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Abstract: Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin
in the brain. It is released following neuronal activity and is believed to be particularly important
in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine
substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated
with experience-dependent plasticity. The Met allele has been associated with reduced production
of BDNF following neuronal stimulation, which suggests a potential role of this variation with
respect to how the nervous system may respond to challenges, such as brain ageing and related
neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines
the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory
through cognitive changes associated with ageing and dementia. On balance, research to date
indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence
on the level of cognitive functioning in older adults and may also impart increased risk of progression
to dementia. Furthermore, recent studies also show that this genetic variation may modulate an
individual’s response to interventions targeted at building cognitive resilience to conditions that
cause dementia.

Keywords: ageing; dementia; Alzheimer’s disease; BDNF; brain-derived neurotrophic factor;
BDNF Val66Met; cognitive function

1. Introduction

Neurotrophins are critical for cellular development, connectivity, plasticity and maintenance in
the brain. Brain-derived neurotrophic factor (BDNF), the most abundant neurotrophin, has received
significant attention due to a variety of important roles in axonal and dendritic growth and guidance,
synaptogenesis, as well as experience-dependent plasticity in adult animal models [1–3]. BDNF has
been observed secreting from dendrite to axon, from axon to dendrite, in autocrine loops, in paracrine
interactions with neighbouring cells and across long distances through neural circuits [2,4]. BDNF may
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also have a role in the refinement of active neural pathways through activity-dependent strengthening
of co-active synapse terminals and elimination of inactive terminals [3]. Temporally, BDNF works
within seconds of release to influence synaptic function, over minutes to modify synaptic structure,
and over hours to days to change genetic expression and protein synthesis [3]. In this regard, BDNF
has a broad influence on both functional and structural forms of neural plasticity throughout the life
course (for review, see [5]).

The ‘mature’ BDNF protein is derived from a larger pro-BDNF form and it is yet uncertain
whether both the mature and the immature forms of this protein are secreted as a consequence of
neuronal activity [6]. Recently, it has been shown that BDNF maturation is a key process for synaptic
plasticity. BDNF binds to TrkB receptor and via this pathway promotes dendritic growth, spine density
and long-term potentiation [5]. Activation of the pro-BDNF p75NTR receptor reduces neuroplasticity
and facilitates long-term depression [7,8]. In this regard, BDNF appears to have a strong mediating
role in both long-term potentiation and long-term depression, as well as in influencing broader
morphological changes in neurons, likely by signalling changes in actin to effect remodelling [5].
BDNF-immunolabelled cells are present in all cortical regions in both neurons and glia, with a relatively
higher density in the insular and temporal cortices, including the hippocampus, basal ganglia and
amygdala, in addition to certain frontal regions, and have been observed in white matter adjacent to
the cortex [2,9].

The gene for BDNF is located on chromosome 11p14.1 and demonstrates a variety of natural
variations in the human population. Of particular focus for this review is the single-nucleotide
polymorphism (SNP) at nucleotide 196 in exon 5 of the human BDNF gene, involving a guanine
to adenine variation that results in the substitution of valine (Val) to methionine (Met). This SNP
(rs6265), widely known as the BDNF Val66Met polymorphism, has received substantial attention,
as hippocampal neurons transfected with the Met version of the SNP express 30% less secretion of
BDNF protein upon stimulation than neurons transfected with the Val version, with no differences in
constitutive release between these variants [10]. Early reports indicated that BDNF Met was associated
with reduced localization with synaptic markers and reduced trafficking in transfected cells, lower
levels of the metabolic marker n-acetyl aspartate in the human hippocampus, and abnormal medial
temporal lobe activation in the N-back working memory task [10,11]. A range of functional deficits
and increased anxiety behaviours have been demonstrated in transgenic animal models where the Met
version of the BDNF gene is expressed [12–14]. Studies have demonstrated that mice transfected with
two BDNF Met alleles show reduced N-methyl-D-aspartate (NMDA) receptor-mediated long-term
potentiation and long-term depression in hippocampal and infralimbic medial prefrontal cortex
synapses [14,15]. The function of the NMDA receptor has been associated with memory and cognition,
particularly within the ageing brain [16,17].

Overall, it is assumed that the BDNF Val66Met polymorphism leads to a deficit in normal BDNF
expression and impaired synaptic plasticity through multiple pathways, particularly in the context of
activity-dependent functions. Given the critical role of BDNF in neural processes, BDNF Val66Met may
affect brain and cognitive functioning in the context of ageing and Alzheimer’s disease. Furthermore,
given its ties with activity-dependent secretion of BDNF, it is possible that physical activity and
cognitive activity may be important modulators to consider. The aim of this review was to examine the
potential of the BDNF Val66Met polymorphism to alter an individual’s susceptibility to brain ageing
and dementia and to further identify pathways through which these effects may be conferred.

2. Methods

Articles published up until January 2020 were considered for inclusion. Literature searches were
conducted using the PubMed and Google Scholar databases. Key search queries included combinations
of the following terms: ‘BDNF’, ‘Val66Met’, ‘A196G’, ‘cognition’, ‘cognitive function’, ‘cognitive
functioning’, ‘cognitive decline’, ‘Alzheimer’s disease’, ‘dementia’, ‘cognitive reserve’, ‘physical
activity’, ‘exercise’, ‘brain structure’, ‘brain volume’, ‘brain function’, ‘APOE’, and ‘apolipoprotein
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E’. In addition to these key words, additional search terms of possible relevance were continuously
identified from articles identified through database searches. We included articles published in English
that focused on both in vivo and in vitro studies of humans and animals. Reference lists of identified
articles were also searched to aid in the identification of additional articles of high relevance to the topic.

3. Influence of the BDNF Val66Met Polymorphism on Brain Structure and Function

Reduced [18] and less efficient [10] hippocampal activation has been reported during memory
tasks in healthy young adults who carry BDNF Met. Later studies of healthy older adults identified
that the presence of BDNF Met was associated with a significant reduction in medial temporal lobe
activation during the encoding phase of a memory task [19]. Relative to the Val allele, the Met allele
has also been linked with reduced neuronal activity in the medial prefrontal cortex in both rodent and
human studies [14,20], as well as increased amygdala activation in response to emotional stimuli in
human fMRI investigations [21].

In humans, possession of the Met allele has been associated with reduced grey matter in areas
of the mid-frontal regions of the brain, fusiform gyrus, amygdala and thalamus [22,23]. In addition,
meta-analyses have linked the Met allele to reduced grey matter volume of the hippocampus [24,25].
However, a more recent and larger meta-analysis did not support a link between the polymorphism
and hippocampal volume in healthy individuals, indicating that previous associations may have been
limited by imaging volume technique and sample size [26]. Ultimately, any association of BDNF
Val66Met variants with grey matter volume may be, in part, due to developmental effects exerted by
the polymorphism, with a recent longitudinal investigation identifying subtle and differential effects of
the Met and Val variants on the maturation of grey matter volume in children and young adults [27].

Mixed findings have been reported regarding the relationship between BDNF Val66Met and white
matter volume and activity, with most studies limited by small to moderate sample sizes. One of the
larger studies of 455 adult twins and non-twin siblings reported that the Val allele was associated with
a reduction in microstructural integrity of major fibre tracks in various frontal, midbrain and occipital
regions, measured by fractional anisotropy [28]. This finding was replicated and further developed
in a study that also included radial diffusivity: lower diffusivity was linked to reduced myelination,
which was observed in healthy, young Val homozygotes [29]. Notably, these authors suggested that
reduced fractional anisotropy and diffusivity can be linked to reduced activity, as well as increased
efficiency of these brain regions, thus implying the results may not actually be of a detrimental effect for
Val homozygotes. Associations of BDNF Val66Met and markers of white matter health or development
are, however, inconsistent, with another study finding no relationship between BDNF Val66Met and
white matter volume or integrity in a sample of 99 young adults [30]. In addition, one study used
graph theory to investigate the effect of Val66Met on white matter structural networks in 73 adults
(aged in their 30s and 40s) [31]. They found no differences with respect to global efficiency, local
efficiency and modularity between Val and Met allele groups. Furthermore, responses to random
failures were equal in both genotype groups. However, when targeted attacks to central nodes were
modelled, Met carriers were significantly more vulnerable, resulting in reduced connectivity of the
white matter structural network [31].

4. BDNF Val66Met and Cognitive Function

A diverse and not always consistent range of findings regarding the impact of BDNF Val66Met
on cognitive domains has been reported. A number of studies have reported that healthy, young
carriers and homozygotes of BDNF Met demonstrate poorer declarative memory, specifically episodic
memory [10,18,32,33]. However, statistically significant findings in this domain are not consistently
reported [34,35], and it appears that more robust relationships between the polymorphism and
cognitive function have been found in samples containing cognitively vulnerable groups, such as
older individuals (e.g., [36]) or individuals with schizophrenia (e.g., [10,32]). A recent meta-analysis
of almost 6000 participants, comprising a mixed cohort of healthy, psychiatric, younger and older
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participants, confirmed that Met carriers performed more poorly on declarative memory tasks relative
to Val homozygotes [25]. However, when including only the healthy cohorts, this effect became a
non-significant trend.

The BDNF Met allele has also been implicated in cognitive deficits outside of memory, including
reduced visuospatial function performance in individuals with schizophrenia [32,37] and executive
function performance in older adults [38]. However, results regarding the relationship between BDNF
Val66Met and these cognitive functions are also not consistent. For example, a large meta-analysis of 7000
heterogeneous participants reported no link between the BDNF Val66Met polymorphism and cognitive
functions such as executive functioning, cognitive fluency and general intellectual functioning [39].
Conversely, a study using an auditory distraction paradigm—different, methodologically, from standard
cognitive testing—has shown that BDNF Val homozygosity may be disadvantageous when inhibitory
mechanisms are required, indicating that increased activation associated with the Val allele may not be
advantageous for inhibitory effects processed in frontal pathways [40]. A recent systematic review on
the topic has confirmed that BDNF Val66Met likely has some impact on cognitive function, although
the specific direction is difficult to ascertain [41]. Additionally, Toh and colleagues [41] suggest that
Met may be advantageous for executive functioning, although broader results are not consistent.

The potential influence of the BDNF Val66Met polymorphism on cognition may be age-specific.
For example, the determinantal influence of BDNF Met on episodic memory, as well as perceptual
speed and executive functioning, is typically larger at older ages [42]. In a study of 116 healthy
adults aged from 20 to 93 years, the negative association of age and test performance in item and
prospective memory was stronger in BDNF Met carriers than in Val homozygotes [36]. Other areas
of cognitive function may also be exacerbated in older Met carriers. A longitudinal study involving
older individuals on perceptual speed tasks over a span of 13 years [43] identified that carriage of the
BDNF Met allele was associated with a steeper age-related decline in this cognitive ability. Relatively
decreased perceptual speed has also been reported in older Met-carrying women [44]. The Met allele
has also been implicated in poorer processing speed, delayed recall and general intelligence among
elderly individuals [45].

Physiological evidence indicates that older individuals with a BDNF Met allele experience
decreased hippocampal activation when completing memory tasks, particularly during the encoding
process, relative to that of Val homozygotes [19,46]. Changes in brain white matter, specifically the
posterior of the corpus callosum, also feature a significant interaction effect of age and the BDNF
Val66Met polymorphism, with older Met carriers possessing a less dense structure [47], although this is
not consistently reported [19]. It has been suggested that BDNF expression decreases with age, which
may partly account for older-age cognitive and neurological phenotypes [48]. This ageing-related
decline in BDNF availability may be further exacerbated by the Met allele, which is associated with less
BDNF activity-dependent secretion [10]. However, null and inverse findings regarding the cognitive
implications of BDNF Val66Met variants have also been reported. For example, an examination of
BDNF Val66Met and performance across multiple cognitive domains in a sample of older Chinese
men found no difference between Val/Val, Val/Met or Met/Met groups [49]. This study may, however,
have been underpowered to detect the small effects that have been reported elsewhere (n = 161). In a
longitudinal study of older adults, Met carriers performed more poorly on a task of executive function
at study entry but did not exhibit a decline in performance, which was present in Val homozygotes,
over the 10-year follow-up period [50]. Enhanced executive function in Met carriers, particularly in
inhibitory tasks, has also been reported in other studies [51,52]. One study found this positive Met
effect for executive functioning in a cohort with an average age of 79 but not in their second cohort
with an average age 64 [53]. Consistent with what is found in young adults, BDNF Val or Met alleles’
positive or negative effects on cognitive performance in older subjects may depend on the specific task
requirements and goals.
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Taken together, the current state of evidence indicates that in older adults without clinically
significant cognitive impairment the Met allele may be somewhat detrimental to certain cognitive
functions and not associated with performance in others.

5. Exploring the Link Between the BDNF Val66Met Polymorphism and Dementia Due to
Alzheimer’s Disease

The rapidly increasing number of people with dementia throughout the world presents an
immense health, social and economic challenge, for which we currently have no evidence-based
capacity to prevent, halt or cure. Many of the neurodegenerative diseases that cause dementia, such as
Alzheimer’s disease (AD), are characterised by the development of specific pathological features and
the progressive loss of subsets of neurons and their connections [54]. Given the significant role that
BDNF exhibits in the support and survival of specific neuronal populations, including those affected in
AD, BDNF may too play an important role in the pathophysiology of AD.

BDNF and its receptor TrKB are both reduced in expression in the AD brain [55], with BDNF levels
being most significantly reduced in the hippocampus and parietal cortex [56]. Levels of circulating
BDNF protein can be established from blood samples and have been reported to be reduced in
psychiatric conditions [57] as well as in individuals with mild cognitive impairment (MCI; [58]), the
latter proposed to be a potential precursor state for AD. However, varied reports of increased [59],
decreased [60] and unchanged [61] BDNF levels in neurodegenerative conditions such as AD have
been found. Increased BDNF in serum has been linked with specific memory deficits in AD [62],
and decreased BDNF has been associated with the presence of APOE ε4 and apathy in subsets of
AD [63]. In a prospective study of 2131 older individuals without dementia, higher serum BDNF
level, but not the BDNF Val66Met genotype, was associated with a reduced risk of subsequently
developing dementia [64]. Interestingly, subsequent subgroup analysis in this investigation showed
that the association of high BDNF levels and lower risk of dementia was found solely in women with
a college degree. However, others have found the BDNF genotype does play a role in the cognitive
performance of individuals at higher risk of developing dementia. High amyloid-beta load in the
brains of cognitively normal older BDNF Met carriers, relative to Val homozygotes, has been linked
with worse episodic memory and executive function [65] and with a steeper trajectory of cognitive
decline over time [66]. In a similar study of older people without dementia, carriage of the Met allele
was associated with greater entorhinal cortex atrophy and lower Mini-Mental State Examination scores
specifically in those individuals with amyloid positivity only [67].

Relatedly, greater hippocampal atrophy over a three-year period has been reported in Met carriers
who had higher levels of AD-related pathology [65], and, in autosomal-dominant AD, Met carriers
have significantly worse memory performance, lower hippocampal metabolism and increased levels
of pathological tau [68]. Such findings may explain why inheritance of a Met allele is associated with a
higher risk of conversion from MCI to AD [69]. In cohorts including subjective memory decline, MCI
and dementia, the detrimental effects of amyloid positivity (for example, from fluid biomarkers or PET
imaging) on brain connectivity (hippocampus to medial/frontal connectivity) were higher in BDNF
Met carriers [70]. Finally, in older adults possessing gene mutations linked to dominantly inherited
AD but without dementia, BDNF Met carriage was associated with more substantial memory decline
and hippocampal volume loss, as well as increased cerebrospinal fluid (CSF) tau levels, relative to Val
homozygotes [71].

It is, however, important to acknowledge that contradictory findings have also been reported
with regard to the associations of BDNF Val66Met and risk for dementia. For instance, in a Japanese
sample of 487 participants with AD and 471 matched controls, BDNF Val homozygosity was observed
more commonly among the participants with AD [72]. Similar results with regard to a heightened AD
risk incurred from BDNF Val have been reported from within an Italian sample of Caucasians [73].
Specifically, a BDNF Val allele was more frequently observed within AD patients than among healthy
volunteers. Such results are further consistent with those of a Hungarian sample, in which BDNF Val
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homozygosity was present in 59% of AD cases but only 32% of healthy controls [74]. Some degree
of the inconsistencies in reported relationships between BDNF Val66Met and AD are likely due to
differences in the diagnostic criteria used for AD and differences in population distributions of BDNF
Val66Met alleles.

Thus, although the relationship between serum BDNF and AD symptomology may be unclear,
current research suggests that inheritance of BDNF Met leads to more severe or more rapidly progressing
cognitive deficits in the presence of AD pathology, in most cases. However, the presence of a BDNF
Met allele does not appear to directly and independently affect an individual’s risk for dementia.
These studies raise the prospect that many effects of the BDNF polymorphism in ‘healthy’ older
cohorts, as described above, may have been influenced by the presence of sub-clinical AD and other
neurodegenerative pathology.

6. Interactions between the APOE Gene and the BDNF Val66Met Polymorphism

Age and family history are the major risk factors for dementia, with risk of AD rising exponentially
after the age of 65 years. The most significant non-mutation genetic risk factor for AD is a common
variant in the APOE gene. Specifically, the presence of one or more APOE ε4 alleles increases the risk
of AD in older adults in a dose-related fashion [75,76]. With regard to brain structure and function,
a growing body of evidence reports interactions between APOE and BDNF Val66Met variants.

In one study of healthy older adults, an interaction effect of BDNF Val66Met and APOE was
identified, in which the presence of both of the compromising alleles (Met and ε4) was linked to
significantly reduced hippocampal activation during memory tasks [77]. Other imaging studies
have found that carriers of both BDNF Met and APOE ε4 possess a lack of neural compensatory
capacity when challenged by AD [78]. Specifically, during ageing, the thickness of the precuneus and
posterior cingulate cortex decreases more markedly in BDNF Met carriers, and the BDNF Met/APOE
ε4 combination is associated with steeper entorhinal cortex atrophy in MCI/AD cases, as well as
steeper performance decline on memory tests [78]. The combination of amyloid-beta deposits in the
brain with both APOE ε4 and BDNF Met has been related to the steepest declines in memory and
language cognitive domains in older individuals without dementia [79]. This latter study estimated
BDNF Met carriers with the APOE ε4 allele would have clinically significant cognitive impairment in 3
years, as compared to 10 years if the individual was an APOE ε4 carrier and BDNF Val homozygote.
Furthermore, a protective effect of BDNF Val on episodic memory performance in older adults without
dementia has been reported [80]. In this study of 433 healthy older adults, no difference in performance
was observed between APOE allele types in BDNF Val homozygotes, but the protective effects of APOE
ε2 and the detrimental effects of APOE ε4 were observed in BDNF Met carriers. Consistent with other
findings [19,79,80], a recent study on amnestic MCI has likewise indicated that inheritance of the APOE
ε4/BDNF Met combination was associated with the worst memory performance when compared to
other polymorphic combinations [81].

In combination, these studies have demonstrated that an interaction between APOE and BDNF
Val66Met variants likely explains more variance in brain and cognitive outcomes than each gene
variant explains individually. At the very least, an additive detrimental effect of both of these at-risk
allele types is exerted on memory performance, its associated brain regions and patterns of brain
connectivity [82].

7. Physical Activity, BDNF, and Risk of Cognitive Decline

It has been suggested that approximately a third [83,84] to half [85] of dementia cases may
be effectively preventable by addressing major modifiable factors, such as depression, mid-life
hypertension, smoking, mid-life obesity, diabetes, physical inactivity and low educational attainment.
Low physical activity in particular has been identified as a major population-attributable risk factor
for dementia [83–85], as well as increasing the risk of other lifestyle-related diseases associated with
increased susceptibility to dementia, including obesity, type 2 diabetes and cardiovascular diseases [86].
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Consequently, there is substantial interest in whether increasing physical activity and exercise may
constitute an intervention to reduce risk or progression of dementia. Meta-analyses of observational
data support a role for exercise in improving cognitive performance, although the results of relevant
prospective trials are mixed [87].

In animal studies, brain BDNF is increased in the hippocampus and cerebral cortex following
exercise [88], as well as following environmental enrichment which also promotes physical activity
(e.g., [89–91]). Blocking BDNF action inhibits the exercise-mediated increase in synaptic proteins [92].
Furthermore, exercise can counteract the detrimental effects of other variables that may cause a
reduction in BDNF levels, such as stress [93]. In humans, peripheral BDNF is increased with a
single session of exercise, with intensified session-based effects and increased resting BDNF with
additional subsequent sessions [94]. However, this meta-analysis also reported that these benefits
may be modulated by sex, with women experiencing a decreased effect [94]. The beneficial effects of
exercise on BDNF secretion also appear to attenuate with age in rodents, with this effect reduced in
older mice but still present [95], although this is yet to be clarified in human research.

Still, multiple trials have demonstrated improvements in cognitive functioning and increased
levels of serum BDNF following exercise interventions. For instance, in participants with amnestic MCI,
acute aerobic exercise and acute resistance training led to improved cognitive functioning compared to
control in two separate trials [96,97]. In these studies, increased serum BDNF levels were additionally
observed among the participants who completed the acute aerobic exercise program. In a 16-week
multimodal physical exercise program involving older cognitively healthy individuals and individuals
with MCI, physical training reduced blood-based pro-inflammatory markers, increased BDNF plasma
levels and improved cognitive functioning among those with MCI [98]. While upregulation of BDNF
expression is presumed to account for some of the exercise-related cognitive benefits, it is interesting
to note that the cognitive improvements observed after aerobic exercise in the study by Tsai and
colleagues [96] were not significantly correlated with the observed increases in serum BDNF.

With respect to the BDNF Val66Met polymorphism, a longitudinal investigation involving over
700 community-based older adults demonstrated that lower baseline physical activity was linked to
increased incidence of cognitive difficulties and dementia, a risk that increased incrementally with the
number of Met alleles present [99]. Additionally, a longitudinal analysis following older adults over a
12-year period identified a possible sex interaction, in which physical activity was positively associated
with cognitive function in male BDNF Val homozygotes but not in male Met carriers [100]. In contrast,
physical activity was not associated with cognition in women of either genotype. A similar finding,
that physical activity was associated with improved executive functioning and a slower decline in this
cognitive domain over a 9-year period solely in older Val homozygotes, has also been reported [101].
In this study, however, sex was not a moderating factor on the relationships between BDNF Val66Met,
exercise and cognitive performance. In a separate cross-sectional study, older Val homozygotes who
exercised more regularly had, on average, greater volume in hippocampal and temporal regions when
compared to Met carriers who exercised a similar amount [102].

Exercise has been used as an intervention to improve cognitive function in older adults, but the
potential interaction with BDNF Val66Met status remains unclear. For example, one study determined
that improvements in episodic memory performance following exercise were dependent on Val
homozygosity [103], but Nascimento and colleagues [104] reported that BDNF Val66Met was unrelated
to any cognitive outcome in their study. In a younger-to-middle-aged (30–55 years old) sample, exercise
appeared to compensate for lower performance on cognitive measures of working memory in BDNF
Met carriers relative to Val homozygotes [105]. In those even younger (21–35 years), no differential
effect of exercise on performance in locomotor learning was linked to variation in BDNF Val66Met [106].

Although difficulties in comparing available studies on this topic are evident due to methodological
differences in both exercise intervention and assessment of cognitive function, these findings indicate
that age may also play a role in the interaction between BDNF Val66Met and exercise. This is in line
with the resource modulation hypothesis, in that gene-related effects on cognitive function are more
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evident in older participants [42,100,107]. While there may be no overt effect of exercise in younger
adults, middle-aged BDNF Met carriers who exercise and generally engage in more physical activity
may be able to avoid a negative Met-specific cognitive phenotype, while older adults, particularly those
with MCI or cognitive difficulties, may experience greater cognitive benefits from exercise-induced
secretion of BDNF if they are Val homozygotes. Additional cross-sectional and longitudinal research
covering a wide range of age groups measuring cognition in a consistent manner would be of further
benefit to examine this hypothesis.

8. BDNF and Cognitive Reserve

Similar to physical activity, cognitive activity, often reflected by education level, has been identified
as one of the major modifiable risk factors for dementia. Although a higher level of education may
exert some of these protective effects through its association with socioeconomic status and greater
access to healthcare, engaging in further education may also directly benefit the development, structure
and function of the brain [108,109].

The cognitive reserve hypothesis posits that greater engagement in cognitively stimulating
activities across the lifespan results in increased protective neural compensation and heightened
neural efficiency, which results in a later onset of dementia despite having little effect on disease
pathology onset or rate of accumulation [110,111]. Stern [110] suggests that individuals with higher
cognitive reserve have, on average, higher levels of neuropathology prior to experiencing behavioural
changes, displaying resilience to the effects of the pathology. This has subsequently been supported by
evidence from a range of studies, in which greater brain connectivity and maintenance of cognitive
function have been directly associated with cognitive reserve variables in the presence of MCI and
AD [112,113]. The effects of cognitive reserve are not restricted to pathological functioning, and the
level of cognitive reserve correlates positively with performance in a range of cognitive domains in
healthy older adults [114]. This cross-sectional investigation also reported that a positive association of
cognitive reserve and executive functioning was present in BDNF Val homozygotes but not in Met
carriers. In a subsequent 36-month longitudinal investigation of this same cohort, cognitive reserve
was associated with the rate of change in executive functioning only when the interaction with BDNF
Val66Met was considered, with the low-cognitive-reserve/BDNF Met carrier participants the sole group
to show the beginnings of cognitive decline [115].

Similar to physical activity, emerging evidence also points to a role of cognitive activity in
stimulating the release of BDNF protein [116]. In this small-scale intervention study of older
women with MCI (N = 44), the authors observed a parallel increase in both serum BDNF level
and cognitive performance following 24 sessions of computerised mental training. The role of
the BDNF polymorphism was analysed in a similar study assessing the cognitive outcomes of a
computerised brain-training program in 27 older adults who had experienced heart failure [117].
In this investigation, although serum BDNF levels increased following the intervention, no differences
in BDNF levels or cognitive performance were observed due to differing BDNF Val66Met variants.
Nonetheless, with a small effect size expected with regard to the modulatory effects of BDNF Val66Met
on cognitive and serum outcomes following cognitive stimulation, these investigations are likely
underpowered to find support, or otherwise, for such a hypothesis.

Relatedly, this BDNF genotype may also impact interventions designed to improve or stabilise
cognitive function and cognitive reserve, potentially acting as a bulwark against neurodegenerative
conditions such as dementia. The Tasmanian Health Brain Project is a long-term pragmatic
interventional study that is investigating the potential cognitive benefits for older adults (50–79 years
of age) re-engaging in formal education. This study has found that across all older adults, the cognitive
domain of language processing benefits most from engagement in university education [118].
Furthermore, the BDNF Val66Met polymorphism may influence who may benefit from such
interventions, with Val homozygotes deriving less benefit than Met carriers [119]. Specifically,
Met carriers who were not engaged in education showed a decline in language processing function
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over time, whereas Met carriers in the intervention group gained a benefit in this cognitive domain in
a dose-related fashion relative to the amount of study that they had undertaken.

9. Summary and Limitations

The BDNF protein plays an important role in mediating the interaction between the external
environment and internal neurological function and capacity. Met allele carriers for the BDNF Val66Met
polymorphism may represent a ‘vulnerable’ group in the face of a brain challenge such as a major
neurological disease like AD. From animal studies and investigations of human brain plasticity, the Met
allele version appears to be associated with a somewhat deficient plasticity response to experience.
However, some of these effects may be direct or indirect and potentially too subtle to be meaningful for
future translational studies. In our studies, the BDNF Val66Met polymorphism may be influencing how
an individual is accessing the benefits of a lifetime of exposure to cognitively stimulating experiences
to build cognitive reserve and other areas of cognitive capacity that may help reduce susceptibility to
dementia [114,115,119]. In this regard, it may be vital that people with the vulnerable genotype are
engaged in mentally stimulating activities serving as a bulwark against dementia. Specific genetic
combinations, such as that of APOE and BDNF Val66Met, may further identify cognitively vulnerable
people who may be particularly advised to consider how they can reduce their risk of dementia outside
of the influence of ageing and genetic inheritance. Although not reported here, the BDNF Val66Met
polymorphism has also been linked to a deleterious response to stress and trauma [120], which may
play a role in cognition and subsequently dementia, given the relation between neurodegenerative
changes and an abnormal stress response in AD [121].

Although much of the research has focused on BDNF Val66Met allele variation, Chen and
colleagues [12] note that it is possible that some of these effects could be related to another component
of the BDNF gene or that BDNF Val66Met is mediating a downstream effect or the effect of another
gene. Many polymorphisms in the BDNF gene have been identified, including rs11030104, rs16917204,
rs7103411, rs6265 and rs2030324, which may have an interaction effect or better explain some of the
variations in the levels of BDNF in certain contexts [122]. A further limitation is that most human-based
studies on BDNF Val66Met often, but not always, exclusively consider either Caucasian or Asian
samples, with participants excluded from analyses if not part of the majority. This is because there is
potential for different patterns associated with Asian and European populations, which may be related
to a unique location of the SNP in each ethnic group [123].

10. Conclusions

On balance, research to date indicates that the BDNF Met allele is potentially associated with
a detrimental influence on the level of cognitive functioning in older adults and may also impart
increased risk of progression to dementia through multiple pathways.
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