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Abstract

Background: Risk-prediction models have been proposed to select individuals for lung cancer screening. However, their long-
term effects are uncertain. This study evaluates long-term benefits and harms of risk-based screening compared with current
United States Preventive Services Task Force (USPSTF) recommendations.

Methods: Four independent natural history models were used to perform a comparative modeling study evaluating long-
term benefits and harms of selecting individuals for lung cancer screening through risk-prediction models. In total, 363 risk-
based screening strategies varying by screening starting and stopping age, risk-prediction model used for eligibility (Bach,
PLCOmM2012, or Lung Cancer Death Risk Assessment Tool [LCDRAT]), and risk threshold were evaluated for a 1950 US birth co-
hort. Among the evaluated outcomes were percentage of individuals ever screened, screens required, lung cancer deaths
averted, life-years gained, and overdiagnosis.

Results: Risk-based screening strategies requiring similar screens among individuals ages 55-80 years as the USPSTF criteria
(corresponding risk thresholds: Bach = 2.8%; PLCOm2012 = 1.7%; LCDRAT = 1.7%) averted considerably more lung cancer
deaths (Bach = 693; PLCOm2012 = 698; LCDRAT = 696; USPSTF = 613). However, life-years gained were only modestly higher
(Bach = 8660; PLCOmM2012 = 8862; LCDRAT = 8631; USPSTF = 8590), and risk-based strategies had more overdiagnosed cases
(Bach = 149; PLCOmM2012 = 147; LCDRAT = 150; USPSTF = 115). Sensitivity analyses suggest excluding individuals with limited
life expectancies (<5 years) from screening retains the life-years gained by risk-based screening, while reducing overdiagnosis
by more than 65.3%.

Conclusions: Risk-based lung cancer screening strategies prevent considerably more lung cancer deaths than current
recommendations do. However, they yield modest additional life-years and increased overdiagnosis because of
predominantly selecting older individuals. Efficient implementation of risk-based lung cancer screening requires careful con-
sideration of life expectancy for determining optimal individual stopping ages.

The National Lung Screening Trial (NLST) demonstrated that
computed tomography (CT) screening reduces lung cancer mor-
tality (1). Consequently, the United States Preventive Services
Task Force (USPSTF) recommended lung cancer screening (2).
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Current guidelines propose screening eligibility using age and
smoking-related criteria, through combinations of accumulated
pack-years and years since smoking cessation (“pack-year
criteria”) (2). Notably, the USPSTF recommends annual
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screening between ages 55 and 80 years for current and former
smokers (quit <15 years) who smoked 30 or more pack-years
(“USPSTF criteria”).

Individual risk assessment using established lung cancer
risk-prediction models has suggested superiority over pack-
year criteria in identifying those most likely to benefit from
screening (3-6). This is partly due to these models incorporating
smoking history in greater detail than pack-years and consider-
ing risk factors such as chronic obstructive pulmonary disease
(COPD). Consequently, some guidelines recommend risk
assessment through these models to supplement pack-year
criteria (7).

The Dutch-Belgian Lung Cancer Screening Trial (NELSON) re-
cently announced results confirming that CT screening reduces
lung cancer mortality (8). Consequently, countries worldwide
are considering implementing lung cancer screening. Experts
recommend future programs determine screening eligibility
through risk-stratification (9).

However, little is known about the long-term benefits and
harms of risk-based lung cancer screening (3-5,10). Trials select-
ing participants through risk-prediction models show high lung
cancer detection rates, suggesting successful identification and
enrollment of high-risk individuals, but long-term outcomes are
uncertain (11,12). Furthermore, these studies assessed risk at a
single time point; generally randomization. But, risk varies over
time because of aging, changes in smoking behavior, and other
risk factors. Furthermore, high-risk individuals have increased
non-lung cancer mortality risks, and thus shorter life expectan-
cies, potentially affecting long-term screening benefits and
harms (13-16). Therefore, risk-prediction models may perform
dissimilarly in population-based screening programs compared
with retrospective studies. To our knowledge, previous studies
evaluating risk-based screening considered limited strategies,
focused solely on benefits, and did not consider the general
population or evaluate effectiveness over lifetime periods
(6,10,15,17,18).

Natural history models of the Cancer Intervention and
Surveillance Modeling Network (CISNET) previously informed
the USPSTF on long-term benefits and harms of lung cancer
screening strategies with pack-year criteria (19). In contrast to
risk-prediction models, natural history models simulate an
individual’s entire life history, accounting for lifetime variations
in lung cancer and smoking-related mortality risk. This allows
natural history models to evaluate differences in life-years
gained and overdiagnosis (screen detection of cancers that
would not have been diagnosed in the absence of screening)
across different risk profiles. This study evaluates long-term
benefits and harms of lung cancer screening strategies selecting
individuals through risk-prediction models in the general popu-
lation, through a comparative modeling analysis using four
CISNET natural history models.

Methods

Risk-Prediction Models

CISNET previously evaluated nine risk-prediction models for lung
cancer incidence and mortality (5). The Bach, PLCOm2012, and
Two-Stage Clonal Expansion (TSCE) incidence models had the
best performance across investigated aspects (calibration, dis-
crimination, and clinical usefulness) (3,5,20,21). However, TSCE is
primarily meant to describe lung carcinogenesis within a biologi-
cal framework, whereas Bach and PLCOm2012 can be easily
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implemented in clinical settings. Additionally, the Lung Cancer
Death Risk Assessment Tool (LCDRAT) was considered (10).
Therefore, analyses were restricted to Bach/PLCOm2012/LCDRAT
(Supplementary Methods and Supplementary Tables 1-5 and
Supplementary Figure 1, available online). PLCOmM2012 was cali-
brated to a 6-year timeframe, whereas Bach and LCDRAT can be
applied to any timeframe (3,10,20). Therefore, 6-year timeframes
were chosen for comparability.

Simulated Population

The Smoking History Generator (SHG), developed using 1965-
2009 US-representative National Health Interview Survey data,
was used to simulate smoking histories for a 1950 US cohort
(13,22,23). This population, currently ages 68-69 years, repre-
sents the midpoint between recommended screening starting
and stopping ages (55 and 80 years). Each simulated smoking
history consists of whether and when the person initiates and
ceases smoking, average number of cigarettes smoked per day
by age, and the age of death from non-lung cancer causes
(accounting for the effects of smoking behavior on mortality).

For each simulated individual, model-specific 6-year lung
cancer incidence/mortality risks were estimated by age
(Supplementary Table 6 and Supplementary Figure 2, available
online). Because the SHG does not simulate nonsmoking covari-
ates, risk-prediction models were applied using only age, sex,
and smoking history (Supplementary Methods, available on-
line). “Never-smokers” were not considered for screening
because the risk-prediction models are not applicable to them.
Furthermore, never-smokers are unlikely to attain risks at
which screening becomes beneficial (24,25).

Risk Thresholds

Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial
(PLCO) data were previously used to assess the net benefit (bet-
ter ratios of benefits to harms) of Bach and PLCOm2012 over
that of the USPSTF criteria (5). Both had wide ranges of risk
thresholds yielding positive net benefits for 6-year lung cancer
incidence in the PLCO control-arm ever-smokers (Bach = 0.2-
8.9%; PLCOmM2012 = 0.1-11.0%) (5).

The Supplementary Methods, Supplementary Table 7, and
Supplementary Figure 3 (available online) describe how risk
thresholds with positive net benefits can inefficiently select
individuals for screening. Furthermore, higher risk thresholds
may improve screening efficiency (screens required to detect
one cancer), but reduce screening effectiveness (achievable
mortality reduction).

To capture trade-offs between screening efficiency and ef-
fectiveness, evaluated risk thresholds were chosen based on
sensitivity (eg, the number of individuals developing clinical
lung cancer within 6 years among those whose estimated risk
exceeds the corresponding risk threshold divided by the total
number of individuals who develop clinical lung cancer within
6 years). Risk thresholds yielding sensitivities for lung cancer in-
cidence between 50% and 90% in the PLCO control-arm ever-
smokers were further evaluated. Corresponding risk thresholds
were 0.93-3.55% (Bach) and 0.94-3.30% (PLCOm2012). Therefore,
risk thresholds between 0.9% and 3.6% were evaluated, with ab-
solute increments of 0.1%. Corresponding LCDRAT risk thresh-
olds for lung cancer mortality were 0.65%-2.13%.

Additionally, we considered risk thresholds, selecting similar
proportions of individuals (Bach =1.59%; PLCOmM2012 = 1.36%;
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LCDRAT = 0.96%) or yielding similar sensitivities (Bach = 1.91%;
PLCOmM?2012 = 1.83%; lung cancer mortality sensitivity [LCDRAT]
= 1.34%) as the USPSTF criteria in PLCO control-arm ever-smok-
ers (screen-eligible proportion=39.0%, sensitivity=75.3%). The
risk thresholds corresponding to these outcomes differ across
risk-prediction models because of differences in absolute risk
estimates, indicating that risk model-specific risk thresholds
should be used (5,26). Supplementary Figure 4 (available online)
gives risk-prediction model-specific overviews of sensitivity by
risk threshold, whereas Supplementary Figure 5 (available online)
gives an overview of the proportion of screening-eligible individu-
als by risk threshold.

However, risk thresholds performing well within retrospec-
tive analyses of trials and/or cohorts may not necessarily yield
similar performances in population-based programs. Therefore,
risk thresholds yielding similar metrics as the USPSTF criteria’s
in the 1950 birth cohort (eg, deaths averted and life-years
gained) were identified.

Natural History Models

Four CISNET natural history models were used in these analyses
(27-33). All models were calibrated to individual-level data
from NLST and PLCO, and we evaluated the same individual risk
profiles generated by the SHG. The Supplementary Methods,
Supplementary Figure 6, and Supplementary Table 8 (available
online) detail the characteristics of the natural history models.

Evaluated Screening Strategies

In total, 363 screening strategies were evaluated, each consider-
ing different combinations of screening starting and stopping
ages, risk-prediction model used to estimate age-specific lung
cancer incidence risk, and risk threshold for screening eligibility
(Box 1). Upper bounds on screening stopping ages were
enforced, as otherwise-eligible individuals would continue
screening at ages with limited life expectancy. Lower bounds on
screening starting age were enforced because the risk-
prediction models were developed in populations consisting of
individuals older than 45 years and may be unsuitable for youn-
ger individuals (3,20). At each age, a person’s screening eligibil-
ity was determined (ie, whether the person’s estimated risk at
that age exceeded the risk threshold). Screening eligibility was
assumed to be free of misclassification error (ie, risk at each age
was correctly estimated, and ineligible individuals were not
screened). In total, 120 screening strategies were considered per
risk-prediction model. In addition, three screening strategies
were used to evaluate the USPSTF criteria at different stopping
ages. Perfect screening adherence was assumed. For each strat-
egy, the following outcomes were evaluated: lung cancer deaths
averted, life-years gained, proportion of individuals ever screen-
ing eligible, computed tomography screens required, and over-
diagnosis (both the absolute number of overdiagnosed cases

and percentage of screen-detected cases that is overdiagnosed,

number of overdiagnosed cases 100
number of screen — detected cases

ie, %. Screening outcomes were
counted from ages 45-100 years (maximum age in all models).
All outcomes were compared with no-screening results, and
standardized to the number of individuals alive at age 45 years.
Results were summarized as means across CISNET models,
along with the lower and upper ranges across models (CISNET
model range [CMR]). Two sensitivity analyses were performed.
The first considered hypothetical perfect life expectancy assess-
ments, excluding individuals from further screening when non-

Box 1. Overview of evaluated screening strategies

Strategy characteristics Considered values

Age to start screening, y 45%, 55
Age to stop screening, y 75,77, 80
Screening interval Annual

Considered values
Bach, PLCOm2012, LCDRAT

Risk-based criteria

Evaluated risk-prediction
models

Evaluated risk thresholds 0.9%, 1.0%, 1.1%, 1.2%, 1.3%,

1.4%, 1.5%, 1.6%, 1.7%, 1.8%,

1.9%, 2.0%, 2.1%, 2.2%, 2.3%,

2.4%, 2.5%, 2.6%, 2.7%, 2.8%,

2.9%, 3.0%, 3.1%, 3.2%, 3.3%,

3.4%, 3.5%, 3.6%,

tRisk threshold that yielded a
similar sensitivity for ever-
smokers in the PLCO control
arm as the USPSTF criteria
(one for each risk-prediction
model)

FRisk thresholds that selected a
similar proportion of ever-
smokers for screening in the
PLCO control arm as the
USPSTF criteria (one for each
risk-prediction model)

Non-risk-based strategies
USPSTF-smoking eligibil-
ity criteria

Description

Annual screening for individu-
als who smoked at least
30 pack-years and currently
smoke or quit less than 15y
ago

The USPSTF criteria was evalu-
ated for screening between
age ranges 55-75, 55-77, and
55-80y

*Considered only for risk-based strategies that stop screening at age 80 y.
tCorresponding risk thresholds: PLCOmM?2012 = 1.83%; Bach = 1.91%; LCDRAT = 1.34%.
FCorresponding risk thresholds: PLCOm2012 = 1.36%; Bach = 1.59%; LCDRAT =
0.96%.

LCDRAT = Lung Cancer Death Risk Assessment Tool; PLCO = Prostate Lung,
Colorectal, and Ovarian Cancer Screening Trial, USPSTF: United States
Preventive Services Task Force.

lung cancer death occurred within 5 years. The second consid-
ered a 1960 birth cohort, representing smoking patterns and life
expectancies that are more contemporary.

Results

Overall Results

At the first age individuals become eligible for screening be-
cause of their risk exceeding the risk threshold, their risk is gen-
erally close to the considered risk threshold. However, the
average risk of the population eligible for screening was sub-
stantially higher than the risk threshold required for screening
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Screens and lung cancer deaths averted for risk-based screening
policies between ages 55 and 80 years compared to the USPSTF
criteria
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Figure 1. Number of CT screens and lung cancer deaths averted for risk-based screening strategies screening between ages 55 and 80 years compared with the USPSTF
criteria (mean results across the four CISNET models). Risk thresholds corresponding to strategies that yield a similar number of lung cancer deaths averted as the
USPSTF criteria: Bach model = 3.4%; PLCOm2012 model = 2.2%; LCDRAT model = 2.1%. CT = computed tomography; LCDRAT = Lung Cancer Death Risk Assessment

Tool; USPSTF = United States Preventive Services Task Force.

eligibility for each risk-prediction model at each time-point
(Supplementary Figure 7, available online). However, screening
eligibility decreased for increasing risk thresholds and younger
screening stopping ages (Supplementary Figure 8, available on-
line). Screening eligibility was higher for the Bach-based strat-
egy than for PLCOm2012-based and LCDRAT-based strategies at
each risk threshold. Screening eligibility increased with age for
all risk-prediction models independently of risk threshold
(Supplementary Figure 9, available online). For the USPSTF crite-
ria, screening eligibility decreased with age because of increas-
ing numbers of previously eligible individuals having quit
smoking 15 or more years prior.

Figures 1 and 2 compare risk-based-strategies screening be-
tween ages 55 and 80 years to the USPSTF criteria. The Bach-
based strategy required more screens than the PLCOm2012-
based and LCDRAT-based strategies at each risk threshold, but
averted more deaths and yielded more life-years. However, risk-
based strategies requiring similar screens yielded consistent
deaths averted and life-years gained. For all CISNET models,
risk-based strategies more efficiently averted lung cancer
deaths (Figure 1; Supplementary Figure 10, available online) and
life-years gained (Figure 2; Supplementary Figure 11, available
online) than the USPSTF criteria did. However, whereas
increases in deaths averted were considerable, gains in life-
years were modest. Similar results were found for screening
stopping ages 77 and 75 years (data not shown). Tables 1-3 sum-
marize benefits and harms for risk-based-strategies screening
between ages 55 and 80 years corresponding to selected out-
comes, described in the following paragraphs.

Screening Eligibility

Risk-based-strategies screening between ages 55 and 80 years
with risk thresholds selecting similar proportions of PLCO
control-arm ever-smokers as the USPSTF criteria (Bach: =
1.59%; PLCOmM?2012 = 1.36%; LCDRAT = 0.96%) selected consider-
ably more individuals in the 1950 birth cohort (Bach = 32.0%;
PLCOmM2012 = 26.0%; LCDRAT = 33.4%; USPSTF = 19.9%). These

strategies averted 25.2-38.0% more lung cancer deaths
(CMR=23.249.1%) and yielded 17.0-30.3% more life-years
(CMR =11.7-37.9%) than the USPSTF criteria did, but required
23.8-58.6% more screens (CMR = 21.4-60.2%).

Sensitivity

Risk-based-strategies screening between ages 55 and 80 years
with risk thresholds yielding a similar sensitivity as the USPSTF
criteria’s in PLCO control-arm ever-smokers (Bach = 1.91%;
PLCOmM2012 = 1.83%; LCDRAT = 1.34%) differed in effectiveness
and efficiency. The Bach-based strategy required 40.2% more
screens (CMR=38.9-41.5%) than the USPSTF criteria did, but
averted 31.8% more deaths (CMR =28.8-37.6%) and yielded 22.6%
more life-years (CMR = 19.9-27.5%). However, the USPSTF criteria
required 533 screens per lung cancer death averted and 38
screens per life year gained, whereas the Bach-based strategy re-
quired 567 (+6.4%; CMR = +1.1% to +9.2%) and 43 (+14.3%; CMR =
+10.6% to +16.2%), respectively. The PLCOm2012-based strategy
required 6.0% fewer screens (CMR=5.0-7.5%) than the USPSTF
criteria did, while averting 10.8% more deaths (CMR: 2.3-15.0%)
and yielding similar life-years (-0.1%; CMR = -9.9% to +4.3%).
Overall, the PLCOm2012-based strategy was more efficient than
the USPSTF criteria was, requiring 452 screens per lung cancer
death averted (—15.2%; CMR = —18.1% to —8.1%) and 36 screens
per life year gained (—5.9%; CMR = —9.7% to +4.4%). The LCDRAT
strategy required more screens than the USPSTF criteria did
(+20.7%; CMR= 18.6-22.0%), but it averted more deaths (+24.9%;
CMR=226-32.8%) and yielded more life-years (+13.3%;
CMR =10.3-17.3%). The LCDRAT strategy was more efficient than
the USPSTF criteria was regarding screens per lung cancer death
averted (-3.4%; CMR = —8.5% to —0.5%), but it required more
screens per life-year gained (+6.5%; CMR = 3.6-8.6%).

CT Screens

Risk-based-strategies screening between ages 55 and 80 years
requiring similar CT screens as the USPSTF criteria did (corre-
sponding risk thresholds: Bach = 2.8%; PLCOm2012 = 1.7%;
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Screens and life-years gained for risk-based screening policies
between ages 55 and 80 years compared to the USPSTF criteria
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Figure 2. Number of CT screens and life-years gained for risk-based screening strategies screening between ages 55 and 80 years compared with the USPSTF criteria
(mean results across the four CISNET models). Risk thresholds corresponding to strategies that yield a similar number of life-years gained as the USPSTF criteria: Bach
model = 2.8%; PLCOmM2012 model = 1.83%; LCDRAT model = 1.7%. CT = computed tomography; LCDRAT = Lung Cancer Death Risk Assessment Tool; USPSTF = United

States Preventive Services Task Force.

LCDRAT = 1.7%) averted 13.1-13.9% (CMR=7.3-19.5%) more
lung cancer deaths (USPSTF criteria = 613; Bach = 693;
PLCOmM?2012 = 698; LCDRAT = 696). However, life-years gained
was only modestly higher: 0.5-3.2% more (CMR = —6.0% to
+8.9%; USPSTF criteria = 8590; Bach = 8660; PLCOm2012 = 8862;
LCDRAT = 8631). These strategies more efficiently reduced lung
cancer mortality than the USPSTF criteria did, requiring 466472
screens per death averted (—11.5% to —12.5% compared with the
USPSTF criteria; CMR = —16.4% to —6.0%). However, they were
only slightly more efficient with regard to life-years gained, re-
quiring 37-38 screens per life year gained (-0.9% to —2.2% com-
pared with the USPSTF criteria; CMR = —6.9% to +6.0%).

Lung Cancer Deaths Averted

Risk-based-strategies screening between ages 55 and 80 years
averting similar deaths as the USPSTF criteria’s (corresponding
risk thresholds: Bach = 3.4%; PLCOm2012 = 2.2%; LCDRAT =
2.1%) required 20.5-22.7% fewer screens (CMR =19.7-24.0%).
Therefore, these strategies were more efficient than the USPSTF
criteria was, requiring 409-419 screens per lung cancer death
averted (CMR =293-868). However, despite averting similar lung
cancer deaths, they yielded 12.1-12.4 life-years per death
averted (CMR=11.4-13.3) compared with 14.0 for the USPSTF
criteria (CMR=13.0-15.3). Consequently, they yielded 12.5-
13.4% fewer life-years (CMR = 8.0-24.0%).

Life-Years Gained

Risk-based-strategies screening between ages 55 and 80 years
yielding similar life-years gained as the USPSTF criteria’s (corre-
sponding risk thresholds: Bach = 2.8%; PLCOm2012 = 1.83%;
LCDRAT = 1.7%) required 0.5-6.0% fewer screens (CMR = +0.6 to
—7.5%) and averted 10.8-13.5% more deaths (CMR =2.3-19.5%).
Consequently, these strategies were slightly more efficient, re-
quiring 36-38 screens per life-year gained (-0.9% to —5.9%

compared with the USPSTF criteria; CMR: —9.7% to +6.0%).
However, they yielded only 12.4-12.6 life-years per lung cancer
death averted (CMR=11.8-13.6). Furthermore, these risk-based
strategies had 25.9-30.1% (CMR=15.0-33.0%) more overdiag-
nosed cases than the USPSTF criteria did.

Overdiagnosis

All risk-based-strategies screening between ages 55 and 80
years yielded higher screen-detected overdiagnosis rates than
the USPSTF criteria did (Tables 1-3). Notably, the absolute num-
ber of overdiagnosed cancers was 18.5-45.9% higher (CMR =4.1-
56.0%) than that of the USPSTF criteria. This is primarily due to
risk-based-screening  eligibility ~ increasing  with  age
(Supplementary Figure 9, available online) because cancers
screen detected at older ages are more likely to be overdiag-
nosed. Additionally, the average age at first screening eligibility
was 5-10 years higher than that of the USPSTF criteria, and it in-
creased for higher risk thresholds (Supplementary Figure 12A,
available online). Consequently, screen-detected overdiagnosis
rates increased for higher risk thresholds (Supplementary
Figure 12B, available online). In contrast, absolute numbers of
overdiagnosed cancers decreased with increasing risk thresh-
olds (Supplementary Figure 12C, available online). This is be-
cause at higher risk thresholds, fewer individuals are screened,
reducing the overall number of screen-detected cancers.

CISNET Model Variability

Supplementary Tables 9-12 (available online) show individual
CISNET model predictions for the Bach-based strategies in
Table 1. The Erasmus and Michigan models estimated higher
reductions in lung cancer mortality (11.0-22.7%) than the
Massachusetts General Hospital (MGH) and Stanford models did
(6.1-12.3%). However, the number of life-years gained per lung
cancer deaths prevented was generally similar across the
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Erasmus, MGH, and Stanford models. The Michigan model esti-
mated 1-2 more life-years gained per lung cancer death pre-
vented compared with the other models because of allowing
screening to extend lung cancer survival without averting lung
cancer death.

Stanford and Michigan had the lowest screen-detected over-
diagnosis rates (5.3-6.5%), whereas Erasmus and MGH had the
highest rates (8.1-10.5%). However, despite having the highest
overdiagnosis rate, MGH had the lowest absolute number of
overdiagnosed cancers, which were due to fewer cancers being
screen detected, compared with the other models. Whereas
Erasmus, Stanford, and Michigan estimate the overdiagnosis
rate of screen-detected cases increases with increasing risk
thresholds, MGH estimates this proportion decreases. This may
be due to differences in the definition of screen detection between
CISNET models: In contrast to the other models, the MGH model
does not consider cancers causing a positive screening result
but not detected until the follow-up scan resulting from the
positive screening result to be screen detected.

Overall, similarly to previous comparative-model analyses,
absolute numbers of benefits and harms varied across models.
However, relative performance of risk-based strategies com-
pared with that of the USPSTF criteria was consistent across
models. Similar results were found for the PLCOm2012 and
LCDRAT models (data not shown).

Performance by Screening Starting and Stopping Ages

When comparing selected risk-based strategies to the USPSTF
criteria for screening stopping ages of 77 and 75 years, their
comparative effectiveness was similar to stopping at age 80
years (data not shown). However, risk thresholds corresponding
to selected outcomes differed slightly across stopping ages.
Furthermore, younger screening stopping ages decreased both
the proportion and absolute number of screen-detected lung
cancers that were overdiagnosed.

Supplementary Figure 13 (available online) describes the ef-
fect of lowering the screening starting age to 45 years. Lowering
the starting age averted more lung cancer deaths and yielded
more life-years gained at relatively low risk thresholds
(Supplementary Figure 13, A and B, available online). However,
differences between starting ages decreased rapidly for increas-
ing risk thresholds. Furthermore, younger starting ages sub-
stantially increased screens required at lower risk thresholds
(5.1-13.4% at a 0.9% risk threshold, Supplementary Figure 13C,
available online).

Accounting for Limited Life Expectancy

Table 4 compares selected PLCOmM2012-based strategies screen-
ing between ages 55 and 80 years to the USPSTF criteria when
applying hypothetical perfect life-expectancy assessments that
excluded individuals with limited life expectancies (<5 years).
This reduced the absolute number of overdiagnosed lung can-
cers by 65.1-67.3% (CMR =42.5-82.0%) for both USPSTF criteria
and risk-based strategies. Furthermore, reductions in life-years
gained were negligible (USPSTF criteria = 0.1%; CMR = —0.8 to
+1.2%; risk-based strategies = —1.9% to —0.3%; CMR = —3.0% to
0.3%). Whereas lung cancer deaths averted were slightly re-
duced (USPSTF criteria = —4.4%; CMR = —3.2% to —7.9%,; risk-
based strategies = —4.5% to —6.3%; CMR = —3.0% to —9.4%),
reductions in screens were greater (USPSTF criteria = —9.1%;
CMR = -8.3% to —10.5%; risk-based strategies = —9.8% to

—12.9%; CMR = —9.3% to —15.1%). Consequently, accounting for
limited life expectancy yielded greater improvements in effi-
ciency for risk-based strategies than the USPSTF criteria did.
Results for Bach- and LCDRAT-based strategies were similar
(data not shown).

1960 Birth Cohort

Risk-based-screening strategies were also more efficient than
the USPSTF criteria was in the 1960 birth cohort, as shown for
selected LCDRAT-based strategies in Table 5. Compared with
the 1950 birth cohort, lung cancer incidence and mortality in
the absence of screening both were lower (17.5% and 18.1%, re-
spectively) because of reduced smoking behavior.
Consequently, the proportion of ever-eligible individuals for the
USPSTF criteria decreased from 19.9% to 13.8% (30.7% lower),
whereas risk-based-screening eligibility decreased by 15.6-
21.1%.

As a result, absolute benefits were lower: Lung cancer deaths
averted decreased by 36.9% for the USPSTF criteria and 31.2-
33.0% for the selected risk-based strategies, whereas life-years
gained decreased by 37.7% for the USPSTF criteria and 30.3-
32.5% for the selected risk-based strategies. Similarly, absolute
harms were lower: CT screens required decreased by 30.2% for
the USPSTF criteria and 18.1-22.7% for the selected risk-based
strategies, whereas the absolute number of overdiagnosed cases
decreased by 38.3% for the USPSTF criteria and 33.3-35.7% for
the selected risk-based strategies.

The average age at first screening was 1year older for the
USPSTF criteria and 0.4-1.0years older for the selected risk-
based strategies because of differences in smoking behaviors.
However, overall life expectancy was also higher. Consequently,
life-years gained per lung cancer death prevented were similar
(0.2 fewer for the USPSTF criteria, +0.1-0.2 life-years for the se-
lected risk-based strategies), and overdiagnosis rates of screen-
detected cases decreased by 2.7% for the USPSTF criteria and
3.8-5.1% for the selected risk-based strategies.

The relative efficiency of risk-based-screening strategies
(given the selected risk thresholds) compared with the USPSTF
criteria was somewhat reduced compared with the 1950 birth
cohort. Whereas selected risk-based-screening strategies re-
quired —21.4% to +11.4% screens per lung cancer death averted
compared with the USPSTF criteria in the 1950 birth cohort, this
was —17.9% to +20.2% in the 1960 birth cohort. Similarly, se-
lected risk-based-screening strategies required —7.9% to +21.1%
screens per life-year gained compared with the USPSTF criteria
in the 1950 birth cohort, whereas this was —7.0% to +25.6% in
the 1960 birth cohort. However, selected risk-based-screening
strategies were still more efficient than the USPSTF criteria was.
Results for the Bach- and PLCOm2012-based strategies were
similar (data not shown).

Discussion

This study shows that risk-based strategies reduced lung cancer
mortality more effectively and efficiently than current USPSTF
criteria did. However, though comparing favorably, risk-based
strategies yielded modest additional life-years over the USPSTF
criteria. Consequently, risk-based strategies prevented more
lung cancer deaths but yielded fewer life-years per death pre-
vented compared with the USPSTF criteria results. This is
largely due to such strategies screening individuals at older


https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz164#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz164#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz164#supplementary-data

475

K. ten Haaf et al.

JTOLLYV

*9010 SB], SODIAISS SATIUIARIJ S91BIS PAIU[) = 11SdSA ellL SUTUSAIDS 19dURD UBLIEAQ PUE [£19910[0D ‘SUNT ‘91e1s01d = 0DTd ‘98uel [9pout LINSID = YD FI0m19N SUISPOJN SDUE[[IDAING PUR UOTIUSAINU] I9dDUBD = LINSID
‘sepour LINSID INoj 3y} sso1de synsai ays jo a3uer roddn pue 19mo[ 3y} 9j0usp sasayjuared Ul SI9qUINU dY ], *S[EPOW LINSID INOJ 9} SSOIDE UESW S} SB PIZLIBWIWINS dISM S}[NSAI [[V+
‘suos1ad 000 00T 12d (F1T/-0T0S) 0495 sem Aferrowr 19dued Sun| suosiad 000 00T 19d (058-8159) 91T/ sem dnoid A3s1ens SuruaaI0s-0U Y3 Ul SDUSPIOUIL 13dUed SunT ‘s1eak i 93 1 dAI[e s|enplaIpur 000 00T 12d a1e s1nsay,

S BUIILID
418dSn Y3 se
(seo-1€9)zeo  (st-en)er  (L9-€2)ce  (£98-€0€) cav (rs-sT)Te (5£-82) 8% (Fvi-cer) €€l (WhL11-1819) 86%8  (¢'81-59) €11 (626-G2€) 19 (676 18C-££8 S¥T) Shv 0/C  (8'CC-0'6T) 9°0C €8T paured s1eak-aJ1 1e[IWIS
SBLIDIID 11SdSN
9] S PILIDAR SUIBIP
9v9z¥9) ¥¥9  (I-11)2T  (99-12) 0f  (¥T8-1.T) 18€ (es-9T)T¢E (t£-v2) S¥ (T¥1-6'11) 6Tl  (82¥ OT-¥8%E) I8%Z (9'81-9'5) 20T (158-182) 645 (68T 1€2-881 002) 6%£ 02C  (£°02-£91) T'8T 0zt 190UEd 3uny IB[IWIS
$,BLIDILID
41sdsn oy se parnb
(T€9-£29) 69  (ST-€1)¥T  (69-42) €€  (888-61€) Si¥ (8s-sT1) €€ (9£-62) 6% (8¥1-€2T)v'el  (1€TCI-Tehb) L088 (9'81-8'9) 91T (I1S6-Cve) SS9 (S9/ €0e-€£C S92) 8TS 16  (6'€2-0°02) 9'1¢C LT -91 SUSAIDS D Ie[IWIS
wie
[013U0d OD'Td 3Y3 Ut
SBURILD 11SdSN U3
(seo-1€9)zeo  (st—en)er  (L9-€2)ce  (£98-€0€) cav (rs-sT)Te (5£-82) 8% (Fvi-czr) eel  (WpL11-1819) 86%8  (¢81-S9) €11 (626-G2€) T¥9  (6¥6 182-£L8 SbT) Shv 0/C  (8'CC-0'6T) 9°0C €31 se fj1anisuss 1eqruls
uLre (013
-uod 0D'1d Y3 Ul S,BLL
-3} 11SdSN Y3 e
P9103[3S S[eNpIAIpUT
(619-919) £19  (91-¥1) ST (c£-£2) 9 (¥¥6-6SE) L6V (e9-sT) €€ (18-0¢) 2§ (0's1-9°21) £'€T  (81% €1-981S) 1986  (£°02-8'2) £'ZT  (8501-€6€) 0z,  (SE€ TLE-9ST 92€) Se£ LSE  (6'92-6'2T) 9FT 9e'T 3o uontodoid refruns
(855-£'55) '35 (£1-s1) 91 (99-52) s€  (656-59¢€) £0S (s9-€1)TE (19-02) 6€ (T91-+€T) £%1 (990 T1-8¥9%) 2098  (7'91-+'9) €01 (L€8-Tee) 985 (045 8OE-€58697) 960 L6  (€°0-0'8T) T'61  BLIOILD I1SdSN BUISILD 11SdSN
£(amo) (anD) (anD) (anD) (D) % (anD) (ano) (anD) (D) % (anD) (4nD) (Hamo) % % ‘ProysaIy uonduosap A3a1ens
Buruaaids PpauRaIds paured papioae ‘pasouderpiano 000 00T 1ad paruanaxd 000 00T 1ad ‘uononpax 000 00T 1ad 000 00T 1od ‘paudaIdS Jsu
sy 1B uosiad 1B iesp sosed s1adued 3uny iesp paured Aerzowr pajuanaid SU?3I0S 1D I9A3 Burpuodsaiio)
ade 1ad -oy11 19d I90UEd pa3103313p pasouderpiano I90ued ung s1eak-9J11 I90UBd syIeap JO I_qUINN a3ejuadiag
aderaay SU2IDSJO  SUIIIDS JO uny 1ad -u?aIds Jo I_quINN 1ad paured 3ung I9DUED
IaquInu IsquInu SUIIIDS JO FEISNERIEE | s1eak-aJ11 Sung
EEiEING a8eraay Iaquunu
a8e1aAy

Burusads ou y3m paredwod (£ 0g-55 98e urusaids) Jusuwrssasse Aoueloadxa-aj1] [eonayrodAy e yimm sa1391ens SUIUSaIdS [9POU ¢TOZWODTd PIDI[SS PUE BLISILD 11.SdSN Y3 JO SULIEY PUE S}Jausq ¥ d[qel



JNCIJ Natl Cancer Inst, 2020, Vol. 112, No. 5

476

"92104 SB[, S9JIAISS 9ATIUSAII] S9)E1S pajiu)

= J11SdSN ‘[elL], SUTUIIDS I9dUEBD UBLIEAQ PUE [12910]0D ‘SUnT ‘91€1s01d = 0D'Td 001 JUSWSSISSY STy Y1ea( 19oue) Sunt = 1viadT ‘Aydeidowol payndwod = 1D a3uer [9powr LINSID = YD FI0MISN SUI[SPOIN SOUL[[ISAING PUEB UOTIUSAIIU] I9dURD = LINSID

‘sepour LINSID INoj 3y} sso1de synsai ays jo s3uer 1addn pue 19mo[ 3y} 930usp sasayjuaied Ul SISqUINU dY ], "S[OPOW [INSID INO0J 9} SSOIDE UESW S} SB PIZLIBWIWINS dIdM S}[NSAI [V}
‘suos1ad 000 00T 12d (£0€S-910¥) £39% sem Lrferiow 190ued Suny ‘suosiad 000 00T 12d (z5/9-8/2S) 0,85 sem dnoid A331ens Surussids-ou sy Ut dUSPUT 19dUued SunT 's1eak 5§ a3 e SAIe S[enpIAIpur 000 00T 19d 18 SINSY,

S,BLIDILID J1SdS() 9U1 S&

(9°59-6'€9) ¥¥#9  (FI-€1) €l (88-0€) €  (£2O1-8SE) OFS (86-L9)SL (ze1-0%) L6 (8€1-811) Sl (€S¥8-9z62)088s  (091-¢9) TOT  (cT£-8%2) 14b (098 ¥ST-L€€ €52) €50 ¥SC  (S'61-£7£1) 06T oLt paures s1eak-sjif Te[IwIS
S BLIDILID
41SdSN Y3 se paaae
(8'99-7'59) 959 (e1-z1)zl  (¥8-87) OF (£56-61¢) €8% (96-6'5) 9L (zz1-5€) 06 Wwer¥11) 1Tt (bezs+0ove) 020s  (T¥1-€5)6'8  (0£9-112) STF  (SH0 20Z-0€8 661) 9¥9 002  (0°£1-¥'ST) S'9T or'e syeap 190ued duny Ie[IuIS
S BLIDILID
41.5dSN oy se paimnb
(959-6€9)¥¥9  (p1-€1) €l (88-0€)€F  (£TOT-8SE) OFS (8619 s (,€1-0%) L6 (8€1-811) 521 (€S¥8-9z67) 088  (091-C9) TOT  (cT£-8¥2) Tk (098 ¥ST-LE€ €52) €50 ¥ST  (S°6T~£'LT) 06T 0LT -91 SUIDS 1D IE[IUWIS
wire [013u0d ODT1d
S} UI S,BLIAIID 11SdSN
(£v9-0€9) ve9  (ST-¥1) 41 (68-€€)/F  (9801-90%) ¥09  (1°0T-§'S) ¥'L (ev1-sh) €01 (c¥I-TTT)8Cl  (9T¥6-255€) 0999 (¥'/1-T2)TTT  (9££-6827) 0cS (869 ¥TE-S9T €1€) T8L€1E  (¥'TT—€°0T) 81T Ye'T a3 se Q1An1suas Ie[rulg
wile [013U0d OD'Td
93 UI S,BLISILD 115dSN
911 Sk Pa1J3[as S[eNpIA
(1's9-z€9) £€9  (O1-41)ST  (b6-6€)¥S  (68T1-¥8Y) L0  (E0T¥'S)¥'L (ssT-z9) it (£¥1-S2T)Tel (859 01-Tvbb) 0892  (2'61-9'8) ST (€58-9%€) 18S  (Th/ TTH¥S9 60%) ¥90 T1%  (6'82-£'92) T'8T 96°0 -1put jo uontodoid rerruus
(9£5295) 995  (81-91)91  (z8-62)€¥  (T11-98€)88S  (#01-CTS) 1L (t01-60) T£ (ost-zen)ger  (9ess-cesr)zses  (ze1-1'9) €8 (£85-v07) £8€  (¥99 622-69L STT) €28 L2C (€'HT-8'TT) Q€T  BULILD 11SdSA BUISIL 11SdSN
£“(anD) (amo) (9nD) (amD) (aND) % (ano) (ano) (4ND) 000 00T (D) % (4no) (4D) 000 00T (hand) % % ‘PIOUSAIY} {SUL uonduosap A3a1ens
Buruaaids PpauaIds paured papioae ‘pasouderpiano 000 00T 12d pajuanaxd 13d paured ‘uononpax 000 00T 12d 12d suaaIds ‘pausaIds Burpuodsaiion
1811y 1B uosiad 1ad  1e2L-3j1] yiesp S9sED s1a0ued 3uny yesp s1eak-3j11 fyeyow parusnaxd 1D Jo IequnN I2AD
a8e o8e1aay susamsjo  I1ad susards  19dued Sung Ppa12319p pasouSerpiaao  19dued Sun| 190ued ung syjesp a8ejuadniad
Iaquinu Jo Isqunu 19d SuaaIds -U29108 Jo IsquInN 12d paured I90ued
a8eraay a8eraAy Jo I3qUINU Jo a8euadiag s1eak-aJ17 Bunt
a8eraay

11040 096T E Ul (£ 08-55 93 Suruaaids) sardajen)s SUIUSIDS [9POW LYV YD T PAIDI[SS PUL BLISILID 11.SJSN Y3 JO SWLIBY pUE S}Yaudg ' d[qel




ages than in the USPSTF criteria, when lung cancer and compet-
ing mortality risks both are highest.

Analogously, risk-based strategies increased overdiagnosis
compared with the USPSTF criteria results. Higher risk thresh-
olds for screening eligibility lowered overall numbers of screen-
detected and overdiagnosed cases, but simultaneously
increased screen-detected overdiagnosis. Applying high risk
thresholds predominantly selects older individuals and those
with greater smoking exposures, who are more likely to attain
the required risk level (12,24,34). However, these risk factors are
also associated with higher overall mortality, making these
individuals more susceptible to competing mortality and over-
diagnosis (13,35). Thus, the risk threshold and the screening
stopping age should both be explicitly considered for optimal
risk-based-screening strategies.

Screening benefits and harms were similar across risk-
prediction models for risk thresholds matching the USPSTF cri-
teria’s required CT screens, lung cancer deaths averted, or life-
years gained. However, the full PLCOm2012 and LCDRAT models
include more covariates, which may improve risk assessments
in individuals with nonsmoking risk factors.

Previous studies evaluated risk-prediction models in retro-
spective analyses of trials and cohorts (5,6,10). These studies
proposed risk thresholds based on improved performance over
that of the USPSTF criteria, but considered limited timeframes
(eg, 6 years). Our natural history-model approach allows evalu-
ating lifetime screening benefits and harms, such as screening-
extended lung cancer survival and overdiagnosis. In addition,
the natural history models incorporate differences in CT screen-
ing effectiveness between different lung cancer histologies. Our
study indicates risk-threshold performance differs over longer
timeframes. Furthermore, risk thresholds performing well
within retrospective analyses of trials and/or cohorts may be in-
efficient when applied in population-based screening programs.
Our findings are in agreement with a recent NLST-based study,
suggesting risk-based selection reduces lung cancer mortality
more efficiently than the USPSTF criteria does, but it modestly
improves life-years gained (15). However, although this study
focused on risk-decile differences within NLST, we evaluated
the long-term effects of risk-based strategies with different risk-
prediction models, risk thresholds, and screening starting and
stopping ages in the general population.

This study has some limitations. First, only age, sex, and
smoking-related risk factors are considered, for both natural
history models and evaluated risk-prediction models. Yet, risk
factors such as COPD increase both lung cancer and other-cause
mortality risks (3,14). However, risk-prediction models have
shown improved discrimination, calibration, and net benefit
over the USPSTF criteria when using only smoking-related risk
factors (5). Moreover, the natural history models have been
shown to reproduce observed lung cancer outcomes for the US
general population (years 1965-2010) and the NLST and PLCO
trials (29,31-33,36,37). Furthermore, the risk-profile simulator
(SHG) accounts for increased other-cause mortality risk that is
due to smoking (13,22). Additionally, previous studies indicate
the truncated PLCOm2012 model had good discrimination and
calibration (5). However, excluding nonsmoking risk factors
may underestimate risk for individuals with nonsmoking risk
factors. This is of particular importance among risk groups
with lower smoking exposures, for whom nonsmoking risk
factors have a comparatively greater influence on lung cancer
risk. Therefore, future work should explore the effect of con-
sidering additional risk factors in risk-based strategies.
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Second, a single 1950 birth cohort was evaluated, similar to
our analyses that informed the USPSTF (19). However, we per-
formed sensitivity analyses for a 1960 birth cohort. Both USPSTF
criteria and risk-based-screening eligibility were lower because
of lower smoking prevalence and average smoking intensity,
compared with older birth cohorts (13,28,38). Although risk-
based strategies were still more efficient than the USPTF criteria
were, absolute benefits and harms were lower compared with
the 1950 birth cohort. Furthermore, risk thresholds correspond-
ing to specific metrics of the USPSTF criteria differed between
birth cohorts. Thus, risk-based-screening performance in youn-
ger birth cohorts requires further evaluation.

Third, absolute numbers of benefits and harms varied across
CISNET models. This reflects differences in assumptions and
model structures (19,35). Nonetheless, the effectiveness of risk-
based strategies compared with that of the USPSTF criteria was
similar across models.

Risk-based-screening cost-effectiveness remains uncertain.
NLST-based economic evaluation indicates risk-based selection
could greatly improve screening cost-effectiveness (39).
However, another study suggests modest improvements in cost
effectiveness because of high-risk individuals having higher
screening-related costs (15). Our study suggests additional
aspects for consideration. Risk-based strategies yielding similar
life-years as the USPSTF criteria outcomes required 0-6% fewer
screens. Cost-effectiveness studies suggest CT costs consider-
ably influence lung cancer screening cost effectiveness and
budget impact (34,40). Even modest reductions in CT examina-
tions would improve both. In addition, risk-based strategies
yielding similar life-years as that of the USPSTF criteria averted
10.8-13.5% more lung cancer deaths. The costs of care, particu-
larly in the terminal phase, have been shown to have major
effects on cost-effectiveness (40). Therefore, risk-based screen-
ing could yield lower costs of care compared with the USPSTF
criteria. However, risk-based strategies screen older individuals,
with more comorbidities potentially affecting quality of life,
compared with the USPSTF criteria (15). Thus, risk-based strate-
gies yielding similar life-years as the USPSTF criteria yields may
have fewer quality-adjusted life-years. Furthermore, risk-based
strategies yielding similar life-years as the USPSTF criteria had
25.9-30.1% more overdiagnosed cases, negatively affecting qual-
ity of life, and incurring unnecessary treatment costs. Thus,
careful analysis of the cost-effectiveness of risk-based screening
is essential.

Risk-based-screening (cost-)effectiveness may be improved
by reducing overdiagnosis. Augmenting lung cancer risk esti-
mates with life-expectancy information may allow personalized
overdiagnosis risk assessments. A recent study showed good
performance for predicting 5-year all-cause mortality risk (41).
This would be valuable in aiding informed decision making on
screening participation and personalizing screening stopping
ages. Our sensitivity analyses support this, suggesting accu-
rately accounting for life expectancies of fewer than 5years
retains the life-years gained by screening, while reducing over-
diagnosis by more than 65.3%.

Implementing population-based risk-based screening has
potential barriers. For example, whereas risk factors such as
COPD could be derived from linked medical records, others may
not be. Although this may improve risk assessments for individ-
uals with nonsmoking risk factors, acquiring additional infor-
mation might be a barrier for primary care implementation.

In conclusion, risk-based screening reduces lung cancer
mortality more effectively and efficiently compared with cur-
rent USPSTF recommendations. However, risk-based screening
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modestly improves life-years gained and increases overdiagno-
sis. Future studies should investigate the cost-effectiveness of
risk-based screening and the potential for reducing overdiagno-
sis in high-risk individuals.
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