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SUMMARY Antiviral drugs have traditionally been developed by directly targeting
essential viral components. However, this strategy often fails due to the rapid gener-
ation of drug-resistant viruses. Recent genome-wide approaches, such as those em-
ploying small interfering RNA (siRNA) or clustered regularly interspaced short palin-
dromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting
the cellular “kinome,” have been used successfully to identify cellular factors that
can support virus replication. Since some of these cellular factors are critical for virus
replication, but are dispensable for the host, they can serve as novel targets for anti-
viral drug development. In addition, potentiation of immune responses, regulation of
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cytokine storms, and modulation of epigenetic changes upon virus infections are
also feasible approaches to control infections. Because it is less likely that viruses
will mutate to replace missing cellular functions, the chance of generating drug-
resistant mutants with host-targeted inhibitor approaches is minimized. However,
drug resistance against some host-directed agents can, in fact, occur under certain
circumstances, such as long-term selection pressure of a host-directed antiviral agent
that can allow the virus the opportunity to adapt to use an alternate host factor or
to alter its affinity toward the target that confers resistance. This review describes
novel approaches for antiviral drug development with a focus on host-directed ther-
apies and the potential mechanisms that may account for the acquisition of antiviral
drug resistance against host-directed agents.

KEYWORDS antiviral agents, host factors, drug resistance, epigenetic regulation,
precision medicine

INTRODUCTION
he recent report of the International Committee on Taxonomy of Viruses (ICTV;

2019) listed 4,958 viral species across 14 orders, 143 families, and 846 genera (1).
Recent advances in technology are uncovering new viruses and/or their genetic/
antigenic variants almost on a daily basis. The world is currently experiencing an
outbreak of a new coronavirus disease (COVID-19) (2-5), but fortunately most new
viruses are not associated with clinical disease. Throughout human history, some new
viruses have been the cause of major epidemics (6-15), and today’s highly intercon-
nected world makes us even more vulnerable than in the past. Whereas the most
successful approach to control any virus infection is with vaccines, this strategy is not
effective for many agents for a variety of reasons. A potentially more effective general
approach to combat virus infections is to develop effective antivirals (16). This approach
was first used to control a herpesvirus infection and is currently the major means of
controlling human immunodeficiency virus type 1 (HIV-1) infection (17). Recently,
highly effective antivirals were also developed to control hepatitis C virus (HCV) (18-20),
and the world would welcome antivirals active against COVID-19.

The majority of the antiviral drugs that have been approved by the Food and Drug
Administration (FDA) act by directly targeting virus-encoded factors (21). However,
these drugs almost invariably lose efficacy due to the emergence of drug-resistant virus
variants (22-27). Consequently, alternative antiviral approaches need to be explored. In
this review, we make the case for developing antiviral drugs that target host factors
needed by the virus but not mandatory for host cell functions. We refer to such drugs
as host-directed antiviral agents. Two major approaches, genome-wide small interfer-
ing RNA (siRNA) and/or clustered regularly interspaced short palindromic repeats
(CRISPR) screens and small molecule chemical inhibitors targeting the cellular “kinome,”
have revealed those of the cell's ~25,000 protein-encoding genes that interact and
regulate replication of the infecting virus (28, 29). Some of these host factors are
dispensable for the host but are required by the virus to complete various steps of its
life cycle (30-35). These host factors can serve as targets for antiviral drug development
(Fig. 1). Since genetic variability of the host is quite low compared to viruses, host-
directed antiviral agents are less likely to become ineffective because of mutations in
the viral genome (36, 37), although examples of resistance to such agents have been
described (38, 39). The major goals of this review are to discuss novel approaches of
antiviral drug development, with a focus on host-directed antiviral agents. We also
discuss potential mechanisms of drug resistance against host-directed antiviral agents.

HOST-DIRECTED ANTIVIRAL AGENTS

Viruses establish numerous interactions with host factors and pathways during
replication. In fact, technological advances have already identified several host factors
that are essential for virus replication but dispensable for the host (40-42). Additionally,
some host activities that respond to a viral infection, such as the interferon (IFN) and
adaptive immune responses, can be manipulated to change the outcome of infection.
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A Agents targeting host-dependency factors

B Agents modulating epigenetic changes in host/viral genome

Viral genome

DNA methyltransferase
Histone methyltransferase

FIG 1 Novel strategies of antiviral drug development. (A) In order to effectively replicate inside cells, virus is highly
dependent on certain cellular factors, some of which are dispensable for cells and therefore may serve as targets for
antiviral drug development. (B) Epigenetic changes such as DNA methylation and histone acetylation have also been
shown to regulate viral replication/transcription/translation; thereby, inhibitors targeting the enzymes responsible for
these epigenetic modifications (DNA methyltransferase, histone methyltransferase, histone acetylase, histone deacetylase)

may serve as viable targets for antiviral drug development.

Host-directed therapies have gained momentum in the past 2 decades. Many such
studies are in the preclinical stages of development, with only a few compounds
approved by the FDA. Herein we separately discuss FDA-approved drugs and thera-
peutic agents which are under preclinical development.

FDA-Approved Host-Directed Antiviral Agents

Of the majority of the antiviral drugs so far approved by the FDA, only a few are
based on targeting host factors (Table 1) (21). Most of the FDA-approved host-directed
antiviral drugs are based on IFNs and have been developed against chronic infections
such as HIV-1, human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus
(HCV) (21) (Table 1). There are several different subtypes of IFNs, but so far only alpha
IFNs (IFNs-«) are being used clinically (43). The main target for IFN therapy initially was
treatment of non-A non-B chronic hepatitis (now known to be hepatitis C) (44). IFNs
were later approved to treat HBV (45) and HPV (46) infections as well. Subsequently, an
increased sustained virological response rate of IFN therapy was achieved by various
technological modifications and the inclusion of ribavirin. The modifications included
conjugation with polyethylene glycol to form pegylated IFN (PeglFN), which prevented

TABLE 1 FDA-approved host-directed antiviral agents®

Reduced virus production in
absence of host dependency factor

Histone acetylase
Histone deacetylase a@& Altered virus production
> E@ E due to epigenetic modification

T @ in host/viral genome
o

Clinical Microbiology Reviews

Trade name Generic name Target virus Mechanism of action Yr

Intron A IFN-a-2b HPV IFN mediated 1988
Alferon N injection IFN-a-N3 HPV IFN mediated 1989
Condylox Podofilox HPV Interrupts cell division cycle 1990
Intron A IFN-a-2b HCV IFN mediated 1991
Intron A IFN-a-2b HBV IFN mediated 1992
Infergen Interferon alfacon-1 HCV IFN mediated 1997
Aldara Imiquimod HPV Induction of cytokines 1997
Rebetron PeglFN-a-2b plus ribavirin HCV IFN mediated 1998
Rebetol Ribavirin HCV Multiple modes of action 1998
Pegintron/Sylatron PeglFN-a-2b HCV IFN mediated 2001
Pegasys PeglFN-a-2a HCV IFN mediated 2002
Pegasys PeglFN-a-2a HBV IFN mediated 2005
Veregen Sinecatechins HPV Immunomodulator 2006
Selzentry Maraviroc HIV-1 Blocks gp120 and CCR5 interaction 2007

alFN, interferon; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV-1, human immunodeficiency virus type 1; HPV, human papillomavirus; PeglFN-«, pegylated IFN-a.
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enzymatic degradation, increased the half-life of IFNs, and also decreased, but did not
eliminate, side effects (47-49). However, this approach still has many problems, such as
patient unresponsiveness (50) and production of interfering (anti-IFN) antibodies (51),
and has been largely discarded in the United States since the development of other,
safer drugs.

Currently, PeglFN-a-2b and ribavirin combination therapy is recommended for the
treatment of chronic HCV infection, which results in sustained viral clearance in more
than 50% of patients (52). However, the precise mechanism of action of IFN-a and
ribavirin against HCV is not well defined. In fact, viral infection itself may suppress IFN-a
induction and action in nonresponders, as has been observed in animal models of HCV
infection (53). Moreover, individual host genetic factors, innate and adaptive immune
responses, and viral genetic diversity as well as coinfections may also account for part
of the nonresponse to therapy (54). Alfacon-1 (recombinant synthetic type | interferon)
and ribavirin proved effective in some patients who did not respond to standard
PeglFN-a/ribavirin therapy (44). Currently, new drug combinations are under develop-
ment. For instance, telaprevir (an inhibitor of the HCV NS3/4 protease) in combination
with PeglFN-a/ribavirin can be effective in treating chronic HCV patients who are
unresponsive to conventional PeglFN-a/ribavirin therapy (55). Several other HCV
NS3/4A protease inhibitors used in combination with PeglFN-a and ribavirin may also
achieve improved rates of a sustained virological response (56-59). However, the
toxicity when they are combined with PeglFN-«a and ribavirin still limits their overall
efficacy (60, 61).

IFN preparations have several additional issues. These include fatigue, flu-like symp-
toms, neurological disorders, autoimmunity, ischemia, pneumonitis, anemia, neutrope-
nia, nephritis, erythema, vasculitis, and necrosis, all of which limit their use (62-67). In
addition, viruses resistant to IFN therapy have also been observed (68, 69); these may
have emerged due to the acquisition of mutations in either structural or nonstructural
proteins (70, 71).

In order to overcome the side effects of IFN therapy, targeting IFNs to local sites or
preparing a prodrug formulation can be effective (72, 73). In this context, IFN-a-2 has
been employed to target the liver with antibody specific to liver tissues (74, 75).
Furthermore, to improve the pharmacokinetics and overcome pleiotropic effects, IFN-
a-2b was engineered to make it latent by providing a protective shell of latency-
associated protein of transforming growth factor B (TGF-B) fused with HCV NS3
protease cleavage site as a linker (67).

Host-directed antiviral drugs have also been approved to treat HPV-associated
warts. In this context, Intron A (IFN-a-2b), a drug also approved to treat HCV and HBV
infection, has shown clinical efficacy against HPV-associated genital warts (76). Another
drug, podofilox (Condylox) potently inhibits cell mitosis, which eventually results in the
regression of HPV-associated warts (77). In addition, imiquimod (Aldara) exhibits pro-
found antitumor (antiwart) activity by acting on several immunological activities (78).
Likewise, sinecatechins (Veregen) was the first botanical drug product approved by the
FDA in 2006 for the treatment of external genital and perianal warts, although its
mechanism of action is as yet not known. Another injectable preparation of IFN-a-N3
upregulates major histocompatibility complex class | (MHC-I) expression, which allows
for enhanced presentation of virus-associated antigens, thereby activating cytotoxic
CD8™ T cells that aid in wart regression (79).

Maraviroc, the only CCR5 antagonist licensed for clinical use, is a negative allosteric
modulator of the C-C chemokine receptor type 5 (CCR5). Maraviroc inhibits HIV-1 entry
by altering the extracellular loops of CCR5 in such a way that the HIV-1 gp120 envelope
glycoproteins can no longer bind CCR5 (80, 81). In addition, maraviroc also reverses
HIV-1 latency in vitro (82). However, HIV-1 strains with partial maraviroc resistance have
appeared (83-85). The resistant strains may use alternate coreceptors (CXCR4 rather
than CCR5) or alter their ability to bind the maraviroc-bound form of CCR5 (86-88).
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Targeting Host Factors and Pathways Important for Viral Replication

Virus infection may activate intracellular signaling pathways, which regulate cell
growth (37, 89-92), cell survival (37, 93), and/or immune activation (93, 94). In a typical
course of virus infection, infected cells secrete IFNs, which induce nearby cells to
express many so-called IFN-stimulated genes (ISGs), whose functions include antiviral
activity. Viruses may also usurp intracellular signaling pathways to their own advantage
in the cells they infect (37, 93). For example, in influenza A virus (IAV) infection, the
nuclear factor kappa B (NF-«B) signaling pathway may be activated (95). This results in
optimal synthesis of viral genomes, and it can also result in the secretion of proinflam-
matory cytokines (95, 96). Thus, signaling pathways such as NF-«B may be targeted by
therapies to regulate both virus replication and the virus-induced inflammatory re-
sponses.

Blockade of cellular receptors or other cellular proteins that regulate virus replica-
tion has also been targeted by therapies, but so far very few have entered into clinical
trials (21). In the majority of studies, kinases and lipid synthases are the major host
targets for antiviral drug development (Table 2).

Kinase inhibitors. Completion of the Human Genome Project in 2002 identified 518
kinases that are collectively known as the cellular “kinome” (97). Kinases are implicated
in various physiological processes to maintain cellular homeostasis, and their dysregu-
lation could result in pathology. Infections by pathogens, including viral infections, are
also associated with perturbation of the “kinome” (98, 99). Each step of the virus
replication cycle can be regulated by multiple kinases (100-102). Some of the cellular
kinases are dispensable for host cell viability but might be needed during virus
infection (102). Such kinases represent potentially valuable drug targets (Fig. 1A).
Kinase function can be inhibited by small molecule chemical inhibitors (103), and this
approach is used in the cancer field. The topic has been extensively reviewed (104-120).
Out of the hundreds of different kinase inhibitors developed so far, only 38 have been
licensed for use as anticancer agents. Kinase inhibitor libraries have also been screened
for antiviral activity, and some promising candidates have emerged as potential
inhibitors of different steps of the viral life cycle (37, 38, 121-128).

The viral replication cycle is a multistep process that includes attachment, entry,
genome synthesis, assembly of newly synthesized virion particles, and budding. Each
step of the viral life cycle involves host cell kinases (Table 2), with a single kinase
regulating one or multiple steps of the viral life cycle. For example, the mitogen-
activated protein kinase (MAPK)-interacting kinase 1 (MNK1) inhibitor CGP57380 inhib-
its only initiation of buffalopox virus (BPXV) protein synthesis (38). In contrast, against
IAV, the receptor tyrosine kinase (RTK) inhibitors AG879 and A9 can block multiple
steps, including viral RNA synthesis, export of viral ribonucleoproteins (VRNP), and
budding (121). While the precise mechanism by which RTK regulates viral RNA synthesis
is not known, regulation of VRNP export and budding is mediated via the CRM1
(chromosomal maintenance 1) nuclear export pathway and the farnesyl pyrophosphate
synthase (lipid biosynthesis enzyme), respectively (121). It is likely that targeting
signaling pathways that regulate multiple steps of the viral life cycle will represent
more effective antiviral approaches (121).

All members of a particular virus family usually share the same kinase requirements.
For example, SERCA (sarco/endoplasmic reticulum calcium-ATPase) inhibitor blocks
replication of multiple Paramyxoviridae family members (39). Nevertheless, some ki-
nases are essential for multiple virus families and hence can represent potential targets
for developing broad-spectrum antiviral drugs (121, 129). One such example is the RTK
inhibitor AG879, which is active against IAV, rhesus rotavirus, Sendai virus, coronavirus,
herpes simplex virus 1 (HSV-1), and Pichinde virus (an arenavirus) (121, 129).

Lipid biosynthesis inhibitors. Besides nucleotides and amino acids, many viruses
need a continuous supply of cellular fatty acids during their replicative cycle (130, 131).
To achieve this, viruses may need to reprogram cellular metabolism, including lipid
synthesis, to facilitate their own optimal replication (131, 132). Treatment of cells with
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TABLE 2 Host-directed antiviral agents under preclinical development?

Clinical Microbiology Reviews

Host factor function Antiviral agent(s) Virus(es) Host target Reference(s)
Support viral entry DAS181 IAV, PIV Sialic acid receptor 405-411
R448, cabozantinib ZIKV AXL kinase 412, 413
Ezetimibe HCV NPCIL1 166
Obatoclax, chloroquine, bafilomycin A1, ZIKV, FLV hRhV, IAV Regulation of endosomal 413-417
ammonium chloride, Arbidol pH
(umifenovir), chlorpromazine,
niclosamide, mefloquine HCl
Glycyrrhizin IAV Regulation of 418
endocytotic uptake
Concanamycin, saliphenylhalamide IAV Cellular vacuolar ATPases 419, 420
Daptomycin ZIKV Modulation of late 417
endosomal function
LJOO1 IAV, poxvirus, FLV, HIV-1  Modulation of 421
membrane fluidity
Thapsigargin PPRV, NDV SERCA 39
Dynasore HSV-1 Dynamin 422
MLS000394177, MLS000733230, EBOV Macropinocytic uptake 423
MLS000730532
Bisindolylmaleimide |, calphostin C, WNV, IAV PKC 424, 425
chelerythrine, enzastaurin,
staurosporine
Fattiviracin HIV-1 Internalization factors 426
Aprotinin, camostat 1AV Protease inhibitor 427, 428
Jasplakinolide, cytochalasin D hAdV Actin polymerization 429
Amiloride (EIPA) CVB3, hAdV Sodium-proton exchange 430
Emetine, cephaeline PPRV, NDV, BPXV, BHV-  Lysosomal function 431, 432
1, ZIKV, EBOV
Tenovin-1 ZIKV SirT1 and SirT2 433
Clonidine IAV a2-Adrenergic receptors 434
Nanchangmycin ZIKV AXL kinase 433
Erlotinib HCV EGFR and GAK 104, 165
Sunitinib HCV AAK1 104
NIM-811, Debio-025 EV Cyclophilin 435
STI-571, Gleevec, imatinib, nilotinib, Poxvirus, PyV, HIV-1 Abl family protein 436, 437
dasatinib kinases
Support viral genome replication, SD-29 HSV-1 RACK1 438
transcription, and translation Torin1, rapamycin CMV, BEFV mTOR kinase 439-441
Hippuristanol, silvestrol CMV, ZIKV elF4A 440, 442
CGP57380 HSV-1, poxvirus, hCMV MNK1 38, 443-445
4E2RCat, 4EGI-1 CoV, BPXV elF4E/elF4G interaction 38, 446
Apigenin FMDV, EV71 hnRNP A1 and A2 447, 448
AG879 IAV, SV, HSV-1, MHV, RV NGFR 121,129
Genistein HIV-1 Tyrosine kinase 449
Tyrphostin A9 IAV, SV, HSV-1, MHV, RV PDGFR 121,129
Gefitinib (Iressa) Poxvirus, hCMV EGFR 450, 451
Ivermectin IAV Importins 452
Verdinexor, DP2392-E10, leptomycin B 1AV XPO1 453-455
TG100572 HSV-1 Src family kinases 156
Vemurafenib IAV Raf 456
U0126, CI-1040 (PD184352) IAV, IBV, PEDV, AstV, MEK1/2 457-464
BDV, CoV, JUNV,
HSV-1
FR180204, Ag-126 VEEV, DENYV, lentivirus ERK1/2 465, 466
SB203580 EMCV p38 467
AS601245, SP600125 IAV, hCMV JNK 468, 469
Mycophenolic acid, ribavirin ZIKV, IAV, RSV, CoV, IMPDH 417, 470-472
EV71, CVB3, HCV
Leflunomide, compound A3 FLV DHODH 368
TVB-2640 HCV FAS 389, 473
Statins (atorvastatin, fluvastatin, HCV HMG-CoA reductase 393

lovastatin, pravastatin, and
simvastatin)
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TABLE 2 (Continued)

Clinical Microbiology Reviews

Host factor function Antiviral agent(s) Virus(es) Host target Reference(s)
Clypearin, corilagin, TG003 1AV CLK1 474
Silvestrol, pateamine 1AV elF4A 475, 476
Curcumin, demethoxycurcumin, JEV, RVFV, HCV, EV71 Ubiquitin-proteasome, 477-480

bisdemethoxycurcumin, EF-24, PKC, NF-«B, Akt
FLLL32
PIK93, BF738735, GW5074, EV PI4KB 481, 482
T-00127-HEV1
Itraconazole, 25-hydroxycholesterol, EV OSBP 481
AN-12-H5, T-00127-HEV2, TTP-8307
EYPOO1 HBV Synthetic farnesoid X 483
receptor
APG-1387 HBV clAP2 484
Fenretinide (4-HPR) ZIKV, DENV Activator of retinoid 485
receptors
Difluoromethylornithine, ZIKV, DENV Host polyamine synthesis 486
diethylnorspermine
Cyclopiazonic acid (CPA) hRSV Intracellular calcium 487
ATPase
MK2206 1AV Akt 488
PD-0332991 HSV-1 CDK4/6 489
LDC4297 hCMV, AdV CDK7 490
JMN3-003 Myxovirus G,-phase arrest 369
AGK2 HBV SirT2 491
Amiloride (EIPA) CVB3, hAdV35 Sodium-proton exchange 429, 430
HLO5100P2, cyclosporine, NIM-811, EAV, PRRSV, HCV, HBV Cyclophilin 435, 492, 493
CRV431, CMX157
Emetine PPRV, NDV, BPXV, BHV-1 Unknown 431, 432
Cephaeline ZIKV, EBOV Unknown 431, 432
Nitazoxanide, tizoxanide ZIKV, RV, NV, HBV, HCV,  Unknown 494
IAV
Glycyrrhizin CVB3, hAdV, IAV Unknown 418, 429, 430
RG7834 HBV Unknown 495
Veregen (sinecatechins) HPV Unknown 21
Support virus assembly and Brefeldin A DENV, HCV ADP-ribosylation factor 496, 497
release PF4620110, LCQ908 HCV DGAT1 498
AG879 1AV, SINV, HSV-1, MHV, NGFR 121, 129
RV
U18666A IAV Annexin A6 499
UVv-4B DENV, IAV ER glycosylation pathway 500
Tyrphostin A9 (A9) 1AV, SINV, HSV-1, MHYV, PDGFR 121,129
RV
Verapamil, chlorpromazine 1AV, SINV, VSV Calcium channel blocker 501, 502
Gemfibrozil, lovastatin 1AV Unknown 503
Suramin ZIKV Glycosylation (secretory 504, 505
pathway)
Dynasore HSV Protein trafficking 422
DEBIO-025 HCV Cyclophilin A 506, 507
Bortezomib ZIKV Proteasome function 417

aAbbreviations: AAK1, adaptor-associated protein kinase 1; AdV, adenovirus; AstV, astrovirus; BDV, Borna disease virus; BPXV, buffalopox virus; BHV1, bovine
herpesvirus 1; BEFV, bovine ephemeral fever virus; CDK, cyclin-dependent kinase; CVB3, coxsackievirus B3; clAP2, cellular inhibitor of apoptosis protein 2; CLK1, Cdc2-
like kinase 1; CMV, cytomegalovirus; CoV, coronavirus; DGAT1, diacylglycerol acyltransferase-1; DENV, dengue virus; DHODH, dihydroorotate dehydrogenase; EAV,
equine arteritis virus; EBOV, Ebola virus; EGFR, epidermal growth factor receptor; EMCV, encephalomyocarditis virus; EV, enterovirus; elF4E, eukaryotic translation
initiation factor 4E; ERK, extracellular-regulated kinase; FLV, flavivirus; FAS, fatty acid synthase; FMDV, foot-and-mouth disease virus; GAK, cyclin G-associated kinase;
HBV, hepatitis B virus; HCV, hepatitis C virus; HIV-1, human immunodeficiency virus type 1; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; hnRNPA1,
heterogeneous nuclear ribonucleoprotein A1; hRSV, human Rous sarcoma virus; hCMV, human cytomegalovirus; hAdV, human adenovirus; hRhV, human rhinovirus;
HSV-1, herpes simplex virus 1; IAV, influenza A virus; IBV, influenza B virus; IMPDH, IMP dehydrogenase; JEV, Japanese encephalitis virus; JUNV, Junin virus; MHV,
mouse hepatitis virus; MNK1, MAPK-interacting kinase 1; NDV, Newcastle disease virus; NGFR, nerve growth factor receptor; NPC1L1, Niemann-Pick C1-like 1; NF-«B,
nuclear factor kappa B; OSBP, oxysterol-binding protein; PDGFR, platelet-derived growth factor receptor; PIV, parainfluenza virus; PEDV, porcine epidemic diarrhea
virus; PI4KB, phosphatidylinositol 4-kinase 11I3; PKC, protein kinase C; PPRV, peste des petits ruminants virus; PRRSV, porcine reproductive and respiratory syndrome
virus; PyV, polyoma virus; RACK1, receptor for activated C kinase 1; RVFV, Rift Valley fever virus; RSV, Rous sarcoma virus; RV, rotavirus; SERCA, sarco/endoplasmic
reticulum Ca2*-ATPase; SV, Sendai virus; SINV, Sindbis virus; SirT1, Sirtuin type 1; VSV, vesicular stomatitis virus; VEEV, Venezuelan equine encephalitis virus; WNV,
West Nile virus; XPO1, exportin 1; ZIKV, Zika virus.

July 2020 Volume 33 Issue 3 e00168-19

cmr.asm.org 7


https://cmr.asm.org

Kumar et al.

chemical inhibitors that suppress fatty acid biosynthesis results in decreased virus
production (121, 133-136), an approach that has shown promise against dengue virus
(DENV), Zika virus (ZIKV), and West Nile virus (WNV) (137).

Acetyl coenzyme A (acetyl-CoA) carboxylase (ACC), ATP citrate lyase (ACLY), and fatty
acid synthase (FASN) are known to regulate fatty acid biosynthesis in eukaryotic cells (138).
Targeting ACC with the chemical inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) and
3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16) has been shown to reduce flavivi-
rus (WNV and Usutu virus [USUV]) replication (134). These compounds act by reducing
cellular levels of multiple lipids, such as glycerophospholipids, sphingolipids, and choles-
terol (134). Additionally, the lipid biosynthesis inhibitor TOFA and cerulenin exhibit broad-
spectrum antiviral activity against ZIKV (Flaviviridae) and Semliki Forest virus (Togaviridae)
by blocking ACC and FASN, respectively (133). Improved technologies, such as lipidomics,
should provide insights into reprogramming of lipid metabolism following viral infections.
However, caution is warranted, since targeting host lipid metabolism as an antiviral strategy
may be limited by toxicity to host cells (139).

Besides targeting cellular kinases and fatty acid synthases, small molecule chemical
inhibitors have also been developed against other protein/lipid targets, and these are
summarized in Table 2. Other types of inhibitors include the relatively new class of
therapeutic monoclonal antibodies (MAbs) that can be used to target certain host factors
required for virus infection and replication. These are described in the following section.

Host-directed therapeutic monoclonal antibodies. Rather than examining the role
of antibodies directed against viral proteins, our focus in this section is to highlight the
role of antibodies directed against host components when the net outcome is antiviral.
For example, antibodies such as UB-421 (140), ibalizumab-uiyk (141), and maraviroc (80,
81), which block receptor binding sites on CD4" T cells, have shown clinical efficacy in
treating HIV-1 infection (21).

Cellular tight-junction proteins, such as claudin (142) and occludin (143), may act as
entry receptors for viruses such as HCV (142-145). Thus, anti-claudin1 (CLDN1) (146)
and anti-occludin (147) monoclonal antibodies have been designed and shown to
inhibit HCV infection with minimal side effects. Similarly, the human scavenger receptor
class B, type | (SR-BI), is a presumed receptor for HCV, and targeting this molecule may
represent a useful therapeutic approach (148). However, HCV variants with decreased
SR-BI dependency, which could limit the use of SR-BI targeting therapy, have been
described previously (149-151). Interestingly, humanized mice infected with HCV vari-
ants that had increased in vitro resistance to SR-Bl-targeting molecules still remain
responsive to anti-SR-BI MAb therapy in vivo (152), hence representing an effective way
to combat HCV infection (152).

Antibodies directed toward other cellular proteins (other than viral receptors) have also
been developed. For example, blocking CD69 (a transmembrane C-type lectin protein in
the host that is highly expressed by leukocytes upon infection) using anti-CD69 monoclonal
antibodies can increase leukocytic numbers in secondary lymphoid organs during infection.
This promotes clearing of vaccinia virus infection (153) (Fig. 2A). Anti-CD69 also increases
the numbers of gamma interferon (IFN-y)- and tumor necrosis factor alpha (TNF-a)-
producing natural killer (NK) and adaptive immune T cells, an effect mediated in part by
mTOR signaling (154, 155). Other studies have documented the therapeutic potential of
bevacizumab (a recombinant humanized monoclonal antibody directed against vascular
endothelial growth factor) to inhibit HSV-1-induced corneal neovascularization and also
scarring in herpetic stromal keratitis (156, 157).

Monoclonal antibodies have been used as adjunct therapeutic agents along with
antiviral therapy. For instance, oral anti-CD3 antibody therapy can cause significant
reductions in viral load and an increase in regulatory T-cell levels in chronic HCV
patients who additionally receive IFNs plus ribavirin therapy (158).

It is noteworthy that host-directed antiviral therapies (e.g., monoclonal antibodies
and other types of inhibitors) offer several advantages over virus-directed interventions.
Compared to virus-directed agents that exert genotype-dependent antiviral activity,
host-directed agents show broad-spectrum pan-genotypic activity. For example, mono-
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FIG 2 Regulation of host antiviral responses. An antiviral immune response can be boosted by several
possible means. (A) Monoclonal antibodies. Blocking CD69 by using anti-CD69 monoclonal antibodies
increases leukocytic numbers in the secondary lymphoid organs during infection and improves the
capacity to clear viral infection. (B) PRR agonists. Agonists targeting PRRs are another possible strategy
to potentiate the innate immune response for enhanced virus clearance. (C) Modulation of counterin-
flammatory mechanisms. Counterinflammatory mechanisms such as the Tim-3/Galectin-9 interaction and
the PD-1/PDL-1 axis prevent collateral tissue damage caused by an excessive immune response. Thus,
antiviral immunity can be augmented by blocking these counterinflammatory mechanisms. (D) Manip-
ulating Treg responses. Treg are the suppressor cells that act to limit an excessive immune response.
FTY720 expands and potentiates Treg function, which in turn ameliorates virus-induced immunopathol-
ogy. On the other hand, inhibiting Treg (adefovir dipivoxil) enhances antiviral effector responses. (E)
Cytokine therapy. Administration of proinflammatory cytokines and alternatively a blockade of immu-
nosuppressive cytokines may serve to enhance antiviral immune responses.

clonal antibodies directed against SR-BI (159, 160), CLDN1 (161), and CD81 (162, 163)
have shown broad-spectrum antiviral efficacy against multiple HCV genotypes. Like-
wise, host-directed agents such as ITX-5061 (164), erlotinib (165), ezetimibe (166),
flavonoids (167, 168), lectins (169), and phosphorothioate oligonucleotides (170), as
well as silymarin (171, 172), exhibit antiviral activities against multiple genotypes of
HCV. Host-directed agents also restrict replication of viral escape variants. For example,
besides blocking entry of all major HCV genotypes, monoclonal antibodies directed
against CLDN1 can also inhibit cell entry of highly infectious neutralizing antibody
escape variants of HCV (161). As a result, recent developments of clinically useful
monoclonal antibodies and other host-directed agents have revolutionized strategies
for antiviral therapy.

Regulating Host Antiviral Responses

An alternative to using drugs that directly target either viral events or physiological
processes involved in replication in infected cells is to target the various host immune
events set into play by viral infections. In response to infection, viruses can trigger a
wide range of host responses that usually act to eventually control the extent of the
infection and remove virus from the host (Fig. 2). Such events can be changed by an
expanding series of therapies to facilitate host-directed viral control and to limit the
extent of tissue damage caused by the infection. These strategies are discussed in the
following sections.
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TABLE 3 Regulation of host antiviral responses®

Clinical Microbiology Reviews

Antiviral agent(s) and functional category Virus(es) Host target Reference(s)
Agonist of the innate immune receptors
Rintatolimod (Ampligen) HIV, HCV, HBV TLR3 agonist 189
GS9620, RO6864018, RO7020531, HBV, HPV TLR7 agonist 21, 508
AL-034, imiquimod (Aldara)
GS9688 HBV TLR8 agonist 508
CL097 HIV TLR7/8 agonist 189
PF-04878691 or 852A HCV TLR7/8 agonist 189
CPG10101, IMO-2125, SD-101 HCV TLR9 agonist 189
Inarigivir (SB 9200) HBV RIG-I agonist 508
Regulation of inflammatory pathway
IFN-o, PeglFN-a, Alferon N HPV, HCV, HBV TNF-a-mediated antiviral activity 21
Quercetin JEV, HCV TNF-a-mediated antiviral activity 509-511
A23187 SINV, VSV Ca2* efflux-mediated antiviral immunity 512
Phorbol myristate acetate HBV Synthesis of NF-«B-mediated antiviral protein 513,514
Clno33 Variola virus ErbB1(EGFR)-mediated antiviral immunity 515
SIP agonist IAV Suppression of virus-induced cytokine storm 516, 517
COX-2 depletion IAV Induction of type | IFN-mediated antiviral immunity 518
Statins IAV Anti-inflammatory and immunomodulatory effects 519, 520
PPAR agonist IAV Suppression of virus-induced cytokine storm and 521-524

associated lethality in mice

aAbbreviations: COX-2, cyclooxygenase 2; DHV, duck hepatitis virus; EGFR, epidermal growth factor receptor; HBV, hepatitis B virus; HCV, hepatitis C virus; HPV, human

papillomavirus; 1AV, influenza A virus; JEV, Japanese hepatitis virus; PPAR, peroxisome proliferator-activated receptor-vy; SINV, Sindbis virus; SIP,

sphingosine-1-phosphate; VSV, vesicular stomatitis virus.

Induction of the IFN pathways. Viruses themselves may possess one or more
pathogen-associated molecular patterns (PAMPs), which can be proteins, lipids, or
nucleic acids. These PAMPs interact with cellular pattern recognition receptors (PRRs) to
induce innate immune events such as IFN production (173-178). Cells respond to IFNs
by changing the expression of a multitude of cellular proteins, collectively known as
IFN-stimulated genes (ISGs) (179, 180). These function to protect the responding cells
from viral replication and therefore help to resolve infections (181, 182). Other mole-
cules produced in response to viral infection may participate in the cellular inflamma-
tory response, and these too can exert antiviral control, although if overstimulated may
contribute to tissue damage, as is typical during many chronic viral infections (183,
184).

The best-studied examples of viral PAMPs are those which trigger the cellular
Toll-like receptors (TLR). Such interactions result in a cascade of events that include cell
activation, the production of cytokines, and several other activities that can modulate
the outcome of viral infection (185, 186) (Table 3). The PRRs may be triggered by
synthetic ligands. For instance, administration of the TLR7 agonist GS-9620 may expand
NK cells and HBV-specific T cells, which leads to better control of chronic HBV infection
(187) (Fig. 2B). Likewise, the TLR7/8 agonist R848 can block ZIKV genome and protein
synthesis in human monocytes via the activation of viperin, an antiviral protein (188).
Similarly, TLR9 and TLR3 agonists can inhibit HCV and HBV replication, respectively
(189).

Unlike cellular RNA, some viral RNAs contain a 5’ triphosphate (5'ppp) terminal
structure. This is sensed by the cellular retinoic acid-inducible gene | (RIG-I), a member
of the cytosolic PRR family that also activates intracellular signaling cascades to induce
proinflammatory cytokine responses (190, 191). Administration of synthetic 5'ppp RNA
may also activate RIG-I-dependent antiviral responses to provide significant protection
against a diverse group of RNA and DNA viruses (192).

Certain drugs and biologicals that stimulate IFNs have been developed, and these
have contributed to controlling virus infection. For instance, virus replication is sup-
pressed by hydroxyquinolines, a class of small molecule compounds that activates IFN
regulatory factor 3 (IRF3) of the type | IFN pathway (193).

Augmentation of host antiviral responses by inhibiting counterinflammatory
pathways. Host counterinflammatory pathways function to inhibit the collateral tissue
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damage that might occur as a consequence of excessive immune responses generated
against a viral infection. On the other hand, host counterinflammatory mechanisms also
dampen effective immunity to acute viral infections. For example, in a mouse model of
IAV infection, a TIM-3/Galectin-9 immunoinhibitory interaction can act to limit collateral
damage by inducing apoptosis of TIM-3-positive CD8™ T cells that mediate the damage
(194). However, unfortunately, the approach can impair antiviral control, which is also
mediated by CD8* T cells. Accordingly, blocking the TIM-3/Galectin-9 immunoinhibi-
tory interaction using TIM-3 fusion protein can enhance antiviral immunity by gener-
ating a more robust acute-phase virus-specific CD8" T-cell response as well as in-
creased levels of virus-specific serum IgM, 1gG, and IgA antibodies (194) (Fig. 20).

Other immune-directed approaches include blockade of the coinhibitory receptor
programmed death-1 (PD-1). This has been used to control chronic simian immuno-
deficiency virus (SIV) infection in macaques with antibody to PD-1. This enhances
protection via effects on virus-specific CD8* T-cell function (195) (Fig. 2C). Others have
also reported the benefits of controlling virus infection using MAbs that target inhib-
itory receptors, and the approach seems to have a promising future (196).

Another potential immune-directed strategy to combat virus infections is to target
the function of regulatory T cells (Treg), which often act to diminish excessive inflam-
matory responses. Although Treg have beneficial effects against inflammatory reactions
to viruses, the downside is potentially limiting protection, especially to acute infections
(197). Thus, Treg activity needs to be therapeutically managed to potentiate antiviral
immunity (Fig. 2D). For example, an acyclic nucleotide analogue of adenosine used
against chronic HBV infection (198) inhibits Treg function as well as its expansion (199)
but is mildly nephrotoxic. Similarly, TNF-« inhibited the suppressive effect of Treg, and
this resulted in enhanced HBV-specific immune responses (200). However, inhibition of
virus-specific Treg can be a technically challenging issue for various reasons, as de-
scribed in a recent review article (201). Besides directly regulating antiviral responses,
manipulation of Treg can also ameliorate the tissue damage caused by viral infections.
For example, long-term application of the sphingosine-1 phosphate receptor agonist
FTY720 results in anti-inflammatory effects (202) in HSV-1-induced immunopathology.
These effects of FTY720 were mediated by the conversion of T-cell receptor (TCR)-
stimulated nonregulatory CD4* T cells to Treg with increased suppressive activity. A
plethora of inhibitory pathways of the immune system are important for maintaining
self-tolerance and minimizing collateral tissue damage. It is also well understood that
viruses coopt certain immune checkpoint pathways as a major mechanism of immune
resistance, particularly against T cells that are viral antigen specific. Immune checkpoint
modulation is thus a viable emerging treatment modality. However, careful consider-
ation should be exercised before any treatment decisions are made.

Cytokine therapy. Attempts have been made to enhance the therapeutic effect of
antiviral adaptive immunity by administering cytokines. There are three phases of the
T-cell immune response: expansion, contraction, and memory (203, 204). Interleukin 2
(IL-2) therapy during the contraction phase of an antiviral immune response can result
in enhanced proliferation and survival of virus-specific T cells as well as a drastic
reduction in viral titers (205) (Fig. 2E). However, IL-2 treatment during the expansion
phase had a negative impact on the survival of rapidly dividing effector T cells (205).
Similarly, in chronic HBV patients, the virus can be controlled using therapies that
stimulate certain cytokines. For example, Peg-IFN-A treatment achieves control likely by
inducing high serum levels of IL-18 (antiviral cytokine) along with sustaining both
IFN-producing HBV-specific CD4™ T cells and CD8* T-cell responses (206). These
enhanced immune activities can severely restrict virus replication (13). On the other
hand, immunosuppressive cytokines, such as IL-10, can suppress antiviral immunity,
and overcoming this effect can result in enhanced viral control, as has been observed
with lymphocytic choriomeningitis virus (LCMV) infection (207).

Regulation of cytokine storm. The term “cytokine storm” is used to describe
aberrant production of cytokines and the tissue-damaging immunopathology they
orchestrate. Originally, “cytokine storm” was coined to characterize pathology associ-
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ated with organ transplantation, as demonstrated by an inflammatory response trig-
gered by the donor immune cells reacting to the recipient patient host’s tissues
(graft-versus-host disease) (208). Cytokine storm has also been correlated with in-
creased disease severity, particularly in cases of acute viral infections (208). These
include IAV (209, 210), DENV (211, 212), and Ebola virus (EBOV) (213) infections. Over
150 cytokines may be involved in a cytokine storm (211-213), but those primarily
involved include TNF-q, IL-6, and IFNs.

Controlling cytokine storms by targeting host proteins involved in the activation of
cellular signaling pathways is a potential approach to dampen tissue damage (214). For
example, the highly pathogenic H5N1 avian influenza virus induces a robust cytokine
response in comparison to seasonal flu (H1IN1) (215). In addition, the highly pathogenic
“Spanish flu” (HIN1 IAV strain), which caused a catastrophic pandemic in 1918-1919,
was also shown to induce hypercytokinemia in ferrets (216). Since hypercytokinemia
involves multiple cytokines, disrupting a single cytokine usually has limited value (215,
217). However, since the induction of the majority of the cytokines is mediated via
activation of the NF-«B signaling pathway, targeting this transcription factor may be a
therapeutically viable approach. For example, in a knockout mouse model of H5N1
infection, depletion of NF-kB (p50 subunit) resulted in a drastic reduction in the
expression of the NF-«kB-regulated cytokines and chemokines (lack of hypercytokine-
mia) (215, 218).

In one highly pathogenic IAV infection (H5N1), the majority of patients who expe-
rienced a cytokine storm were elderly or had compromised immune systems (219). In
fact, a relevant question is why certain individuals are relatively resistant to cytokine
storms whereas others are more susceptible. Hyper- and hyporesponders to bacterial
products have also been identified in patients, which can be explained in part by
differences in structure and function of their TLR1 proteins (220). Thus, the association
between high host susceptibility to virus-induced cytokine storms and genetic poly-
morphisms in the PRRs needs to be explored in more detail.

Modulating Epigenetic Modifications

Epigenetics is the study of phenotypic changes which do not involve nucleotide
variations in the genome of the organism (221). Major epigenetic changes that take
place in cells are due to histone modifications (acetylation and methylation), phos-
phorylation, ubiquitination, and sumoylation. Histones interact with genomic DNA to
form chromatin structures. The level of chromatin compaction depends primarily on
methylation and/or acetylation of the histone proteins (222), and this determines
genomic stability, gene expression, cell lineage development, stem cell maturation, and
mitosis (223). Histone modifications are carried out by epigenetic regulators, such as
histone acetyltransferases (HATSs), histone deacetylases (HDACs), and histone methyl-
transferases (HMTs), and these factors have been targeted to treat cancers (224) and
parasitic diseases (225). Likewise, DNA methyltransferases (DNMTs), which regulate
DNA methylation, have been associated with many different diseases (226, 227). Recent
reports also highlight the involvement of these epigenetic modifiers in regulating virus
replication (228-231). For instance, epigenetic modifications can serve as an antiviral
defense mechanism by suppressing transcription and replication of the viral genome.
On the other hand, viruses may also epigenetically modulate host functions by induc-
ing DNA hypermethylation of the host genome upon virus infection (232). Therefore,
ongoing efforts to develop inhibitors of epigenetic regulators (Fig. 1B) to control gene
expression during viral infection are warranted.

Histone acetylation and deacetylation. Histone acetylation and deacetylation are
the processes by which the lysine residues within the N-terminal tail that protrude from
the histone core of the nucleosome are acetylated and deacetylated during gene
regulation (233). Histone acetylation is regulated by HATs and HDACs, and chemical
inhibitors of HDACs have been evaluated for antiviral effects. For example, the selective
HDACG6 inhibitor tubacin has been shown to block Japanese encephalitis virus (JEV)
(234) and HCV (235) replication. The mechanism involved induction of heat shock
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protein 90 (Hsp90; an HDACG6 substrate) hyperacetylation that inhibits Hsp90 and JEV
NS5 interaction to block viral RNA synthesis (234). Similarly, the HDAC inhibitor SAHA
(suberoylanilide hydroxamic acid) can inhibit HCV replication by increasing H3 acety-
lation levels (236) of an immunomodulatory protein, osteopontin (237).

In an in vitro model of latent HSV-1 infection, treatment with trichostatin A (TSA) and
sodium butyrate (HDAC inhibitors) of quiescently infected PC12 cells (rat neuroblas-
toma) was shown to reactivate virus replication (238), suggesting that epigenetic
modifications may be exploited to understand the issue of viral latency. Like other
herpesviruses, Epstein-Barr virus (EBV) persists mainly as an episome (also called a
covalently closed circular DNA [cccDNA]) in latently infected B lymphocytes (239).
During latency, viral DNA is maintained with relatively low levels of histone acetylation.
Expression of the viral BZLF1 protein is associated with viral lytic reactivation (240). Its
expression is blocked by the recruitment of cellular repressive factors such as YY1 (Yin
Yang 1) and ZEB (zinc finger E-box-binding factor). These prevent access of transcrip-
tional activators and facilitate binding of repressive cofactors such as HDAC (240).
Therefore, HDAC inhibitors can induce reversal of EBV latency.

Although these HDAC inhibitors have the potential for use as promising therapeutic
agents, a careful assessment prior to their use is essential, as they have the potential to
reactivate other latently infected viruses in the host's genome (241). For instance,
administration of SAHA/TSA can increase the severity of coxsackievirus B3 (CVB3)-
associated myocarditis (242).

Controlling chronic HBV infection, which represents a major problem, might be
achieved by manipulating epigenetic events in chronically infected cells. HBV genomes
in viral particles remain in a circular, partially double-stranded DNA conformation that
is transcriptionally inert (243). To become transcriptionally active, it is converted into
cccDNA (episome) in the nuclei of infected cells (244, 245). Once infection has occurred,
the virus persists indefinitely in the nuclei of hepatocytes as cccDNA. Currently ap-
proved antiviral therapy, based on nucleoside analogs, targets cytoplasmic HBV
genomic replication without directly affecting cccDNA and therefore necessitates
long-term antiviral therapy (246-250). Total cure of chronic HBV can be achieved only
if the viral episomes are removed from the nuclei of all hepatocytes. The formation of
cccDNA by HBV is facilitated by the cellular transcriptional machinery (251), which also
involves epigenetic modifications (251, 252). The epigenetic inhibitor C646 (HAT inhib-
itor) transcriptionally silences cccDNA without any measurable toxicity, thus represent-
ing a novel approach to the therapy of chronic HBV infection (253).

Histone methylation. HMTs are of two types, histone-lysine N-methyltransferases
and histone-arginine N-methyltransferases. HMT inhibitors have proven their therapeu-
tic potential against certain types of cancer, and they might be effective in
regulating some viral infections. For example, PRMT5 (protein arginine methyltrans-
ferase 5) restricts HBV replication, which is mediated via epigenetic repression
(demethylation of arginine residues at the arginine-rich C-terminal domain) of viral
DNA transcription (254). Thus, PRMT5 agonists are valuable for repressing HBY DNA
transcription (255).

Another potential use of HMTs is to manipulate HSV latency. The transcriptional
repressor CTCF, also known as CCCTC DNA binding factor or 11-zinc finger protein, is
a transcriptional factor in the human genome encoded by the CTCF gene. This can bind
to HSV-1 DNA and promote HSV-1 lytic transcription. CTCF depletion by siRNA can
cause an increase in repressive histone marks H3K27me3 and H3K9me3, concomitant
with decreased transcription of HSV-1 genes (256). Likewise, treatment with 5’-deoxy-
5’-methylthioadenosine (MTA; a protein methylation inhibitor) can suppress the level of
H3K4me3 (mediated via methyltransferase Set1), which eventually results in reduced
HSV-1 transcription and replication (257).

Histone demethylation. DNA viruses encapsidate their genomes without histones
but rapidly acquire chromatin structure following infection (258, 259). Therefore, they
are subjected to modification by the host epigenetic modifiers, which can be inhibited
to regulate viral replication. For example, inhibition of lysine-specific demethylase 1
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(LSD1; KDMTA family) results in inhibition of transcription and lytic replication of the
DNA viral genome. This results in reduced virus shedding and decreased disease
severity (260-264). Unlike DNA viruses, RNA virus genomes do not depend on histone
association and chromatin structure. However, surprisingly, LSD1 indirectly inhibits IAV
replication by demethylating and activating interferon-induced transmembrane pro-
tein 3 (IFITM3), which serves as a cellular antiviral protein for IAV and several other RNA
viruses (265). Additionally, even though HIV-1 is an RNA virus, blocking LSD1 activity
has also been shown to suppress the proviral DNA activation of HIV-1 transcription in
latently infected T cells. This effect is mediated by demethylation of the viral accessory
Tat protein (266).

DNA methylation. DNA methylation is a well characterized epigenetic modification
that is associated with many different diseases, including microbial infections and
cancers (226, 227). DNA methylation is most dynamic in CpG islands near transcription
start sites (222). CpG islands are typically hypomethylated in comparison to the rest of
the genome. Generally, promoter methylation represses gene transcription, while
methylation at other regions of the genome induces gene transactivation (222). The
chromatin structure undergoes changes following DNA methylation (267, 268) and
during interaction with HDAC/DNMTs (269, 270). DNMTs bind the methyl group (-CH,)
at the carbon 5 position of cytosine in CpG dinucleotides to methylate DNA (271).
Hypermethylated DNA, which negatively correlates with hypoacetylated histones, leads
to chromatin condensation and hence transcriptional repression (267).

By suppressing transcription and replication of the viral genome, DNA methylation
serves as an antiviral defense mechanism. Endogenous retroviruses and retrotransposons
are well known to be repressed by DNA hypermethylation (272). The genome of DNA
viruses such as HPV, HSV-1, HBV, EBV, and adenovirus also undergo abundant methylation
and are often silenced in the infected cells (273-277). The silenced viral genomes can be
reexpressed by manipulating epigenetic events. For example, treatment with 5-azacytidine
(decitabine), a DNMT inhibitor, induced activation of silenced EBV genomes. This eventually
facilitated immune-mediated destruction of EBV-associated tumor cells (278, 279). How-
ever, demethylating agents can also activate retroviral RNA transcription from its dormant
(latent) stage (280), a potential problem for therapy.

Viruses may also epigenetically subvert host functions by inducing DNA hypermeth-
ylation (281, 282). For example, HCV infection induces DNMT1 and 3b-mediated DNA
hypermethylation. This leads to downregulation of expression of E-cadherin, a primary
cell adhesion molecule with tumor suppressor activity (283). The effect can be reversed
following treatment with a DNMT-specific inhibitor (283). Similarly, methylation of
SOCS1 (suppressor of cytokine signaling 1, a negative regulator of JAK/STAT signaling)
negatively correlated with HBV-induced hepatocellular carcinoma (284). Likewise, the
promoter of GADD45 (growth arrest and DNA damage-inducible gene 45), a tumor
suppressor gene, has been shown to be hypermethylated during HCV infection in mice
(285). By regulating multiple DNMTs, DNA tumor viruses such as HPV and HBV induce
aberrant DNA methylation (286-288), which can eventually result in carcinogenesis
(289).

Techniques such as photo-cross-linking-assisted m6A sequencing (PA-m6A-seq), high-
resolution mapping of Né-methyladenosine using m6A cross-linking immunoprecipitation
(m6A-CLIP), bisulfite sequencing, 5-methylcytosine RNA immunoprecipitation (m5C-RIP),
5-azacytidine-mediated RNA immunoprecipitation (Aza-IP), and methylation-individual nu-
cleotide resolution cross-linking immmunoprecipitation (miCLIP) have all emerged as pow-
erful tools to profile epigenetic modifications in viral and host genomes (290-294). These
techniques, when combined with chromatin immunoprecipitation (ChIP), can provide
comprehensive information on the multiprotein complexes associated with epigenetic
control of viral infections. In addition, elucidating the role of other modes of posttransla-
tional modifications, such as phosphorylation or sumoylation, can provide insights into
dynamic virus-host interactions (294).
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MODERN APPROACHES OF ANTIVIRAL THERAPY AND TO IDENTIFY HOST
FACTORS FOR ANTIVIRAL DRUG DEVELOPMENT
Drug Combination Approach

The appropriate use of drug combinations may result in enhanced potency and
broadened antiviral activity and may lessen the chance of drug resistance (295, 296). As
discussed above, the addition of ribavirin to PeglFN-a-based regimens provided dra-
matic improvement of chronic HCV control (53, 297). However, the mechanism by
which IFN-a and ribavirin act against HCV has not been elucidated. Other combinations
have also proven effective against HCV. For example, Xiao and colleagues showed that
a combination of host-directed agents (erlotinib, dasatinib), host-directed antibodies
(anti-CLDN1, anti-CD81, and anti-SR-BI), and virus-directed agents (telaprevir, bocepre-
vir, and simeprevir or danoprevir, daclatasvir, mericitabine, and sofosbuvir) were highly
effective against HCV (298).

A new avenue in the use of drug combinations may be to simultaneously target
multiple host factors and pathways that are supportive of virus replication (299, 300).
It is an added advantage if the host-directed agents have already been FDA approved.
Such drugs can be used immediately to treat viral infections, an approach known as
drug repurposing (299, 301-303). Because the targets of these drugs have already been
well characterized and validated, they present with little to no safety issues and risks.
To determine which drugs might be appropriately combined to exploit their different
mechanisms of action, a number of new approaches have been tried and are discussed
below.

Antiviral Drug Development in the Era of Precision Medicine

There is a significant gap in our understanding about how different individuals
develop disease and respond to treatments. Traditional medicine is based on the
“one-size-fits-all” approach, and this may miss its mark, because each person’s genetic
makeup is slightly different from that of others. The promising idea of precision
medicine (also known as personalized medicine, individualized medicine, or genomic
medicine) is to cater healthcare to each person’s unique genetic makeup. However, this
new technology is still being validated and may take several years to become clinically
feasible. Regardless, it is important to consider the individual’s uniqueness when
developing antiviral drugs, as this uniqueness can have an important impact on the
outcome of therapies.

Patient-to-patient variability in the outcome of antiviral therapies might be due to
different genetic profiles as well as the variable microbiome present in the individual
(304, 305). The latter could influence host pharmacokinetic and pharmacodynamic
profiles as well as drug distribution (306). The advent of methodologies to compre-
hensively characterize patients at genomic, transcriptomic, proteomic, metabolomic,
and lipidomic levels along with the availability of computational tools to analyze global
protein-protein interactions (interactome) has greatly improved biological databases
(307). Employing these “omics” approaches to classify clinical populations into mech-
anistic subgroups is likely to result in a higher success rate of treatment modalities,
including antiviral therapies (306).

One potential application of precision medicine is to predict the outcome of viral
infections in different individuals. For example, IAV infection may induce robust pro-
inflammatory cytokine responses, with some individuals experiencing severe disease.
Under such circumstances, steroids are usually not advisable because they may pro-
mote virus replication (308). Furthermore, anti-inflammatory therapy aimed to dampen
inflammatory responses has been successful but only in a few patients (308). Under
such circumstances, the availability of “omics” data (biomarkers) should prove valuable
to explain individual variations, to monitor immune responses, and to assess disease
severity in individual patients.

Another application might apply to HIV-1 control. In HIV-1, restoration of CD4*
T-cell numbers is critical after initiation of antiretroviral therapy (ART) (309). However,
it is evident that not all HIV-1 patients experience a rebound in their CD4* T-cell counts,
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and they are therefore vulnerable to opportunistic infections (309, 310). Determining
the genetic factors which predict different levels of patients’ responses to ART is key to
optimal treatment outcomes. For example, the pattern of gene expressions by periph-
eral blood monocytes (PBMCs) of an individual patient can predict if certain individuals
recover their CD4™ T-cell counts (311). Similarly, a polymorphism in the MDR-1 gene in
patients has been associated with more potent responses to ART than of patients
lacking certain polymorphisms (312-315). Polymorphisms in genes encoding drug
transporters and metabolic enzymes are also important factors in determining concen-
trations of antiretrovirals in plasma (316-320). It is noteworthy that besides host genetic
factors, alterations in the microbiome of individual patients may also influence the
outcome of viral infections or vaccination (304). This is an important topic that has been
discussed elsewhere (304, 321).

Genome-Wide Screens To Identify Host Factors for Drug Development

Classical reductionist approaches by studying the role of a single or a limited
number of proteins do not provide a holistic view of all the cellular factors that can
support virus replication. Modern drug development has been fueled by the advent of
high-throughput genome-wide technologies, such as RNAi and CRISPR screens, which
permit the simultaneous evaluation of multiple molecular targets. Data generated from
the new high-throughput approaches have proven to be invaluable in assembling
novel hypotheses and in identifying new and useful diagnostic biomarkers.

siRNA screens. Small interfering RNAs (siRNAs) are artificially synthesized, 19- to
23-nucleotide-long double-stranded RNA molecules designed to specifically target a
cellular mRNA for degradation (322). Through genome-wide RNAi screening assays,
thousands of distinct host factors have been shown to either facilitate or inhibit
replication of a variety of viruses (323-350). It is, however, less well understood how the
majority of these cellular factors may impact the life cycle of different viruses. For
instance, a total of 1,362 virus-supportive host factors have been identified in seven
different IAV RNAI screens performed to date. The overlapping genes were shown to
regulate various steps of the virus replication cycle (351-355). However, only a few of
the thousands of identified host factors, such as NF-kB (96), members of the Raf/MEK/
ERK pathway (36), and RTKs (121, 129), are known to facilitate IAV replication. Among
the thousands of virus-supportive host factors identified, only a relatively small fraction
show overlap in multiple independent screens (e.g., 113, 14, and 6 factors were found
to be common in two, three, and four individual screens, respectively). It is noteworthy
that no common host factors have been identified among all seven IAV RNAi screens
performed to date. We therefore can conclude that RNAi screens can provide a holistic
view on host dependency factors for virus replication. However, data reproducibility
among different screens (due to various inherent or other uncontrollable variability
issues) and determination of definitive mechanistic insights for the involvement of
many of the different host factors in virus replication can be challenging (356). This
problem can perhaps be overcome by the use of a lentivirus-based pooled RNAi screen.
In this method, cells are first infected with a pool of lentiviruses at a low multiplicity of
infection (MOI) (0.1 to 0.3) to express the diverse pool of siRNAs. Subsequently, cells are
challenged with the target virus of interest in order to produce cytopathic effects. The
surviving cells are then propagated and used for next-generation sequencing (NGS).
This identifies siRNA targets (host genes) responsible for providing protection against
virus-induced cell death (329, 330).

CRISPR/Cas9 screens. As discussed above, the RNAi approach to identify exploitable
host targets for antiviral drug development can be challenging, but the recently
developed CRISPR/Cas9 approach portends to be an improved method. While RNAi
produces a weak phenotype (partly because it is not possible to achieve 100%
transfection efficiency), the cellular CRISPR/Cas9 machinery completely disrupts its
targeted protein and thereby can produce a more robust phenotype (357). The
genome-wide CRISPR/Cas9 knockout (GeCKO) technique can successfully identify cel-
lular factors required for virus replication (358-367). This approach has many advan-
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TABLE 4 Observations on development of resistance against host-directed antiviral agents?

Antiviral agent(s) Virus Host target Mechanism of resistance Reference(s)
Thapsigargin NDV SERCA Mutations in the fusion (F) protein 39
Amiloride (EIPA) CVB3 Sodium-proton Mutations close to the active center in 430
exchange the RNA-dependent RNA polymerase
CGP57380 BPXV MNK1 Not defined 38
DEBIO-025, SCY63, NIM811 HCV Cyclophilin Mutations in the viral proteins 372
(NS3, NS5A, and NS5B) near
cyclophilin binding site
PIK93, BF738735, GW5074, EV PI4KB Mutation in viral 3A protein which allows 481, 482
T-00127-HEV1 recruitment of PI4KB for synthesis of
P14P with enhanced efficiency
Brequinar DENV Not defined Mutations in the viral polymerase (E802Q) 525

and envelope (M260V) proteins

aAbbreviations: BPXV, buffalopox virus; CVB3, coxsackievirus B3; DENV, dengue virus; EV, enterovirus; HCV, hepatitis C virus; NDV, Newcastle disease virus; SERCA,
sarco/endoplasmic reticulum calcium-ATPase; MNK1, MAPK interacting kinase 1; PI4KB, phosphatidylinositol 4-kinase IlIB.

tages over RNAi screens. For example, while the number of proviral host factors
identified by seven IAV RNAi screens ranged from 90 to 323, the GeCKO screen
identified a maximum of 453 proinfluenza host genes (359). Furthermore, the GeCKO
screen identified at least 33 common proinfluenza host genes, compared to 2 to 16
identified by various RNAi screens (359). The GeCKO screen also revealed >400 rare
host genes required for IAV replication that were not found in previous RNAi screens
(359). Likewise, three independent GeCKO screens with flaviviruses (FLVs) identified the
endoplasmic reticulum (ER)-associated protein complex as key cellular factors for
efficient FLV replication. This indicated a higher reproducibility than that of RNAi
screens (360, 362, 363). HIV-1 coreceptors, namely, solute carrier family 35 member B2
(SLC35B2), activated leukocyte cell adhesion molecule (ALCAM), and tyrosylprotein
sulfotransferase 2 (TPST2) (336-341), as well as norovirus (NV) cellular receptor CD300If
(367), were also identified by GeCKO screens.

In loss-of-function-based GeCKO/RNAI screens, identification of host restriction or
dependency factors is based on the increase or decrease in viral titers. However, certain
cellular factors do not directly contribute in regulating virus production but instead
regulate cell death pathways. For example, Ma and colleagues have identified EMC2,
EMC3, SELL1, DERL2, UBE2G2, UBE2J1, and HRD1 as highly enriched genes, all of which
belong to ER-associated protein degradation (ERAD) pathways in a GeCKO screen for
WNV. These genes exhibit no impact on virus production but have been associated
with WNV-induced cell death (364).

Several factors must be considered when conducting and interpreting data pro-
duced by RNAi and GeCKO screens. Considering the level of genetic redundancy in
animals, the variable levels of the efficiency of RNAi and GeCKO screens, and the
diversity of experimental conditions, off-target effects that contribute to the relatively
high rate of false-positive results can sometimes occur. This coupled with the relatively
low rate of verification of the selected genes highlights the need for validation to
confirm that the identified host genes are indeed coopted for virus replication.

CHALLENGES IN DEVELOPING HOST-DIRECTED THERAPIES
Drug Resistance against Host-Directed Antiviral Agents

As discussed before, since viruses cannot easily replace the missing cellular func-
tions by mutagenesis, it is thought that viruses are unlikely to develop drug resistance
against agents that target host factors needed for virus replication (37). However,
emerging evidences suggest that viral resistance against host-directed antiviral agents
can indeed occur (Table 4). In a cell culture model, clinically relevant IAV-directed
agents may induce a completely resistant phenotype in a short period of time, such as
after six passages (P6) (129). However, at this passage level, no drug-resistant IAV
variants are known to be selected in the presence of host-directed agents in cell culture
(129). Other attempts have also failed to derive drug-resistant virus variants against
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FIG 3 Potential mechanisms underlying acquisition of resistance against host-directed antiviral agents. Three
possible mechanisms that may be associated with acquisition of resistance against host-directed antiviral agents
have been hypothesized. (A) Switch to use alternate host factor. Long-term restricted availability of a critical cellular
factor may induce the virus to use an alternate host factor to become resistant. (B) Increased affinity to substrates.
If viruses are cultured long term in the presence of restricted availability of a particular host factor, they may
increase their efficiency to optimally replicate under a limiting amount of the targeted host protein.

host-directed agents at up to ~P25 (129, 368, 369). However, upon further passaging
of virus in the presence of host-directed agents in cell culture (>P35), in many
instances, viral substrains with partial but highly significant resistance phenotypes may
be observed (39). Further virus propagation (up to P70) in the presence of host-directed
agents did not appear to increase the magnitude of drug resistance (39). Interestingly,
drug-resistant viruses maintained their phenotype upon withdrawal of the inhibitor
from the cell culture medium (our unpublished data). These lines of evidence have
demonstrated that resistant virus variants against host-directed agents cannot be easily
generated but may still occur at a relatively low level upon long-term exposure to the
host-directed agents. In this section, we will discuss the potential mechanisms that may
underlie the emergence of drug resistance against host-directed antiviral agents.

Switch to use alternate host factor(s). While not yet fully understood, one possible
mechanism underlying the acquisition of drug resistance against host-directed agents
is that the virus may switch to use an alternate host factor(s) (370) (Fig. 3A). For
instance, propagation of HCV in CLDN1 knockout cells can generate CLDN1-
independent HCV variants which can successfully infect and replicate in cells by using
alternative host proteins—CLDN6 or CLDN9 (370).

Other examples include viruses that have evolved diverse strategies to modulate
host translational apparatus. For example, many RNA viruses can disrupt (inactivate)
cellular elF4F to shut down initiation of cap-dependent translation of cellular proteins
(37). However, they initiate their own mRNA translation via a cap-independent process
that involves the internal ribosome entry site (IRES). In most DNA viruses and in a few
RNA viruses, viral translation involves a cap-dependent mechanism, and this is medi-
ated via the ERK/MNK1/elF4E pathway (37). Activated MNK1 interacts with elF4G in the
initiation complex and phosphorylates elF4E, which eventually binds to the 5 cap of
the mRNA to initiate translation (37). Prolonged passaging of BPXV in cell culture in the
presence of chemical inhibitors targeting MNK1 or elF4E has resulted in the generation
of mutant viruses that are resistant to MNK1 or elF4E inhibitor (38). While the exact
molecular mechanism(s) of resistance remains unknown, it is tempting to suggest that
the resistant virus may have switched to use an alternate host factor(s). Alternatively, it
is possible that BPXV may switch to use an alternate (cap-independent) pathway of
translational initiation (371). More work needs to be done to examine these possibili-
ties.

Another example involves SERCA, which is a key cellular factor to support Newcastle
disease virus (NDV) entry as well as synthesis and the subcellular localization of viral
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proteins (39). NDV mutants that efficiently replicate in the presence of SERCA inhibitor
(thapsigargin) have emerged at ~P40 in cell culture, although completely drug-
resistant phenotypes have not been observed (39). At least one drug resistance-
associated mutation (E104K) in the F protein of the mutant virus has been identified.
Additional studies on recombinant NDVs that carry a point mutation(s) in either the F
gene and/or other viral proteins are necessary in order to precisely uncover the
molecular mechanism(s) underlying acquisition of drug resistance against thapsigargin.

Enhanced viral efficiency under selective pressure. If viruses are cultured long term
in the presence of restricted availability of a particular host factor, they may increase
their efficiency to optimally replicate under limiting amounts of the drug-targeted host
proteins (Fig. 3B). For example, depletion of cellular cyclophilin, a protein essential for
HCV replication, results in reduced virus replication. However, long-term viral passage
generates drug-resistant HCV variants that can replicate efficiently in cyclophilin-
depleted cells. The resistant HCVs appear to have acquired mutations in their NS3,
NS5A, and NS5B proteins, which show their higher affinity toward cyclophilin. This
allows the resistant HCV strains to replicate optimally under limiting cyclophilin con-
centrations (372).

Phosphatidylinositol-4 kinase Ill B (PI4KB) can be a host target for enterovirus drug
development (373). However, viral resistance mutations (G5318A or A70T) in the
poliovirus 3A protein results in efficient virus growth in culture in the presence of the
P14KB inhibitor. Those virus mutants induce increased basal levels of phosphatidylino-
sitol 4-phosphate (PI4P) lipid, which permits efficient viral replication in cell cultures
depleted of PI4P (374). Interestingly, Pl4KB-resistant coxsackievirus B3 mutants (3A-
H57Y) can replicate in the presence of the PI4Kp inhibitor without restoring high PI4P
levels in the cell (375). This indicates that some mutation(s) in the coxsackievirus 3A
genome can confer the resistance phenotype independent of PI4KB activation or PI4P
lipid concentration. Likewise, cyclosporine (CsA)-resistant HCV mutants have also been
identified in cell culture in the presence of CsA inhibitors (376, 377).

Synchronization of viral life cycle with patterns of antiviral drug therapy. Some
bacteriophages have evolved in such a way that the length of their life cycle is a
mutable trait (378-383). Similarly, in bacteria, antibiotic tolerance (instead of resistance)
is a process of temporarily surviving under high drug concentrations (384). The toler-
ance phenotype can result from mutations and may be heritable. It may involve
changes in the timing of various steps of the life cycle of the organism (385, 386).

The most commonly understood mechanism of antiviral drug resistance against
virus-directed therapies is that mutations occur in the viral genome at druggable sites
and that these alter viral susceptibility to the direct action of drugs. However, in 2000,
Wahl and Nowak proposed the term “cryptic resistance,” which defines virus popula-
tions that have become resistant without acquiring mutations at the druggable sites
(387). This hypothesis was based on the fact that the concentration of antiviral drug in
patients is not necessarily constant during treatment, because treatments are admin-
istered at timed intervals, with drugs being metabolized regularly. Between the admin-
istrations of two doses, the concentration of the drug may diminish to noninhibitory
levels. This “cryptic resistance” phenotype describes a situation where the virus may
adapt its life cycle to replicate during the periods of lowest drug concentration so as to
permit sustained viral replication. However, this notion has not been formally proven.
Therefore, in order to differentiate between the ability of the virus to grow in sustained
(drug-resistant) versus transiently (drug-tolerant) high drug concentrations, the “cryptic
resistance” terminology has been modified to “drug tolerance by synchronization”
(388). Using a mathematical model, Neagu and colleagues (388) showed adaptation of
the viral life cycle in response to drug treatment, a process they have referred to as
“synchronization of viral life cycle with patterns of antiviral drug therapy” as a mech-
anism of viral drug tolerance. This effect is feasible when the times of drug dosing and
viral life cycle are closely matched (388). However, this idea is based on in silico
mathematical modeling and therefore needs empirical evidence in the laboratory
and/or clinical settings. Moreover, the precise nature of host factors that may regulate

July 2020 Volume 33 Issue 3 e00168-19

Clinical Microbiology Reviews

cmr.asm.org 19


https://cmr.asm.org

Kumar et al.

the phenomenon of drug tolerance remains elusive. In addition, model systems are
required to evaluate drug resistance/synchronization under complex and dynamic
settings, such as drug combinations, multiple viral infections (214), and seasonality.

Translation into In Vivo Settings

A point of contention is that host-directed therapies are artifacts of in vitro condi-
tions but have little translational applications (389). For example, VX-497, an IMP
dehydrogenase (IMPDH) inhibitor, can impair HCV replication in vitro but not in vivo
(390-392). This might occur because the nature and availability of nucleotides may
differ under in vitro and in vivo conditions, thereby affecting the antiviral potency of the
IMPDH inhibitor (368). Another example involves statins, which can have potent
anti-HCV activity in vitro (390, 391, 393-395) but no clinical efficacy (396-399). This
might partly be explained by statin activity being blocked in vivo due to its interaction
with cholesterol.

Since host-directed agents interfere with host cell metabolism, a greater risk of
cytotoxicity may be expected. As mentioned previously, while PI4KB inhibitors are
known to exert potent antiviral activity against enteroviruses, they may prove to be
lethal in mice, preventing their further development as antiviral drugs (400). Treating
acute viral infections encounters fewer problems than treating chronic infections when
host-directed agents are used (401). This is because a large number of host-directed
compounds have inherent cellular toxicity problems if they are used for an extended
period of time against chronic viral diseases. That being said, the majority of host-
directed drugs that are in clinical use against cardiovascular and inflammatory diseases
or cancers have minimal or no adverse side effects (402). For example, erlotinib
(epidermal growth factor receptor [EGFR] inhibitor), an FDA-approved drug for non-
small-cell lung cancer, is safe and well tolerated in patients with lung cancer (403).
Similarly, clinically approved host-directed HIV-1 entry inhibitors have exhibited no
reported adverse reactions (404). Nevertheless, the potential safety issue of host-
directed antiviral agents remains a major concern and needs to be critically analyzed.

CONCLUDING REMARKS

At the time when complete information about the human genome/kinome was not
available, reductionist approaches could typically identify only a single antiviral host
target at a time. The availability of libraries of small molecule chemical inhibitors
against a wide range of kinases, phosphatases, and other host factors has made it
possible to rapidly and simultaneously screen multiple cellular factors required for virus
replication. In this review, we make the case for designing drugs that target some of
these host factors, since it is unlikely for a virus to replace the functions of missing host
factors by mutagenesis. However, there are examples where the virus can either switch
to use an alternate host factor(s) or alter its affinity toward the normal host dependency
factor(s). Our current understanding of virus replication and virus-host interactions is far
from complete. Functional and mechanistic studies based on biochemical approaches
(such as the use of cell extracts and single-molecule techniques) in combination with
novel live-cell imaging technologies will be essential to unravel the roles of candidate
cellular proteins in mediating virus replication. We need to add to the analysis various
epigenetic processes that can be manipulated to control virus replication. Finally, we
advocate that selecting antiviral agents that can interfere with multiple steps of the
virus replication cycle along with combining agents that have the capability to restrict
both virus growth and hypercytokinemia is a favorable strategy. Additionally, combin-
ing virus-directed agents and host-directed agents is a useful approach, as some
combinations can have beneficial synergistic effects. However, developing efficient
host-directed antiviral agents with low cytotoxicity and high tolerability that enhance
patient compliance and drug administration may be a challenging task. Understanding
the use and implications of precision (individualized) medicine, particularly in the
setting of antiviral therapy, is comparatively new and will take time to adopt. In the
future, as medical prescriptions and treatments are likely be more personalized, rapid
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and cost-effective technologies that can provide comprehensive information (“omics”
data) of the individual patient will be essential.
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