applications4,5,28,29, including D3R Grand 

Challenges33,41. It raises an interesting issue whether 2D fingerprints are still competitive in 

drug discovery related applications.

This work reassesses 2D fingerprints for their performance in drug discovery related 

applications. We consider a total of eight commonly used 2D fingerprints, namely FP2, 

Daylight, MACCS, Estate1, Estate2, ECFP, Pharm2D, and ERG. Four types of drug 

discovery related applications with 23 datasets, including solubility (Log S) and partition 

coefficient (Log P) that are independent of a target protein, toxicity that may depend on 

certain unknown target proteins, and protein-ligand binding affinity that depend on known 

target proteins, are designed to validate 2D fingerprints. Advanced machine learning 

algorithms, including random forest (RF), gradient boosting decision trees (GBDT), single-

task deep neural network (ST-DNN), and multitask deep neural network (MT-DNN) are 

used to optimize the performance of the above 2D fingerprints in the aforementioned four 

types of datasets. In particular, MT-DNN is designed to enhance the performance of 2D 

fingerprints on relatively small datasets by a simultaneous training with relatively large 

datasets that share a similar pattern. Since each fingerprint may have an explicit bias on 

certain functional groups or 2D patterns, we carry out various consensus to further boost the 

performance of 2D fingerprints in all the datasets. Finally, the strengths of top four 2D 

fingerprints for predicting protein-ligand binding affinity and quantitative toxicity are 

analyzed in detail.

Our general findings are as follows. 1) 2D fingerprint-based models are as good as 3D 

structure-based models for various toxicity, Log S and Log P datasets under the same 

training-test condition. 2) For ligand-based protein-ligand binding affinity predictions, 2D 

fingerprint-based models perform equally well as 3D structure-based models that are based 

only on ligand 3D structures. 3) 3D structure-based models that utilize 3D protein-ligand 

complex information outperform 2D fingerprints that based on either ligand information or 

protein-ligand complex information. 4) Advanced machine learning algorithms, such as 

DNN and MT-DNN, are crucial for 2D fingerprints to achieve optimal performance. 

However, Estate related (Estate1, Estate2 or both) models always perform well. 5) There is 

no 2D fingerprint that outperforms all other 2D fingerprints in all applications. 6) 

Appropriate consensus of a few 2D models typically achieves better performance. Therefore, 

if combined with advanced machine learning algorithms, the 2D fingerprints are still 

competitive in most drug discovery related applications except for those that involve 

macromolecular structures.
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Figure 1: 
An illustration of a typical ST-DNN. Only one task (data set) is trained in this network. Four 

hidden layers are included, ki (i = 1, 2, 3, 4) represents the number of neurons in the ith 

hidden layer and Ni,j is the jth neuron in the ith hidden layer. Here, O1 is the single output 

for the task.
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Figure 2: 
An illustration of a typical MT-DNN training four tasks (datasets) simultaneously. Four 

hidden layers are included in this network, ki (i = 1, 2, 3, 4) represents the number of 

neurons in the ith hidden layer and Ni,j is the jth neuron in the ith hidden layer. Here O1 to 

O4 represent four predictor outputs for four tasks.
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Figure 3: 
The sample distributions of LD50, IGC50, LC50, LC50-DM training and test sets.
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Figure 4: 
The R2 on LD50, IGC50, LC50, LC50-DM test sets yielded by eight fingerprints and the 

consensuses of the top 6 features. Two ensemble methods were adopted (GBDT: blue, RF: 

red). The values shown in the figure are the R2 of GBDT.
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Figure 5: 
The performance of eight fingerprints and the consensuses of the top 4 on the FDA, Star and 

Non-star data sets of Log P. To be consistent with previous results, on the FDA set, R2 is 

given, while on star and non-star datasets, acceptable rate is given.
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Figure 6: 
Pearson correlation coefficient (R) on the seven clusters of the S1322 data set yielded by the 

six fingerprints (ECFP, FP2, Estate 2, MACCS, Estate 1, ERG) and their consensuses.
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Figure 7: 
The R on the PDBbind v2016 binding affinity set yielded by the six fingerprints (ECFP, FP2, 

Estate 2, MACCS, Estate 1, ERG) and their consensus.
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Figure 8: 
The ranked error differences between pairs of fingerprints for PDBbind v2016 core set of 

290 molecules. Only the top 4 fingerprints (i.e., Estate2, FP2, Estate1, MACCS) are 

considered.
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Figure 9: 
The ranked error differences between pairs of fingerprints for IGC50 toxicity set of 358 

molecules. Only the top 4 fingerprints (i.e., Estate2, FP2, Estate1, Daylight) are considered.
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Table 1:

A introduction of eight fingerprints used in the present study.

Fingerprint Description Number of 
features Package

FP2
A path-based fingerprint which indexes small molecule fragments based on linear segments of 
up to 7 atoms20 256 Openbabel20

Daylight
A path-based fingerprint consisting 2048 bits and encoding all connectivity pathways in a 
given length through a molecule21 2048

RDKit44

MACCS A substructure keys-based fingerprint with 166 structural keys based on SMARTS patterns19 166

Estate1

A topological fingerprint based on electro-topological State Indices, which encodes the 
intrinsic electronic state of the atom as perturbed by the electronic influence of all other atoms 
in the molecule within the context of the topological character of the molecule. Estate 1 
represents the number of times each atom type is hit22

79

Estate2 Similar to estate 1, however it contains the sum of the EState indices for atoms of each type22 79

ECFP4 The de facto standard circular fingerprint based on the Morgan algorithm45, which uses an 
iterative process to assign numeric identifiers to each atom15 2048

Pharm2D
Each bit corresponds to a particular combination of features and interactions needed for a 
molecule to be active against a given target23 990

ERG
A Pharmacophore fingerprint, which is an extended reduced graph approach using 
pharmacophore-type node descriptions to encode the relevant molecular properties25 315
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Table 2:

RF and GBDT parameters for different training-set sizes.

Training-set size RF parameters GBDT parameters

<800

n_estimators=1000, criterion=‘mse’, max_depth=None, 
min_samples_spNt=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0

n_estimators=2000, max_depth=9, min_samples_split=3, 
learning_rate=0.01, subsample=0.1, max_features=’sqrt’

800 to 5000 n_estimators=10000, max_depth=7,min_samples_split=3, 
learning_rate=0.01, subsample=0.3, max_features=’sqrt’

5000 to 10000 n_estimators=20000, max_depth=7,min_samples_split=3, 
learning_rate=0.01, subsample=0.3, max_features=’sqrt’
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Table 3:

The network hyperparameters for both ST-DNN and MT-DNN.

Fingerprint Number of 
features

Number of 
hidden 
layers

Number of neurons in 
each hidden layer

Optimizer Mini-
batch

Learning rate

Estate1 79

4
500,1000,1500,500 SGD with a momentum 

of 0.5 4 First 1000: 0.01; 
Then: 0.001Estate2 79

Daylight 2048 3000,2000,1000,500
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Table 4:

The quantitative summary of four toxicity datasets. The original datasets and prediction results are available at 

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.

Data set Total size Train set size Test set size Max value Min value

LD50 7413 5931 1482 7.201 0.291

IGC50 1792 1434 358 6.36 0.334

LC50 823 659 164 9.261 0.037

LC50-DM 353 283 70 10.064 0.117
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Table 5:

The R2 of ST-DNN and MT-DNN based on the top 3 fingerprints in GBDT (Estate2, Estate1, Daylight) and 

their consensuses.

Method R2 of LD50 R2 of IGC50 R2 of LC50 R2 of LC50-DM

Estate2 ST-DNN 0.484 0.715 0.569 0.433

Estate2 MT-DNN 0.489 0.696 0.660 0.623

Estate1 ST-DNN 0.569 0.733 0.650 0.601

Estate1 MT-DNN 0.566 0.735 0.694 0.684

Daylight ST-DNN 0.619 0.701 0.570 0.346

Daylight MT-DNN 0.617 0.717 0.724 0.694

Consensus ST-DNN 0.632 0.791 0.687 0.523

Consensus MT-DNN 0.639 0.794 0.765 0.725
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Table 6:

Comparison to other toxicity prediction methods. The prediction results for Hierarchical, Single model, FDA, 

Group contribution, Nearest neighbor, and T.E.S.T consensus are available in reference 44 and at https://

www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.

LD50

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.639 0.549 1.000

The present 2D GBDT consensus 0.679 0.580 1.000

Hierarchical42 0.578 0.650 0.876

FDA42 0.557 0.657 0.984

Nearest neighbor42 0.557 0.656 0.993

T.E.S.T consensus42 0.626 0.594 0.984

3D MT-DNN consensus4 0.653 0.568 0.997

IGC50

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.794 0.457 1.000

The present 2D GBDT consensus 0.785 0.457 1.000

Hierarchical42 0.719 0.539 0.933

FDA42 0.747 0.489 0.978

Group contribution42 0.682 0.575 0.955

Nearest neighbor42 0.600 0.638 0.986

T.E.S.T consensus42 0.764 0.475 0.983

3D MT-DNN consensus4 0.802 0.438 1.000

LC50

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.765 0.718 1.000

The present 2D GBDT consensus 0.715 0.783 1.000

Hierarchical42 0.710 0.801 0.951

Single model42 0.704 0.803 0.945

FDA42 0.626 0.915 0.945

Group contribution42 0.686 0.810 0.872

Nearest neighbor42 0.667 0.876 0.939

T.E.S.T consensus42 0.728 0.768 0.951

3D MT-DNN consensus4 0.789 0.677 1.000
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LC50-DM

Method R2 RMSE Coverage

The present 2D MT-DNN consensus 0.725 0.935 1.000

The present 2D GBDT consensus 0.486 1.239 1.000

Hierarchical42 0.695 0.979 0.886

Single model42 0.697 0.993 0.871

FDA42 0.565 1.190 0.900

Group contribution42 0.671 0.803 0.657

Nearest neighbor42 0.733 0.975 0.871

T.E.S.T consensus42 0.739 0.911 0.900

3D MT-DNN consensus4 0.678 0.978 1.000
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Table 7:

The sizes of Log S training set and Klopman’s test set.

Training set Klopman’s test set

1290 21

Phys Chem Chem Phys. Author manuscript; available in PMC 2021 April 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gao et al. Page 36

Table 8:

The R and RMSE of predicting Log S by eight fingerprints and the consensuses of the top 3 and top 6 on 

Klopman’s test set.

Fingerprint R RMSE

Cons-top 3 0.955 0.648

Cons-top 6 0.944 0.684

MACCS 0.958 0.664

Estate1 0.932 0.791

Daylight 0.923 0.780

FP2 0.908 0.853

ECFP 0.904 0.875

Estate2 0.897 0.907

Pharm2D 0.832 1.114

ERG 0.811 1.202
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Table 9:

Comparison of prediction results on the Log S data set.

Method R RMSE

Cons-top 3 0.955 0.648

Cons-top 6 0.944 0.684

MT-ESTD+-1 (3D)5 0.94 0.69

Drug-LOGS (2D)56 0.94 0.64

Klopman MLR (2D)57 0.92 0.86
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Table 10:

The sizes of Log P training set and test sets.

Training set
Test set

FDA Star Non-star

8199 406 223 43
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Table 11:

Comparison of Log P predictions on the FDA set.

Method R2 RMSE

GBDT-ESTD+-2-AD (2D+3D)5 0.935 0.51

MT-ESTD-1 (3D)5 0.920 0.57

ALOGPS (2D but the training set contains test set)58 0.908 0.60

Our Cons-top 4 (2D) 0.901 0.63

XLOGP3 (2D)58 0.872 0.72

XLOGP3-AA (2D)58 0.847 0.80

CLOGP (2D)58 0.838 0.88

TOPKAT (2D)58 0.815 0.88

ALOGP98 (2D)58 0.80 0.90

KowWIN (2D)58 0.771 1.10

HINT (2D)58 0.491 1.93
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Table 12:

Comparison of Log P predictions of the Star and Nonstar sets.

Star set (N=223) Non-star set (N=43)

% of Molecules within error range % of Molecules within error range

Method <0.5 <1 RMSE <0.5 <1 RMSE

AB/LogP60 84 12 0.41 42 23 1.00

MT-ESTD+-1-AD5 77 16 0.49 49 19 0.98

S+logP60 76 22 0.45 40 35 0.87

ACD/logP60 75 17 0.50 44 32 1.00

CLOGP60 74 20 0.52 47 28 0.91

MT-ESTD-15 72 18 0.55 33 28 1.01

ALOGPS60 71 23 0.53 42 30 0.82

Our cons-top 4 71 18 0.625 47 16 1.233

MiLogP60 69 22 0.57 49 30 0.86

KowWIN60 68 21 0.64 40 30 1.05

TLOGP60 67 16 0.74 30 37 1.12

CSLogP60 66 22 0.65 58 19 0.93

SLIPPER-200260 62 22 0.80 35 23 1.23

XLOGP360 60 30 0.62 47 23 0.89

XLOGP260 57 22 0.87 35 23 1.16

QLOGP60 48 26 0.96 21 26 1.42

VEGA60 47 27 1.04 28 30 1.24

SPARC60 45 22 1.36 28 21 1.70

LSER60 44 26 1.07 35 16 1.26

CLIP60 41 25 1.05 33 9 1.54

MLOGP(Sim+)60 38 30 1.26 26 28 1.56

HINTLOGP60 34 22 1.80 30 5 2.72

NC+NHET60 29 26 1.35 19 16 1.71
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Table 13:

The quantitative summary of the S1322 and PDBbind v2016 data sets.

S1322 set PDBBind v2016 refined set

CL1 CL2 CL3 CL4 CL5 CL6 CL7 refined set training set core set (test set)

333 264 219 156 134 122 94 4057 3767 290
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Table 14:

Comparison of protein-ligand binding affinity predictions PDBbind v2016 core set.

Method R RMSE (kcal/mol)

TopBP (Complex)29 0.861 1.65

PLEC FP (Complex)64 0.817 1.71

Our cons-top 6 (Ligand) 0.747 2.02
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Table 15:

The top 10 frequently occurred functional groups in PDBbind v2016 core set for each fingerprint. For each 

fingerprint, the occurrence frequency and the total number of molecules are also given.

Ranking FP2 Estate1 Estate2 MACCS

1

2

3
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Ranking FP2 Estate1 Estate2 MACCS

4

5

6

7

8
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Ranking FP2 Estate1 Estate2 MACCS

9

10
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Table 16:

The top 10 frequently occurred functional groups in IGC50 toxicity set for each fingerprint. For each 

fingerprint, the occurrence frequency and the total number of molecules are also given.

Ranking FP2 Daylight Estate1 Estate2

1

2

3

4

5

6

7
aliphatic chains with 8 or more 

members: 5/34
aliphatic chains with 8 or more 

members: 6/39
aliphatic chains with 8 or more 

members: 5/37
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Ranking FP2 Daylight Estate1 Estate2

8
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