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Abstract: Hair loss is a common medical problem affecting both males and females. Dermal papilla
(DP) cells are the ultimate reservoir of cells with the potential of hair regeneration in hair loss patients.
Here, we analyzed the role of macrophage-derived Wnts (3a and 7b) and macrophage extracellular
vesicles (MAC-EVs) in promoting hair growth. We studied the proliferation, migration, and expression
of growth factors of human-DP cells in the presence or absence of MAC-EVs. Additionally, we tested
the effect of MAC-EV treatment on hair growth in a mouse model and human hair follicles. Data
from western blot and flow cytometry showed that MAC-EVs were enriched with Wnt3a and Wnt7b,
and more than 95% were associated with their membrane. The results suggest that Wnt proteins in
MAC-EVs activate the Wnt/β-catenin signaling pathways, which leads to activation of transcription
factors (Axin2 and Lef1). The MAC-EVs significantly enhanced the proliferation, migration, and levels
of hair-inductive markers of DP cells. Additionally, MAC-EVs phosphorylated AKT and increased the
levels of the survival protein Bcl-2. The DP cells treated with MAC-EVs showed increased expression
of vascular endothelial growth factor (VEGF) and keratinocyte growth factor (KGF). Treatment of
Balb/c mice with MAC-EVs promoted hair follicle (HF) growth in vivo and also increased hair shaft
size in a short period in human HFs. Our findings suggest that MAC-EV treatment could be clinically
used as a promising novel anagen inducer in the treatment of hair loss.
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1. Introduction

Hair loss is a common disorder resulting from genetic, hormonal, traumatic, and iatrogenic events.
It can cause significant psychological stress and adversely affects self-confidence [1,2]. Hair follicle
(HF) is a self-renewing structure that undergoes a cycle of phases: anagen, catagen, and telogen. The
anagen stage is a rapid proliferation of follicular epithelial cells known as matrix cells in the hair bulb,
which then differentiate to make the hair fiber and follicular root sheath cells. Bulb matrix cells are
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under the control of specialized mesenchymal cells in the dermal papilla. The catagen stage is an
apoptosis leading to regression of the lower two thirds of the follicle, preserving the stem cell region,
and telogen is a relatively inactive period between the growth phases [2]. HF is composed of mutually
dependent layers of the dermis and epidermis [3]. As the complexity of the mechanism involved in HF
growth is not well understood, there is an underlining need to decipher it. The development of the
fully functional HF renewal system is complex, and it is believed to involve rearrangement of stem
cells and their niches [4]. The primary treatment options for hair loss are drugs and transplantation
of autologous HF. However, HF donors are few and usually thousands of hair follicles are needed
for a pleasant appearance, and drugs (finasteride and minoxidil) only slow down the process of hair
fall for a short time [2,5]. Therefore, novel strategies with hair growth capability are needed for hair
loss treatment.

Extracellular vesicles (EVs) are natural nano-membranous vesicles released by most cells in
extracellular space and culture media [6–10], consisting of proteins, lipids, and nucleic acids [11–13].
Studies have shown that EVs play a crucial role in cell–cell communication [12,14]. Numerous
recent studies have used immune-cell-derived EVs for therapeutic strategies in many diseases [14–17].
Few studies have described the role of macrophages in hair growth and regeneration [18–20]. A
recent study identified the novel involvement of perifollicular macrophages in the activation of skin
epithelial stem cells, as an additional signal that regulates HF growth [18]. Another study showed that
macrophages induce HF growth through tumor necrosis factor (TNF)-induced AKT/β-catenin signaling
in Leucine-rich G-protein-coupled receptor 5 (Lgr5)+ HF stem cells [20]. A recent study clearly showed
that human perifollicular macrophages maintain the anagen stage in humans by activating DP cells
by secreting Wnt proteins [21]. However, the effect of macrophage-derived EVs (MAC-EVs) on the
activation of dermal papilla (DP) cells and hair growth is unknown. In this study, we, for the first
time, investigated the effect of EVs extracted from the supernatant of cultured macrophages on DP cell
activation, to understand the underlining molecular mechanism of HF generation in vitro and in vivo
using a mouse model.

2. Materials and Methods

2.1. Cell Culture

Murine Raw 264.7 cell line (ATCC) was cultured in Dulbecco’s Modified Eagle Media (DMEM)-high
glucose (HyClone, Logan, UT, USA), supplemented with 10% EV-depleted fetal bovine serum (FBS)
(Hyclone) (18 h, at 120,000× g and 4 ◦C) and 1% penicillin-streptomycin (Gibco, Carlsbad, CA, USA), at
37 ◦C, with 5% CO2.

2.2. Isolation of Dermal Papilla Cells

The anagen-phase HFs were obtained from scalp skin after informed consent was obtained from
the patients. The study was approved by the Medical Ethical Committee of Kyungpook National
University and Hospital (Daegu, Republic of Korea) and was conducted in accordance to principles
and guidelines of the Declaration of Helsinki. DP cells were isolated from the bulbs of dissected hair
follicles, transferred to tissue culture dishes coated with bovine type I collagen, and cultured in DMEM
low-glucose (HyClone, Logan, UT, USA) supplemented with 1×Antibiotic-Antimycotic, 1 ng/mL
bovine fibroblast growth factor, and 20% heat inactivated FBS at 37 ◦C. The explants were cultured for
7 days, and the medium was changed every 3 days. The isolated DP cells were then plated in 100 mm
culture dishes containing DMEM low-glucose, supplemented with 10% heat-inactivated FBS. The cells
were sub-cultured according to the percentage of confluence, and cell passage number 2 was used in
this study [2].
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2.3. Isolation of Extracellular Vesicles and Condition Media for Macrophages

When the cells were about 80% confluent, extracellular vesicles were extracted from the culture
media of macrophages using ultracentrifugation, as described previously with modification [7]. Briefly,
the medium was centrifuged at 1500× g for 10 min, at 2000× g for 20 min, and then at 10,000× g for 30
min, at 4 ◦C, to remove the unwanted cells and debris. Next, the supernatant was filtered through a
0.45 µm pore size filter. A small portion of the medium was collected, called EV-media (EV-M; media
containing EVs), and stored at −80 °C until experimental use. This medium was then ultra-centrifuged
at 100,000× g for 60 min, and the supernatant was collected, called EV-depleted media (EV-DM; media
containing no EVs), and stored at −80 °C. The EV pellets were washed with phosphate-buffer saline
(PBS) by ultracentrifugation, as stated above, reconstituted with 50–100 µL PBS, and stored at −80 °C.
The ultracentrifugation was performed using a SW28 rotor, and ultra-clear tubes of optima TML-100
XP ultracentrifuge (Beckman Coulter, GA, USA). The EV concentrations were measured by Pierce
Bicinchonic Acid Protein Assay Kit (Thermo Fisher Scientific, MA, USA) and represented as its total
protein concentration (per mL) in this study.

2.4. Western Blot Analysis

Western blot analysis was performed as described in a previous study [7]. Whole cells and
EV-lysates were prepared in Sodium Dodecyl Sulfate (SDS) lysis buffer (62.5 mM Tris, pH 6.8, 2%
SDS, 0.1% β-mercaptoethanol, 10% glycerol, and protease inhibitor cocktail (Sigma, MO, USA). Equal
amounts of protein were loaded and separated using 10% SDS- polyacrylamide gel electrophoresis.
The proteins were transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, MA, USA),
probed first with the primary antibody, and then with the secondary antibody conjugated with
horseradish peroxidase (see Supplementary Table S1 for details). The signals were detected using
enhanced chemiluminescence (GE Healthcare, IL, USA) according to the manufacturer’s instructions.
Blot images were cropped and prepared using Picasa3 (version 3.9.1.4.1) (Google, CA, USA) and/or
PowerPoint program (Microsoft, WA, USA) (contrast was adjusted, if necessary, for better visualization).
Band intensity was measured by GelQuant.NET software (Version 1.8.2) (BiochemLabSolutions.com,
CA, USA).

2.5. Transmission Electron Microscopy (TEM)

The MAC-EVs pellets were resuspended in 100 µL of 2% paraformaldehyde. Next, 5 µL EVs
pellets were attached to the Formvar-carbon coated with EM grids, and covered with protective
material like aluminum foil for 20 min to avoid any damage/dryness to the sample. About 100 µL of
PBS was added on a sheet of parafilm and grids were transferred on to the drops of PBS, using sterile
forceps for washing. Next, it was transferred to 50 µL of 1% of glutaraldehyde and incubated at 25–30
°C for 5 min, and then washed with distilled water for 2 min. Samples were stained using 2% uranyl
acetate. These steps were repeated 7 more times, and samples were allowed to completely dry before
observing under an HT 7700 transmission electron microscope (Hitachi, Tokyo, Japan) to view the size
of the EVs [6].

2.6. Nanoparticle Tracking Analysis (NTA)

The measurement of size of MAC-EVs was performed by Nano Sight LM 10 (Malvern,
Worcestershire, UK) according to the instructions provided. The sample was diluted 1000-folds
in milli-Q water, a sterile syringe was used to inject the sample into the chamber, and measurements
were done three times, as described previously, and analyzed [6].

2.7. Flow Cytometry

MAC-EVs were made to attach to 4 µm aldehyde/sulfate latex beads (Invitrogen, CA, USA) by
mixing 5 µg of MAC-EVs with a 10 µL volume of beads for 15 min. PBS was added to a final volume
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of 1 mL and the mixture was incubated in a rotary shaker for 2 h at room temperature. The reaction
was stopped by adding 100 mM glycine and 2% BSA dissolved in PBS, and the mixture was again
incubated in a rotary shaker for 30 min at room temperature. For every 10 µL of the MAC-EV-bound
beads, 10 µL of Wnt3a and Wnt7b antibody mixture was incubated overnight at 4 ◦C, after which the
mixture was centrifuged at 15,000× g for 2 min. The resulting supernatant was discarded. Alexa Fluor
Fluorescein isothiocyanate (FITC) anti-rabbit antibody with 2% BSA dissolved in PBS was added to the
mixture, which was then incubated at 37 ◦C for 60 min. Samples were diluted to 1 mL with 2% BSA
in PBS and centrifuged for 2 min at 15,000× g. The supernatant was discarded, and the beads were
resuspended in 1 mL PBS for flow cytometric analysis performed using a BD FACS Aria III instrument
(BD Biosciences, NJ, USA).

2.8. EV Interaction and Internalization Assay

The interaction and internalization of MAC-EVs were analyzed with confocal microscopy [14].
The EVs were labeled with lipophilic dye (DiD) by incubating for 20 min at room temperature and
washing with PBS by ultracentrifugation, as mentioned above. The DiD-labelled EVs (10 and 20 µg)
were incubated with human DP cells for 1 h at 37 ◦C, before methanol fixation. Antifade agent was
used to mount the coverslips (Vector Laboratories, CA, USA). The uptake of EV was observed by LSM
800 Laser scanning microscopy (Carl Zeiss, Baden-Württemberg, Germany).

2.9. In Vitro Cell Proliferation Assay

The DP cells (5000 cells/well) were seeded in 96-well plates and incubated with PBS, EV-DM
(100%), EV-M (100%), and MAC-EVs (5, 10, 15, and 20 µg) for 24 h at 37 ◦C. The proliferation was
measured at 450 nm using a Cell Counting Kit-8 (CCK-8) (Dojindo Molecular Technologies, Kyushu,
Japan) according to the manufacturer’s protocol.

2.10. In Vitro Cell Migration Assay

Wound-healing migration assay was performed as previously described [2]. The cells were plated
in 6-well plates (about 5000 per well) and incubated at 37 °C, until the cells reached 95% confluence.
A scratch was made using a 10 µL pipette tip and washed with PBS to avoid the debris. Next, PBS,
EV-DM (100%), EV-M (100%), and MAC-EVs (10 and 20 µg) were added in media of two concentrations
containing 20 µg/mL mitomycin C, to inhibit cell proliferation, and imaged using a phase contrast
microscope at 0, 12, and 24 h.

2.11. RNA Extraction and Reverse Transcriptase Polymerase chain reaction (RT-PCR)

The DP cells were treated with PBS, MAC-EVs (0.1, 0.5, 1 µg/mL), EV-DM (100%), and EV-M
(100%) for 24 h. RNA was isolated using TRIZOL reagent (Bioscience technology, South Korea) and
cDNA was prepared using a high-capacity cDNA Synthesis Kit (ABI, CA, USA) according to the
manufacturer’s protocol. The RT-PCR were performed as previously described [2,22] (Table S2).

2.12. Real-Time Polymerase Chain Reaction (Real-Time PCR)

All reactions included SsoAdvancedTM Universal SYBR Green Supermix (Bio-Rad, CA, USA), 50
ng of cDNA, and 10 µM primers. Amplification was performed under the following cycling conditions:
95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 60 s in CFX96 touch-real-time
PCR (Bio-Rad, CA, USA). Differences between samples and controls were calculated using the real-time
PCR analysis software (Bio-Rad, CA, USA). See Supplementary Table S3 for primer details.

2.13. Immunofluorescence (IF) Assay

Immunofluorescence (IF) was performed as described previously [23]. Briefly, macrophages
cells (n = 10,000) were seeded in 8-well chamber slides and incubated overnight. Cells were fixed
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with chilled 100% methanol at −20 ◦C, blocked with 5% BSA for 1 h, and sequentially incubated for
1 h with indicated primary antibody (CD68, Wnt3a, and Wnt7b) in 5% BSA (Supplementary Table
S1) and Alexa Fluor-555-anti-rabbit or anti-goat rabbit-FITC secondary antibody. Coverslips were
then mounted using VECTASHIELD Antifade mounting medium (Vactor laboratories, CA, USA)
and sealed. Confocal images were obtained using an LSM 800 laser scanning microscope (Zeiss,
Baden-Württemberg, Germany).

2.14. In Vivo Experiments and HFs Weight Measurement

Male 5.5 week Balb/c mice were purchased from Hamamatsu (Shizuoka, Japan). The animals
were maintained, and experiments were performed as per the guidelines for care according to the use
of laboratory animals of Kyungpook National University. Two days before starting the experiment,
the hair from dorsal skin was removed with an electric shaver and the animals were divided into
four groups, control (100 µL PBS; n = 7), treatment 1 (100 µg MAC-EVs; n = 7), treatment 2 (50 µg
MAC-EVs; n = 7), and positive control (3% Minoxidil; n = 7) groups. Animals (7 weeks) were injected
intradermally (3 times weekly) for both treatments and control. For the positive control, minoxidil was
applied topically (3 times weekly) for 4 weeks as described [2]. After 28 days, the mice were sacrificed
by cervical dislocation. Dorsal skin, with hair and without hair, of all the mice from each group was
cut (1 cm2 area), and excessive fats or other components were removed and weighed on an analytical
balance. After measurements, the hair weight was calculated [24].

2.15. Histological Analysis

The dorsal skin of all the groups was fixed in 10% formalin and assessed with hematoxylin and
eosin (H&E) staining [25]. The number of HFs were counted. Thickness of dermis (cross-section) was
taken from the visible microscopic field (3 fields) with at-least 7 measurements, using ZEN lite 2.3 (Carl
Zeiss, Baden-Württemberg, Germany).

2.16. Human Hair Shaft Elongation

Human HFs were isolated and cultured as previously mentioned [26]. Briefly, biopsy specimens
were obtained from the occipital scalps of male patients with androgenic alopecia during hair
transplantation with written informed consent from the patients. The Medical Ethical Committee of
the Kyungpook National University Hospital (Daegu, Korea) approved all the described studies. The
HFs from non-balding scalps were isolated and the subcutaneous fat portions of scalp skin including
the lower hair follicles were dissected from the epidermis and dermis. Then, hair follicles were isolated
under a binocular microscope by using forceps and maintained in Williams E media without phenol
red (Sigma, MI, USA) at 37 ◦C in a humidified atmosphere of 95% O2 and 5% CO2, using HFs from 5
individuals for control-PBS, MAC-EVs and HFs from 3 individuals for EV-DM and EV-M. Subsequently,
HFs were treated with PBS, MAC-EVs (0.1, 0.5, 1µg/mL), EV-DM (100%), and EV-M (100%). The hair
shaft elongation was subsequently measured at days 3 and 6.

2.17. Statistical Analysis

All data were expressed as the means ± standard deviation (SD). Two groups of data were
statistically analyzed by Student’s t-test in MS Office Excel sheet (Microsoft, WA, USA) or GraphPad
Prism7 software version 7.04 (GraphPad Software, Inc., CA, USA). A p-value less than 0.05 was
considered statistically significant.

3. Results

3.1. Characterization of MAC-EVs

Macrophages were confirmed by staining of a macrophage marker CD68 (also known as Gp110
or macrosialin, is a type I transmembrane glycoprotein; Supplementary Figure S1). MAC-EVs were



Cells 2020, 9, 856 6 of 20

isolated using an ultracentrifuge, as shown in Supplementary Figure S2. To investigate the integrity of
MAC-EVs isolation, we examined well-characterized EV markers, both positive and negative, using
western blot. As expected, the positive markers, Alix and TSG101 (a cytoplasmic protein), and CD63
(a membrane protein), were enriched in EVs. The negative markers, such as cytochrome C, GM130,
and calnexin (markers for mitochondria, Golgi apparatus, and endoplasmic reticulum, respectively)
were detected on the cell but not in the EVs. This confirms that the EVs obtained were pure and not
contaminated with cells and apoptotic bodies (Figure 1A). The morphology of EVs was evaluated with
Transmission electron microscope (TEM) (Figure 1B). The size of the EVs was analyzed by nanoparticle
tracking analysis (NTA) and the average size was 128.8 ± 45.6 nm (Figure 1C). These results thus
confirmed that MAC-EVs were successfully isolated.

Cells 2020, 9, 856 6 of 20 

 

analyzed by nanoparticle tracking analysis (NTA) and the average size was 128.8 േ	45.6 nm (Figure 
1C). These results thus confirmed that MAC-EVs were successfully isolated. 

 
Figure 1. Successful isolation and characterization of MAC-EVs. (A) Western blot analysis of cell 
compartment markers of macrophages (cell) and MAC-EVs (EV). (B) Morphology of MAC-EVs 
confirmed by transmission electron microscopy (scale bar: 50 and 200 nm). (C) Size of MAC-EVs 
determined by NTA (average diameter: 128.8 ± 45.6 nm). EV: Extracellular Vesicles. 

3.2. Identification of Hair Growth Inducing Wnt Proteins in EVs and Its Membrane 

To identify factors responsible for MAC-EV-induced beneficial properties for hair inductivity, 
we examined the vital proteins such as Wnt3a and Wnt7b [27–29] in macrophages and MAC-EVs. 
First, we confirmed the abundant presence of Wnt3a and Wnt7b in macrophages by 
immunofluorescent assay (Figure 2A). Western blot analysis revealed that Wnt3a (14.2 ± 2.1-fold) and 
Wnt7b (7.4 ± 1.2-fold) proteins were enriched in MAC-EVs, when compared to macrophages (Figure 
2B, C). The Wnt receptors (Frizzled and LRP5/6) were present on the cell membrane; thus, to activate 
Wnt/β-catenin signaling, Wnt3a/Wnt7b should also be present at the membrane of MAC-EVs. We 
performed flow cytometry to confirm the location of Wnt3a/Wnt7b in MAC-EVs and observed that 
>98% and 95% of MAC-EVs were positive for Wnt3a and Wnt7b, respectively (p < 0.001). No signals 
were detected for beads and MAC-EV control. Low or negligible (<3%) signals were detected for the 
secondary antibody control (Figure 2D,E), which confirmed that Wnt3a/Wnt7b was present on the 
EV membrane. Taken together, these results demonstrated that these two Wnt proteins were enriched 
in MAC-EVs and located on their membranes. 

Figure 1. Successful isolation and characterization of MAC-EVs. (A) Western blot analysis of cell
compartment markers of macrophages (cell) and MAC-EVs (EV). (B) Morphology of MAC-EVs
confirmed by transmission electron microscopy (scale bar: 50 and 200 nm). (C) Size of MAC-EVs
determined by NTA (average diameter: 128.8 ± 45.6 nm). EV: Extracellular Vesicles.

3.2. Identification of Hair Growth Inducing Wnt Proteins in EVs and Its Membrane

To identify factors responsible for MAC-EV-induced beneficial properties for hair inductivity, we
examined the vital proteins such as Wnt3a and Wnt7b [27–29] in macrophages and MAC-EVs. First,
we confirmed the abundant presence of Wnt3a and Wnt7b in macrophages by immunofluorescent
assay (Figure 2A). Western blot analysis revealed that Wnt3a (14.2 ± 2.1-fold) and Wnt7b (7.4 ± 1.2-fold)
proteins were enriched in MAC-EVs, when compared to macrophages (Figure 2B, C). The Wnt receptors
(Frizzled and LRP5/6) were present on the cell membrane; thus, to activate Wnt/β-catenin signaling,
Wnt3a/Wnt7b should also be present at the membrane of MAC-EVs. We performed flow cytometry to
confirm the location of Wnt3a/Wnt7b in MAC-EVs and observed that >98% and 95% of MAC-EVs
were positive for Wnt3a and Wnt7b, respectively (p < 0.001). No signals were detected for beads and
MAC-EV control. Low or negligible (<3%) signals were detected for the secondary antibody control
(Figure 2D,E), which confirmed that Wnt3a/Wnt7b was present on the EV membrane. Taken together,
these results demonstrated that these two Wnt proteins were enriched in MAC-EVs and located on
their membranes.
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Figure 2. Identification of Wnt3a/Wnt7b protein in MAC-EVs and its association with their membranes.
(A) Immunofluorescent assay of Wnt3a/Wnt7b in macrophages (scale bar: 10 µm). (B) Western blot
analysis of Wnt3a and Wnt7b in macrophages (Cell) and MAC-EVs (EV). Ponceau S staining used as
loading control. (C) Quantification (fold) of Wnt3a and Wnt7b in macrophages (Cell) and MAC-EVs
(EV) (n = 3). (D) Representative flow cytometry count graph of beads only, Control (MAC-EVs), Control
(Secondary FITC Antibody), Wnt3a and Wnt7b. (E) Percentage of Wnt3a and Wnt7b positive MAC-EVs
(n = 4) from total population. Means ± standard deviation (SD) of experiments are shown. ***p < 0.001.
Student’s t-test was used for comparison. EV: Extracellular Vesicles.

3.3. The MAC-EVs Attach to DP Cell Membrane and are Internalized

MAC-EVs’ interaction with the DP cells is crucial for the activation of Wnt/β-catenin signaling via
activation of receptors. To explore the cellular interaction of MAC-EVs, the DP cells were incubated with
DiD-labeled EVs and confocal imaging was performed. The images showed that EVs predominantly
accumulated in the membrane and internalization (arrow) of the DP cells. Furthermore, some of EVs
were also internalized inside the DP cells (Figure 3A). These results suggested that MAC-EVs first
interact with cell membrane before internalization.

3.4. MAC-EV Treatment Increases Cell Proliferation and Migration of DP Cells

The DP cells are especially important for hair growth; hence, we examined the effects of the
EV-DM (100%), EV-M (100%), and MAC-EVs on DP cell proliferation and migration. Proliferation of
DP cells increased significantly with EV-M (p < 0.05) and all the concentrations of MAC-EVs (p < 0.05
and p < 0.001) in a dose-dependent manner, compared to the PBS-control (Figure 3B). Proliferation
of DP cells increased significantly with EV-M (p < 0.01) and all the concentrations of MAC-EVs (p <

0.01 and p < 0.001) in a dose-dependent manner, compared to the EV-DM (Figure 3B). No significant
changes were observed between PBS and treatment with EV-DM. Significant increases were observed
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in DP cell migration by EV-DM, EV-M, and MAC-EVs compared to that with PBS (p < 0.05, p < 0.01, and
p < 0.001) at 12 h. Similarly, the significant increases were observed in DP cell migration by MAC-EVs
compared to that with EV-DM (p < 0.001) at 12 h. At 24 h, the significant increases were observed in
DP cell migration by EV-M and MAC-EVs compared to that with PBS (p < 0.05, p < 0.01, and p < 0.001).
Similarly, the significant increases were observed in DP cell migration by MAC-EVs compared to that
with EV-DM (p < 0.01 and p < 0.001). At 12 h, a significant decrease was observed between PBS and
EV-DM treatment (Figure 3C,D) and no significant difference was observed at 24 h. Treatment with
MAC-EVs increased the migration and proliferation of DP cells, whereas EV-DM did not have any or
longer such influence. These data suggest that both proliferation and migration were predominately
specific to MAC-EVs.
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Figure 3. Interaction of MAC-EVs with DP cells leads to cell migration and proliferation. (A) DP
cells incubated with either PBS, non-labelled MAC-EVs, and DiD-labelled MAC-EVs (MAC-EVs/DiD),
arrows indicate the internalization, scale bar: 20 µm. (B) Proliferation of DP cells shown in dot blots
obtained by CCK8 assay after 24 h of treatment with MAC-EVs (0 to 20 µg), Student’s t-test was
used. A red color * indicates PBS versus other and green color * indicates EV-DM versus EV-M and
MAC-EVs. (C) Phase contrast microscopy images of migrated cells in 12 and 24 h, scale bar: 100 µm.
(D) Quantified data of migrated cells shown in (C), Student’s t-test was used. * indicates PBS versus
others; # indicates EV-DM versus EV-M and MAC-EVs. *p < 0.05; ** or ##p < 0.01; *** or ###p < 0.001.
EV-M; media containing EVs; EV-DM; media containing no EVs.

3.5. MAC-EVs Increase the Levels of Marker Proteins, Survival- and Proliferation-Markers and Activate the
Wnt/β-Catenin Signaling Pathway in DP Cells

To determine the effect of MAC-EVs on the hair-inductive activity of DP cells, we treated the DP
cells with PBS, EV-DM, EV-M, and MAC-EVs, and evaluated the expression of proteins associated with
anagen induction, such as β-catenin [30], Versican [31], and alkaline phosphatase (ALP) [32] (Figure 4A).
The β-catenin, Versican, and ALP were expressed in DP cells at higher levels with MAC-EVs (10, 20 µg)
treatment in a dose-dependent manner, compared to that in the control (Figure 4A). Furthermore, no
changes were seen upon treatment with EV-DM when compared to the PBS-control; however, treatment
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with EV-M showed a substantial increase in the protein level. Further, we tested the activation the AKT
signaling pathway and cell survival marker Bcl-2 and cellular proliferation marker PCNA (proliferating
cell nuclear antigen). The MAC-EV treatment upregulated levels of phosphorylated AKT (pAKT)
when compared to the control (Figure 4A). Furthermore, western blot results showed that Bcl-2 and
PCNA were increased with MAC-EV and EV-M treatments; however, no changes were observed upon
EV-DM treatment (Figure 4A).
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Figure 4. MAC-EV treatment leads to increased levels of hair-inductive proteins and survival and
proliferation markers and activates the Wnt/β-catenin signaling pathway. (A) Western blot analysis
of β-catenin, Versican and ALP, pAkt, Akt, Bcl-2, PCNA, and β-actin levels in DP cells after 24 h
treatment of MAC-EVs. (B,C) qPCR results of mRNA expressions of Axin2 and LEF1 in DP cells treated
with EV-DM, EV-M, and MAC-EVs for 24 h (n = 3). Means ± SD of triplicate experiments are shown.
***p < 0.001. Student’s t-test was used for comparison. EV-M; media containing EVs; EV-DM; media
containing no EVs.

Next, we examined the activation of Wnt/β-catenin target genes (Axin2 and lef1). Real-time PCR
results showed that activation of β-catenin by treatment with MAC-EVs upregulated the mRNA
expression of Axin2 by 2-fold (p < 0.001) and 6-fold (p < 0.001) more than that in the control, when
incubated with 10 and 20 µg MAC-EVs, respectively. No significant change was observed in treatments
with EV-DM and EV-M as compared to PBS (Figure 4B). Similarly, mRNA levels of lef1 also elevated by
4-fold (p < 0.001), 20-fold (p < 0.001), and 40-fold (p < 0.001) for incubation with EV-M and 10 and 20
µg of MAC-EVs, respectively (Figure 4C).

3.6. Treatment with MAC-EV Upregulates Expression of Hair Inducing Growth Factors in DP Cells

The mRNA expression of vascular endothelial growth factor (VEGF) and keratinocyte growth
factor (KGF) was increased by EV-M and MAC-EVs treatment in a dose-dependent manner. In DP
cells, treatment with EV-M increased levels of VEGF and KGF substantially compared to the control.
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Treatment with MAC-EV increased VEGF levels by 2.5-fold in DP cells compared to the control. KGF
was increased 2.5- and 3.2-fold respectively, by the treatment compared to the control (Supplementary
Figure S3). No changes were observed in EV-DM treatment compared to PBS. These results suggest
that MAC-EV treatment could increase the expression of the growth factor genes in DP cells.

3.7. Determination of MAC-EVs Treatment Intervals in Balb/c Mice

We calculated the retention time of MAC-EVs in Balb/c mice using DiD-labeled MAC-EVs
(MAC-EVs/DiD) and in vivo fluorescence imaging. Mice whose dorsal hair had been removed were
injected intradermally with MAC-EVs/DiD or Control (PBS), under the dorsal skin in multiple regions,
and imaged at numerous time points: 0.1, 1, 3, 24, 48, and 72 h. Strong fluorescent signals were
observed until 24 h on the dorsal sides of mice, which reduced after 48 h, and was less than half by 72 h.
This suggests that, the MAC-EVs were retained in the dorsal skin of the mice up to 72 h (Figure 5A,B).
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Figure 5. Determination of MAC-EV treatment intervals in Balb/c mice. (A) Time-based in vivo
fluorescent imaging of MAC-EVs/DiD in Balb/c mice. MAC-EVs/DiD (n = 3) or PBS (control) (n = 3)
was administered intradermally 2 days after hair was clipped. (B) Quantification of fluorescent signals
from mice injected with MAC-EVs/DiD or PBS (control), Means ± SD of experiment are shown.
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3.8. Hair Growth Effects of MAC-EVs in Balb/c Mice

The hair growth ability of MAC-EVs was determined in Balb/c mice. We clipped the dorsal
hair of Balb/c 2 days prior to the treatment. We compared the in vivo results of hair growth with
MAC-EV treatments (50 and 100 µg), PBS-control group, and positive control of 3% minoxidil, which
is considered as the current gold standard for hair growth treatment (Figure 6A). On day 28, we could
observe an increased hair growth in the mice in the group treated with MAC-EV (50, 100 µg) and
minoxidil than control groups. These results confirm that MAC-EV treatment can induce the hair
growth in a mouse model (Figure 6B). The weight of newly grown hair in all groups was measured. It
was found that weight of hair in MAC-EVs (100 µg)-treated mice was highest (p > 0.05) as compared
to PBS-control mice. The weight of mice hair was approximately similar in MAC-EVs (50 µg) and
minoxidil groups, however, significantly higher than the PBS-control group (p > 0.05; Figure 6C).
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Figure 6. MAC-EVs induce growth of hair follicles in Balb/c mice. (A) Schematic of in vivo hair growth
experiment with the mice (n = 7/group). (B) Representative images of dorsal skin at 28 day. (C) Weight
of hair per cm2 area of dorsal skin (n = 4) at different treatment after 28 days (area of skin used for
(C)) red color square represent with hair and yellow represent without hair (shaved before collection).
Means ± SD of experiment are shown. *p < 0.05. Student’s t-test was used.



Cells 2020, 9, 856 12 of 20

3.9. MAC-EVs Promote the HF Number and Dermis Thickness in Mice

The effect of MAC-EVs on hair growth was further assessed by H&E staining. The treatment with
MAC-EVs significantly (p < 0.001) increased the HF number in a dose-dependent manner compared
to control. Similarly, minoxidil treatment also significantly (p < 0.001) increased the HF number as
compared to the control, but this increase was lower than that with MAC-EV (100 µg) treatment
(Figure 7A,C). MAC-EV and minoxidil treatments significantly increased thickness of dermis (p <

0.001) compared to the control group, but the minoxidil treatment increase in dermis thickness was
lower than that with MAC-EV (100 µg) treatment (Figure 7B,D).
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µg/mL) and PBS, incubated for 3 and 6 days. The MAC-EV treatment increased the hair growth in 

Figure 7. MAC-EVs promote the HF number and dermis thickness in Balb/c mice. (A) Transverse
section of mouse dorsal skin after 28 days of treatment. (B) Cross-section of mice dorsal skin after 28
days of treatment (yellow dotted line indicates dermis). (C,D) Quantified data showing the number of
hair follicles; absolute number per image field (n = 5), and dermis length (n = 8) in all groups. Means ±
SD of at least triplicate experiments are shown. ***p < 0.001. Student’s t-test was used.

3.10. MAC-EVs Elongates the Hair Shaft of Human HFs

To determine the elongation of hair shaft, an organ culture experiment was performed with
androgenic alopecia human scalp HFs treated with EV-DM, EV-M, and MAC-EVs (0.1, 0.5, and 1 µg/mL)
and PBS, incubated for 3 and 6 days. The MAC-EV treatment increased the hair growth in individual
#1 (Figure 8A). The day 3 results showed a significant increase (0.1 µg/mL MAC-EV versus PBS, p <

0.01; 0.5 and 1 µg/mL MAC-EV versus PBS, p < 0.001;) in elongation of hair shaft by the treatment in a
dose- and time-dependent manner (Figure 8A,B). Likewise, the results of day 6 showed a significant
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(0.1 or 0.5 or 1 µg/mL MAC-EV versus PBS, p < 0.001;) elongation of hair shaft by the treatment in a
dose- and time-dependent manner, no changes were observed in the control (Figure 8A,C).
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Figure 8. MAC-EVs promote hair follicle shaft elongation in human hair follicles. (A) Representative
photographs of human hair follicles after PBS and MAC-EV treatment (0.1, 0.5, 1 µg/mL) (scale bar: 1
mm). (B,C) Quantified data of hair shaft elongation on day 3 and day 6 (n = 5). (D) representative
photographs of human hair follicles after EV-DM and EV-M treatment (0.1, 0.5, 1 (µg/mL) (scale bar: 1
mm). (E) Quantified data of hair shaft elongation on day 3 and day 6 (n = 8). Means ± SD of experiments
are shown. *p < 0.05; **p < 0.01; *** p < 0.001 Student’s t-test was used. EV-M; media containing EVs;
EV-DM; media containing no EVs.

Furthermore, MAC-EVs were tested in four more human subject hair follicles. In individuals #2
and #3, MAC-EVs treatment significantly (p < 0.01 and p < 0.001) increased the hair shaft growth in a
time- and dose-dependent manner (Supplementary Figure S5). In individuals #4 and #5, MAC-EVs
treatment significantly in 1 µg/mL (p < 0.05) and 0.5 µg/mL (p < 0.001) increased the hair shaft
elongation, respectively. The substantial increase of hair shaft elongation was seen in a time-dependent
manner (Supplementary Figure S4).

In individual #3, the EV-DM treatment did not significantly (p > 0.05) increase the length of hair
shaft, on both day 3 and 6. The EV-M treatment significantly (p < 0.05) increased the length of hair shaft
on day 6 (Figure 8D,E). The EV-DM and EV-M were tested in two more human subjects’ (individuals
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#4 and #5) hair follicles, and similarly significant (p < 0.05) results were obtained (Supplementary
Figure S5).

4. Discussion

The DP cells located in the papilla of normal human HFs play a crucial role in the dermal–epidermal
interactions that control hair production and events of the hair growth cycle. DP cells manage HF
cycling through interacting between stem cells, endothelial cells, and HF stem cells [33,34]. A defect
in any one of the cells can lead to hair loss. Thus, restoration of these cells for better interaction
is considered a potential therapeutic strategy for treating hair loss. Results of the current study
demonstrate that macrophage-derived EVs possess an ability to induce activation of DP cells in vitro.
Furthermore, we also showed that MAC-EVs sufficiently enhance hair growth in a hair-clipped Balb/c
mouse model by increasing the number of HFs and dermis thickness.

In the current study, we have successfully isolated EVs from the supernatant of macrophage
culture media and found their size and shape to be in agreement with the earlier reports [17,35].
MAC-EVs expressed the EV-specific biomarker markers, Alix, and cell organelle protein markers such
as cytochrome-c, GM130, and calnexin, were not detected in EVs, confirming the isolation of pure
EVs [6,14].

The Wnt proteins act as morphogens during development and can mediate the cell–cell
communication over a large distance [36,37]. Several Wnt family members are expressed in distinct
patterns and stages in the skin development of mammals and birds, such as Wnt1a, Wnt3, Wnt3a, Wnt4,
Wnt5a, Wnt7a, Wnt10a, and Wnt10b [1,38]. Wnt1a, Wnt3a, Wnt7a, and Wnt7b are inducers of hair
growth because of their ability to activate the Wnt/β-catenin signaling in DP cells [1,27,29,39]. The EVs
function as mediators of cell–cell communication by selectively carrying biologically active molecules
in the form of proteins and nucleic acids [6,40]. A study suggested that Wnts are secreted on exosomes
both during drosophila development and in human cells. They also showed that exosomes carry Wnt3a
on their surface to induce Wnt signaling activity in the target cells [41]. Owing to their membranous
nature, exosomes are natural carriers for membrane-associated signaling proteins such as Wnts and
Hedgehogs [42]. We evaluated whether the Wnt3a and Wnt7b proteins are present in macrophages or
not and our results suggested their presence. Western blotting results further confirmed the presence
of a more enriched amount of Wnt3a and Wnt7b in MAC-EVs than macrophages. As mentioned above,
presence of Wnts in the membrane is necessary for activation of DP cell receptors, such as Frizzled and
LRP5/6, and the Wnt3a and Wnt7b present in the MAC-EVs are mostly (more than 95%) associated
with EV membrane. These results collectively demonstrated that MAC-EVs contain enriched amounts
of Wnts, associated with the membrane, which could readily activate the Wnt/β-catenin signaling
pathway in DP cells on interaction with their membrane. A recent study showed that activated
fibroblast EVs delivered the Frizzled4 receptors to DP cells and activated the Wnt/β-catenin signaling
pathway in DP cells [43].

Cytokines and growth factors that are secreted by a cell into the extracellular space bind to their
specific receptors present on the surfaces of nearby cells. However, the discovery of EVs signifies
an exciting scientific niche that suggests novel mechanisms by which paracrine signaling can be
accomplished. EV interactions with the plasma membrane and its internalization are important for
the activation of receptors and delivery of the biological materials into the recipient cells [44,45]. We
confirmed the MAC-EV interaction with DP cells, subsequent internalization using labelled MAC-EVs
with fluorescence. This process readily occurred within an hour of the treatment, in a dose-dependent
manner [6].

A study compared the cultured DP cells from balding and non-balding scalp and found that
balding DP cells showed characteristics of senescence, including loss of proliferation [46]. Cultured
DP cells lose their ability of inducing hair follicle after sub-culturing in vitro [47], showing that DP
cell proliferation is essential for the morphogenesis and growth of the HF [2]. In the current study,
MAC-EVs were shown to have the capacity to induce proliferation of DP cells, which was further
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confirmed by upregulated PCNA expression. This result is in line with a study showing the activated
fibroblast-derived EVs could induce cell proliferation signaling in DP cells [43]. This could be very
useful for large-scale production of DP cells in vitro for research studies and DP cells therapies [47,48],
as cultured DP cells lose their ability of inducing and maintaining the HF. This also could maintain the
ability of proliferation of DP cells in vivo. MAC-EVs accelerate the motility of the DP cells in vitro
and a previous study suggests that during the normal hair cycle, dermal sheath cup cells may also be
a source of DP cells, via migration [49]. These results support the findings of our previous data on
MSC-EVs [2].

The canonical Wnt signaling pathway leads to stabilization and accumulation of β-catenin,
resulting in nuclear translocation and activation of Axin2 and Lef1, the target genes of the Wnt/β-catenin
pathway [28,50–52]. Results of the current study showed that treatment with MAC-EVs upregulated
the β-catenin level in the human DP cells in a dose-dependent manner. This confirmed that the
Wnt ligand, Frizzled and LRP5/6 receptor interaction in DP cells, upregulates the β-catenin level.
Additionally, qPCR results of upregulated mRNA levels of transcription factors (Axin2 and Lef1)
further confirmed the function of translocated β-catenin in DP cells, by activating transcription factors
important for anagen induction and maintenance. Our results are in agreement with a recent study,
which showed that macrophages present near the hair follicles are positive for Wnt proteins, and also
showed secreted Wnt10a near the DP cell and activates axin2 and Lef1 [21]. This study proved that
Wnt3a/Wnt7b associated with MAC-EVs induced hair growth by activating receptors and relayed
β-catenin cascade in DP cells. If β-catenin is unavailable, then the keratinocytes fail to form, which
leads to failure in the development of hair [53]. Recently, a study suggested that aspartate-serine-serine
peptides promote hair growth through the activation of β-catenin signaling and the expression of
nuclear β-catenin and phosphorylation of AKT, both of which are key factors of the β-catenin pathway
in DP cells [54]. Another study showed that minoxidil translocated β-catenin into the nucleus [55].
Both studies showed either anagen prolongation or telogen to anagen transition, and our results were
consistent with the results of these studies. Although the relationship between Wnt3a/Wnt7b is shown
in EVs and β-catenin activation in DP cells, a direct demonstration of their involvement requires
further investigation. The treatment of DP cells with MAC-EVs upregulated the expression of other
hair-inducing marker proteins, such as Versican [31] and ALP [32], as measured by western blotting.
Our results are consistent with these findings and the necessity of hair-inducing activity in DP cells for
hair growth [5,56,57]. A previous study reported that Wnt3a has a significant ability to restore the ALP
activity of DP cells [58]; similarly, we observed that MAC-EV treatment increased the ALP in DP cells.
Survival of DP cells is essential for HF development and function. The DP cells are also a reservoir
with the potential to differentiate into a range of cells that have potential therapeutic importance in hair
growth [56]. Our results suggest that MAC-EVs lead to activation of Akt phosphorylation and increase
Bcl-2 (anti-apoptotic regulator) expression in DP cells. Survival rate of cells is mainly determined by
Akt and Bcl-2, which play a critical role in mediating survival signals [59,60].

DP cells are capable of releasing growth factors that direct epithelial cells to proliferate, leading
to hair shaft growth and acceleration of hair growth [2,33]. The nuclear translocation of β-catenin
leads to activation of Axin2 and TCF/LEF, the Wnt/β-catenin pathway target genes [50,61]. This also
leads to activation of the VEGF gene [62]. Our results revealed that VEGF gene expression and release
were significantly increased in a dose-dependent manner by MAC-EV treatment. Several studies have
shown that VEGF and KGF can promote hair growth [33,63–66], and MAC-EV treatment also increased
the expression of KGF. These secretory cytokines may further induce HF interaction with other cells
(such as outer root sheath cells). All the in vitro EV-DM were shown to affect/influence the results
when compared to PBS control, but EV-M minimally induced DP function. Thus, this confirms that
induction/activation of DP cells and their function is mainly specific to MAC-EVs. We showed that
Wnt3a and Wnt7b involvement in activation of the Wnt/β-catenin signaling pathway and induction of
hair growth ability of DP cells are essential. We do not rule out contribution from other proteins or
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miRNAs in MAC-EV alone or in combination, to the hair inducting activity. Moreover, proteomics and
miRNA microarray analysis of MAC-EV may provide a complete picture of MAC-EV-mediated activity.

Balb/c mice were used to evaluate the in vivo hair growth effects by MAC-EV treatment. Before
the hair growth in vivo study, we showed the MAC-EVs retention time in mice skin by live animal
imaging, and it showed that MAC-EVs stayed more than 72 h and spread to other parts of dorsal
skin of mice. So, the treatment interval was determined as 72 h. Hair clipping or plucking were used
in the hair growth studies [2,67,68]. We used a most commonly used method of clipping (shaving
the hair) for our study. A report suggests that plucking of hair grows faster than clipping in guinea
pig [69]. We selected the clipping model for our study to show the real effect of MAC-EV treatment,
which is not affected by the model (plucking). We demonstrated that MAC-EV treatment induces
faster hair growth compared to minoxidil treatment, the current gold standard. In our previous study,
MSC-EVs showed an effect comparable to minoxidil [2]. We also measured the weight of hair/cm2 area
of dorsal skin, and our results suggested that MAC-EV treatment improves the hair growth faster than
minoxidil and the control. Further histological results confirmed that MAC-EV treatment increases the
number, which confirms the hair growth effect of MAC-EVs and induction of de novo HFs. Low-dose
MAC-EV treatment significantly promoted dermis thickness, comparably to the minoxidil group,
and high-dose MAC-EV treatment showed more enhanced dermis thickness. Thickness of dermis,
which indirectly reflects enhancement of telogen to anagen transition [2,70,71], was also increased by
MAC-EV treatment. Minoxidil treatment causes irritation and allergic reaction on the scalp in some
patients [72], and visible hair growth diminishes after discontinuation of the treatment [73]. Long-term
effects of MAC-EVs treatment on hair growth remain to be investigated.

Since we could not test the effect of MAC-EVs in humans, we used hair follicles isolated from
humans and tested them in in vitro conditions for the effect on hair shaft elongation using an organ
culture of human scalp HFs. This experiment is widely used in preclinical studies [28,47,74], before
testing in clinical trials. Our results suggested that MAC-EVs could elongate the human hair shaft
by two-fold within 6 days. Hair shaft growth was not induced by EV-DM, but EV-M showed
significant growth.

As mentioned earlier, for patients with hair loss, drugs such as finasteride and minoxidil are
clinically approved by US Food and Drug Administration. However, minoxidil is known for its
activation of the β-catenin pathway in human DP cells, but hair growth was observed to be minimal or
stopped after discontinuation of the drugs [2,5,55,73]. Thus, there is a need for new drugs or alternative
therapeutic materials. The EVs derived from macrophage could be excellent candidates for stimulating
hair growth in humans, since their isolation from the same patients is relatively easy and less invasive
than isolation of mesenchymal stem cells from the adipose tissue or bone marrow.

5. Conclusions

We showed the presence of Wnt3a/Wnt7b proteins in MAC-EVs, which are associated with
the membrane. We also demonstrated that MAC-EVs promoted proliferation and migration and
the activation of the Wnt/β-catenin signaling pathway in DP cells. The MAC-EVs enhanced
the hair-inductive properties of DP cells by increasing the levels of hair-inductive proteins and
survival/proliferation markers in vitro. Further experiments revealed that MAC-EVs promote hair
growth through stimulation of VEGF and KGF in DP cells. In vivo results showed that MAC-EVs
accelerate hair growth by increasing the number of HFs and dermis thickness. Finally, we showed the
human HF shaft elongation by MAC-EV treatment. These findings represent an advancement within
the field of HF growth by EVs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/4/856/s1.
Supplementary Figure S1. Immunofluorescence analysis of CD68 in murine macrophage cell; Supplementary
Figure S2: Schematic diagram of the generation and purification of MAC-EVs; Supplementary Figure S3. Effects
of MAC-EVs expression of growth factors in DP cells; Supplementary Figure S4. MAC-EVs promotes the hair
follicle shaft elongation in human; Supplementary Figure S5. EV-M promotes the shaft elongation in human hair
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follicles; Table S1: List of antibodies used in this study; Table S2: RT-PCR primers list; Table S3: Quantitative PCR
primers list.
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