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ABSTRACT
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest
the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This
review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we
have described the initiatives of utilizing the diverse computational resources by exploring the immu-
nological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of
immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimi-
zation and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
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1. Introduction

Vaccine design is a complicated process, however, advances in
bioinformatics will probably make vaccine design and drug devel-
opment easy.1 The design of vaccines can be divided into two
broad categories: the traditional and the modern approach. The
design of traditional vaccines is expensive, time-consuming, and
not applicable for antigenically diverse pathogens.2 This is because
of the genetic/antigenic diversity of pathogens, insufficient infor-
mation about the interaction between pathogen and host, absence
of a permissive cell line, and lack of successful animal models.3,4 It
has been observed that vaccine development for severe diseases,
such as smallpox, human immunodeficiency virus causing
acquired immunodeficiency syndrome (HIV-AIDS), and tuber-
culosis (TB) was also affected by these drawbacks.3 On the other
hand, vaccines developedby the traditional approach for smallpox,
polio, and diphtheria have several drawbacks and faced many
problems.5

Due to limitations of the conventional technology, modern
technologies have come into existence, including recombinant
DNA technology, rational vaccinology, structural biology,
conjugate vaccines, next-generation technology and epitope-
based vaccine design. With the help of recombinant DNA
technology, vaccines developed are regarded as safe, effective
and inexpensive as compared to other traditional vaccines and
apply for the bulk production of sub-unit vaccines.6 Several in
silico tools have been designed for the development of immu-
notherapy along with peptide-based drugs discovery in the
previous two decades. Therefore, it is crucial to develop novel
therapeutics with prophylactic vaccines and computational
tools against different diseases like malaria, HIV-AIDS, and
tuberculosis.7 Practice is required in the field of genomics,
structural biology, computational biology, and rational vacci-
nology to improve the development of vaccines.8 Initiation of

sequence analysis and recombinant DNA technology (RDT)
opened the way to innovative vaccine design, including the
concept of epitope-based vaccine design. The genomic analy-
sis of pathogens also facilitates the classification and recogni-
zation of the protective epitope.9

Modern computational design starts as a dynamic force to
facilitate structural vaccinology, whereby protein antigens are
designed to prepare novel biomolecules with better immunolo-
gical properties.10 Regular progress in vaccine development and
diagnostic fields accelerate the broad application of structural
vaccinology (SV), reverse vaccinology (RV) and antigen recogni-
tion technology.11 However, systems biology aids in predicting
the host-pathogen interactions, and improves adjuvant capability
to provide long-lasting immunity.12 In these novel technologies,
rational vaccinology is an innovative and functionally applicable
approach to design the potent immunogen for the induction of
prolonged protective immunity. With the help of this technol-
ogy, synthetic peptide vaccine was designed for the treatment of
asthma.13 The comprehensive vaccines for viral pathogens such
as HIV, influenza and hepatitis C virus may be designed through
rational vaccinology approach as reported by Burton, 2017.14

Antigen prediction is an important criterion in the process of
vaccine development. Vaxi Jen is an online software, based on the
alignment-free approach and can directly predict the antigens.15

It is the first online server for alignment-independent prediction
of protective antigens. The modern technology of vaccine design
also includes reverse vaccinology, which accelerates the process
of vaccine development.16 Epitope mapping is also a crucial
factor in designing an effective vaccine as it generates vigorous
reactions from both B cells and T cells and in silico prediction
successfully increases the epitope prediction.17,18 A multi-
epitope peptide vaccine was developed to stimulate an effective
immune response for the treatment of brucellosis. Ren et al.,
201919 prepared a multi-epitope vaccine through bioinformatic
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tools for evaluating its immune response in mice, and high
production of IgG antibodies was observed.

Broadly neutralizing antibodies (bNAbs) is a new term in
immuno-informatics and is still in the computational pipeline. It
was initially applied to analyze a different class of HIV-1 bNAbs
entirely based on 454-sequencing method.20 These antibodies
have the feature of targetting only conserved epitopes of the
microbes that play a significant role in virulence21 and develops
a new area of research to design a vaccine against quickly
mutating viruses such as HIV and influenza.22 The proper
implementation of computational tools minimizes the various
challenges in the field of vaccine development. Computational
biology also constitutes side-chain prediction tools to design an
antibody and predict its structure.23 Different aspects of multi-
graft, multivalent scaffolding, codon optimization, and antibo-
dyomics tools to identify and design potential vaccine candidate
are also well described. This review provides relevant informa-
tion about the latest computational tools that are essential for
vaccine design since all of them have a unique feature and
applcation according to the need of the situation.

2. Vaccine design: systems biology and structural
antigen design

Vaccines not only arrest the beginning of different diseases, but
also assign a doorway for its elimination and help in reducing the
toxicity.24 Systems biology and structure-based antigen design
are novel techniques to develop vaccines. A biological system is
thoroughly analyzed via systematically including diverse areas
such as genetics, biology, and chemistry. It gives valuable infor-
mation about the gene, protein, and different metabolic pathway
involved in pathogenesis.25 Systems biology collects a massive
amount of biological data from the various hierarchical levels.
The information about protein expression levels, DNA
sequences, RNA, microRNAs, metabolite biology, protein-
protein and protein-DNA interactions are obtained from the
various biological datasets.26 The data generated will be further
integrated and formulated through mathematical models to
explain the structure of the system. Additionally, it helps in the
analysis of the sequences of genes and proteins involved in the
virulence in different microbes. The progress of “omics” tech-
nologies such as proteomics, genomics, metabolomics, and tran-
scriptomics offers a comprehensive study of systems biology.27

Proteomics play an essential role in the field of vaccine design
including immunogenic techniques along with a genome-based
approach and to discover the potent immunogenic protein.28

Proteomic experiments in microorganisms were verified by
whole genome sequencing and bioinformatics tools to discover
new vaccines.29 Therefore, computational biology is an essential
factor to fulfill this approach.

The detection of efficient biomarkers is the primary aim of
molecular medicine. Systems biology has significantly identified
the biological markers used for the diagnosis of various diseases.30

Groves et al., 201831 reported that systems biology enhances the
recognition of a radiation-specific biomarker. Muhammad et al.,
201932 showed that a computational approach, including systema-
tic simulation-based meta-analytical framework, successfully pre-
dicted biomarkers. Oh et al., 201833 also demonstrated that the
systems biology approach could play an essential role in designing

potent vaccines against different diseases like Ebola or Zika virus
(ZIKV), dengue, avian influenza and thrombocytopenia syndrome
(SFTS).

Computational design is emerging as a driving force for
structural vaccinology, where protein antigens are designed to
produce new biomolecules to enhance immunological
properties.34 Structural vaccinology induces a higher protective
immune response, thus aiding in discovering novel antigens.35

The production of the vaccine can be enhanced by stabilizing the
structure of complex antigens. Kaufmann and Flechtner36 men-
tioned that Herpes Simplex Virus (HSV) vaccine could be
rationally developed as an alternative option for the treatment
of the disease. Bajic et al., 201937 reported that VH1-69-encoded
antibodies against influenza virus, HIV-1, and HCV. The men-
tioned antibodies have similar genetic and structural character-
istics, and neutralize a wide spectrum of viral strains. Trobaugh
et al., 201938 suggested that encephalitis virus vaccine could be
designed by the implantation of structural vaccinology
approaches, which is also referred to as rational vaccinology.

3. Adjuvants in vaccine design

An adjuvant can be defined as a vaccine component that
enhances host immune response and plays an essential role in
the development of vaccine.39 Adjuvants made of aluminum
were used 90 years ago to enhance the immune response of the
vaccines. Different aluminum salt products are used in vaccines
that have a special feature of immunopotentiation along with
safety records.40 Basically, aluminum hydroxide and aluminum
phosphate are the two types of aluminum adjuvants used in
specific licensed vaccines.41 They are prepared by vaccine com-
panies and can be easily purchased by manufacturers like
Brenntag Chemtrade, Biosector, and SPI Pharma. Generally,
they can be simply recognized through their trade names like
Alhydrogel, Rehydragel, and Adju-Phos. ImjectTM Alum made
of amorphous aluminum hydroxycarbonate and crystalline
magnesium hydroxide were used for preclinical and experimen-
tal studies.42 Calabro et al., 201343 reported thatMF59 is a potent
adjuvant that recruits CD11b+ blood mononuclear cells in the
mouse muscle. MF59 is used in clinical trials as a component in
prophylactic and therapeutic vaccines of infectious disease, can-
cer, and allergies. It also stimulates different immune cells such
as neutrophils, eosinophils, macrophages, and monocytes.
Adjuvants can be designed by incorporating various compo-
nents such as TLR4 agonist, flagellin, and T-helper agonists.44

Kanzler et al, 200745 demonstrated that Toll-like receptors
(TLRs) can enhance immune response, and thus can be used
as vaccine adjuvant. TLR ligand-based adjuvants produce
a robust immune response in the signaling of MyD88 in
macrophages.46

Aucouturier et al., 200247 reported that montanide ISA 720
and 51 are used as water-in-oil emulsion adjuvants for human
vaccine development. The TLR4 agonist, glucopyranosyl lipid
adjuvant (GLA), protected mouse-adapted Ebola virus (ma-
EBOV) and was prepared in a stable emulsion (SE) to stimu-
late immunogen and promote durable protection. Different
adjuvants such as virosome, MPL and MF59 are applied in the
design of vaccines like Invivac, Fendrix, and Pandemic
Influenza vaccines, respectively.48 MPL is the foremost and
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only TLR ligand in licensed human vaccines, in the form of
AS04 used for allergy treatment. This adjuvant is derivative of
a liposaccharide that shows a reduced toxicity and maintains
major immunostimulatory reaction of lipopolysaccharide.49

No harmful effects of MPL were observed in the rabbits
when weekly doses were administered. In addition, it does
not show any adverse effect on respiratory function, repro-
duction or genotoxicity. QS-21 induced antigen-specific anti-
body responses, including CD8+ T-cell response in mice and
maintained a balanced production of IgG1 and IgG2a as
compared to aluminum hydroxide that significantly favors
IgG1 production.50 It can be used as an efficient adjuvant
against feline leukemia virus (FeLV) in the form of
a recombinant retroviral sub-unit vaccine. Many databases
are available to find the adjuvant, such as Vaxjo (http://
www.violinet.org/vaxj).51 This database incorporates approxi-
mately 400 vaccines that use an adjuvant and contains more
than 100 vaccine adjuvants. Additionally, vaccine adjuvant
design includes database development, omics bioinformatics,
data analysis, and literature mining.52

4. Rational vaccine design

Rational vaccine design is an innovative approach in the field of
vaccinology and is applied to design potent immunogens for the
induction of prolonged protective immunity.53 Generally,
rational vaccinology is applicable for viral pathogens such as
hepatitis C virus, HIV, and influenza.54 The rationally developed
vaccine consists of antigens, its delivery systems and an adjuvant
to stimulate an immune response against specific epitopes of
a particular pathogen. Computational modeling is an efficient
tool to design the structure of a protein that can be determined
through template-based and free modeling. Template-based
modeling is entirely based on the 3D structure of a protein
consisting of a selection of templates, sequence alignment, mod-
els construction, quality estimation, and structural
modification.55 Vaccine design based on a protein structure
depends on the conserved sites present on pathogens and the
neutralizing antibodies with conserved sites.56 These neutraliz-
ing antibodies are adequate to inactivate antibodies and also
induces prolonged protective immunity.

Vaxi Jen, the online software for the prediction of the
antigens, can perform alignment-independent prediction of
protective antigens and allows antigen classification separately
based on the physicochemical properties of proteins. The
server can be used on its own or in combination with align-
ment-based.57 TLRs identify the pathogen and are responsible
for inducing innate immunity. Peta-flops-scale supercompu-
ters can be used for modulation, screening, and identification
of new lead structures for hTLR4. Moreover, they are applied
for cancer immunotherapy to design polymeric hybrid
micelles.58 With the incorporation of this technology, 12
compounds associated with tryptamine were screened and
developed by in silico tools to preserve their molecular geo-
metry while interacting with the hTLR4 binding site.59 RDT is
successfully applied in rational vaccinology for the production
of chimeric proteins. The classification of these proteins was
performed by the help of Expasy ProtParam. A synthetic
peptide vaccine was developed to enhance the efficiency of

antigen presentation to stimulate the humoral immune
response and thus help in the treatment of asthma as reported
by Hayman et al., 2018.60

Rational vaccinology has been applied to discover a novel
synthetic peptide vaccine for the treatment of asthma.
Researchers described that a peptide of interleukin-13 was
expressed and upregulated in asthma, and this could serve
as a crucial antigen to use for screening of asthma through
experimental and computational methods.61

Human astrovirus can cause viral diarrhea, especially in chil-
dren and immune-compromised patients, and still, there is no
vaccine available to prevent this infection.62 The rational vaccine
design technology could be carried out for the development of
a vaccine against it. Martinez et al., 201763 reported that cancer
vaccines derived from MUC1-glycopeptides by implementing
rational design technology. Different approaches are mentioned
in Figure 1 for the rational vaccine design. The VBRC NERVE is
a novel tool used to determine how specific proteins can act as
potential vaccine candidates.64 Furthermore, the Promoter Scan
can recognize potential epitopes that are suitable for immune
response and the expression of the gene.9

Bioinformatics approaches, such as structural approaches,
MD simulations, and docking are also applied for the devel-
opment of vaccines. It was reported that Chimeric Simian-
Human Immunodeficiency Viruses (SHIVs) act as anti-HIV
Env interventions in nonhuman primate (NHP) models and
are designed by rational technology.65 Infection by
Staphylococcus aureus causes high mortality and morbidity
in humans. Additionally, Kailasan et al., 201966 reported that
Leukocidin AB could be rationally designed as a toxoid vac-
cine against this infection. Tai et al., 201967 also reported that
Zika virus sub-unit vaccine can be rationally designed with
high efficiency in which envelope protein domain III (EDIII)
is engineered to be used as a vaccine candidate. Trobaugh
et al., 201938 showed that a rational approach is applied for
the attenuation of eastern equine encephalitis virus (EEEV),
a mosquito-transmitted alpha virus.

5. Computational tools for vaccines development

The biological information generated in genetics, biotech-
nology, and molecular biology is well organized and stored
with the help of bioinformatic tools.68 Use of computational
tools prior to lab experimentation is more advantageous as
they are cost effective and take less time to operate.
Immuno-informatics is a novel term applied to the conver-
sion of large-scale immunological data in a compact form
through the combination of computational and mathemati-
cal approaches.69 These tools are based entirely on statistical
and machine learning systems and are well established in
analyzing and modeling molecular interactions during anti-
gen presentation and processing. In Figure 2, different com-
putational tools, for the development of vaccines, along with
their software, are mentioned.

5.1. Side-chain and backbone modeling tools

Different types of receptors known as side chains are present
on the cells and perform their function as gatekeeper of the
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cells. Each side chain has its own characteristic structure, and
only the substance identical to them can enter the cell. The
side-chain prediction is an essential constituent of computa-
tional biology for designing and predicting antibody
structure.70 SCWRL and SCAP are tools which have been
applied efficiently for modeling; they are used to determine
and analyze mutations in protein side chains in silico.
Moreover, these modeling tools can be applied for recognition
and optimization of specific antibodies along with its affinity
toward a particular target.71 Additionally, a powerful model-
ing program is available to design glycan epitopes on
immunogens.72 Antibody modeling tools can be operated by
backbone-dependent rotamer libraries.

Significantly, backbone modeling tools help in the modifi-
cation of different antibodies. Leem et al., 201873 described
position-dependent antibody rotamer swapper (PEARS,
http://opig.stats.ox.ac.uk/webapps/pears), a side chain predic-
tor which uses the IMGT position-dependent distribution of
rotamers. It performs the side-chain prediction in less than
10 seconds.74 Additionally, DRAGON and GADGET are the
antibodies use protein folding programs used to predict the
secondary structure and ligand-binding site of the proteins.
RAMBLE is an additional bioinformatics analysis tool with
different permutations to check the connectivity of disulfide
bonds, chain topology, and tryptone side-chain alignment.75

RAPPER is an in silico approach to generate 3D modeling of
proteins for comparative analysis with a high degree of accu-
racy. It can be used to identify target sequences by exploring
the conformational structure of a protein.76

5.2. Multi-graft and multivalent scaffolding

Multi-graft and multivalent scaffolding are the prominent
approaches for the development of vaccines. A multivalent
ligand has multiple copies of ligands which are capable of bind-
ing to different sites of the receptor.77 The concept of scaffolding
expands the view of vaccine design based on epitope engineer-
ing. The implementation of epitopes of interest executed to the
scaffolds of heterologous proteins was proven by studying HIV-
1, flu, and RSV by Walenskey and Bird, 2010.78 Multivalent
scaffolding technology is applied to epitope vaccine design
based on the fact that a scaffold is present in the protein of
interest. Perhaps it can be considered that multivalent scaffolds
presents an antigen in a highly ordered and repetitive manner to
induce a strong immune response. Furthermore, Ullah et al.,
201979 reported that an inhibitor of the scaffold protein RACK1
(Receptor for Activated C Kinase 1) could inhibit the prolifera-
tion of HSV. The virus-like particles (VLPs) are small biological
structures consisting of viral proteins similar to virion but not
having genetic material and is incapable of stimulating an
immune response. Barwal et al., 201680 also defined the virus-
like particles as an attractive nano-particulate scaffold to apply in
biological science and medicine. Hill et al., 201881 also men-
tioned that VLPs could be engineered to develop as antigens and
thus help in the drug discovery and delivery. Rynda et al., 201482

demonstrated that virus-like particles could be used to make
a vaccine candidate by exploring the lung as a site for immuno-
stimulation. Prediction of protein structure is performed
through composite modeling, which uses multiple templates
for the development of multi-graft scaffold immunogen.

Figure 1. Rational vaccinology and its procedure to design vaccines through the VBRC NERVE tool. Illustration showing the steps involved in the identification of
potential vaccine candidates through rational vaccinology. Each step uses different bioinformatics tools which are mentioned.
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Identification of a specific scaffold having multiple epitopes is
challenging, antibodies choose these epitopes without any
hinderance.83 Küry et al., 201784 demonstrated that
a proteosome scaffold subunit functions only during the phase of
development of neurogenesis, and also showed that PSMD12
variants might affect neurodevelopment. Hence it can be said
that protein engineering helped in the development of novel
diagnostics and therapeutic agents. Different protein scaffolds
such as DARPins (designed ankyrin repeat proteins) cysteine
knots can be used as a scaffold to represent a functional site.85

Multivalent interaction of biological molecules is performed in
different biochemical events to enhance the binding affinity, the
avidity, and specificity of the ligand to the receptor. Hence multi-
valent ligands could be an alternate way to treat diseases as
reported by Greenspan and Cavacini, 2019.86

A multigraft interface is a novel approach applied to graft
epitopes so that antibody binding specificity can be improved
and thus potentially affect the nature of antibodies.87 It is also
applicable for the engineering of novel epitope scaffolds that
exhibit neutralizing antibody 2F5 of HIV-1and also deal with
the CDR H3 antibody loop. Gourlay et al., 201788 presented an
automated computational tool, SAGE (strategy in alignment and
grafting of epitopes), for the insertion of immune-generating

epitopes onto a given scaffold. The approach assigns the identi-
fication of a graft position on any target antigen with a known
three-dimensional structure, which is fast, extensive, and effi-
cient tool. Mishra et al., 201889 reported prime scanning of
epitope grafting and studied about computational grafting of
malarial epitopes in serum albumin.

5.3. Antibodyomics tools

Antibodyomics is an essential computational tool initially
applied for the analysis of the different classes of HIV-1
bNAbs, and based entirely on 454-sequencing.90 Significantly
it is an innovative approach for the development of a vaccine
against antigenically variable viruses. Antibodyomics tools
consist of different phases such as putative germline genes,
error correction, and comparison of different bNAbs.91 The
variable chains of the antibody have complementary-
determining regions (CDR) where these bNAbs specifically
bind. Additional information can be obtained to create
a standard database through CDR3 analysis. This analysis
helps to determine germline precursors and intermediate
immunoglobulins from an NGS-derived repertoire. There
are two analytical parameters on which it is based; the first

Figure 2. Computational strategies for the development of potent vaccine including antigen processing. Illustration showing the processing and screening of the
antigen as an immunogen. The pathogen enters the cell and secretes proteins, which can be predicted by the Mature P software. Further processing of the protein is
performed by proteosome and the antigenic peptide is released. This peptide, capable of binding MHC, can be predicted by MHCPred, RANKPEP, and SVMHC
software. The peptide is then targeted as an epitope by the epitope prediction tools (IEDB, EpiJen, ProPred) and is selected as a potential vaccine candidate.
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is the identification of a sequence to a known bNAb (Y-axis),
while the second one includes the analysis of the divergent
sequences of putative germline genes (X-axis). The graph
plotted between the two axes, and it was observed that closely
linked somatic variants form ‘clusters’ which are different
from the main sequence population.92 Furthermore, these
variants are recognized with the intra-donor phylogenetic
analysis and help in searching the sequence that has
a similar evolutionary pattern as template bNAbs. It is utilized
for the de novo recognition of VRC01-like broad neutralizing
antibodies from HIV-1-infected donors.

For the development of epitope vaccines, computational
tools like structure-based immunogen design and a wide
range analysis of antibody can be used.93 Kwong et al.,
201790 reported that neutralizing antibodies can be developed
by understanding the information about genetics and immu-
nological processes. Serum neutralization can also be per-
formed to identify and quantify neutralizing antibodies.

5.4. Reverse vaccinology

Reverse vaccinology is a broad term applied to recognize
potential vaccine candidates through analyzing the proteome
of the pathogen with the help of computational tools. It is an
essential technology for the mapping of epitopes and predic-
tion of monovalent peptide vaccines to be used in the ther-
apeutic processes.94 Reverse vaccinology is advantageous as it
analyzes the complete genome of the pathogen and specifi-
cally chooses proteins that act as a potential antigen. Vaxign is
a computational approach used to predict ideal vaccine can-
didates and develop distinct vaccines against proteins respon-
sible for antibiotic resistance in the pathogens.95 Additionally,
this technology is appropriate for the screening of the anti-
genic peptide in different pathogens like Neisseria meningi-
tides, Group B Streptococcus (GBS), and Porphyromonas
gingivalis.96 Functionally, NERVE program is an essential
tool used for the development of reverse vaccinology. In this
technology, open-reading frames (ORFs) play a significant
role and screening of potential ORFs can be performed by
the NERVE program.97 The computational analysis helps in
the identification and localization of sub-cellular proteins
having adhesion-like properties. HensBC can determine and
assemble ORFs of different proteins (mitochondrial, cytoplas-
mic, nuclear, or extracellular) with 80% efficiency to make
them a potential vaccine candidate.9

The identification of the pathogenic genome and complete
screening of open reading frames (ORFs) is performed to select
the specific sequence of the peptides responsible for an immu-
nogenic response. Incorporation of in silico tools such as
GLIMMER, ORF-FINDER, and GS-Finder will help scan the
whole genome of the pathogenic strain. Following scanning, the
identification of therapeutic proteins is carried out by various in
silico tools such as ProDom, Pfam, and PROSITE. Initially,
reverse vaccinology was applied for the development of Group
B meningococcus vaccine by applying different software pro-
grams. Yee, 201998 reported that EV-A71 is a next-generation
vaccine candidate against Enterovirus A71 which is responsible
for causing foot and mouth diseases and severe neurological
complications. Implementation of reverse genetics technology

can be used to develop an rgEV-A71 strain to act as a potential
vaccine candidate. It is difficult to control Ctenocephalides felis
and disease risks associated with them, hence Contreras et al.,
201899 suggested that the reverse vaccinology approach could be
applied for the development of a novel vaccine against it.
Moreover, this technique also helps in the identification of
MHC Class-II-restricted epitopes from Leishmania donovani
against visceral leishmaniasis.100 It can be successfully applied
for the designing of novel vaccines against serogroup B Neisseria
meningitidis, which is a cause of meningitis.101

Nosocomial infection is mainly caused by Pseudomonas aer-
uginosa in immuno-compromised patients, and recently three
proteins, PSE17-1, PSE41-5, and PSE54, were identified by the
application of reverse vaccinology as potential vaccine antigens.
These are novel lectins of P. aeruginosa and contribute
a significant role in infecting host cells.102 Naz et al., 2019103

made the computational pipeline termed “PanRV” that applied
for both pangenome and reverse vaccinology approaches. It
includes four functional modules- Pangenome Estimation
Module (PGM), Reverse Vaccinology Module (RVM),
Functional Annotation Module (FAM), and Antibiotic
Resistance Association Module (ARM). Multi-epitope subunit
vaccine can be designed by incorporating reverse vaccinology
against avian influenza A (H7N9) as reported by Hasan et al.,
2019.104 Reverse vaccinology has been successfully applied to
categorize novel potential vaccine candidates against
Acinetobacter baumannii, which is an evolving pathogen mainly
found in intensive care units (ICU). Araujo et al., 201918 also
discussed the success of omics and reversed vaccinology for the
prediction of novel vaccine target in the whole genome of
Corynebacterium pseudotuberculosis, which is an etiological
agent of veterinary related diseases.

5.5. Codon optimization and other available software

The expression of proteins can be enhanced with a technology
known as codon optimization, an approach in the field of
immunoinformatics.105 Different codon optimization algo-
rithms are available for the high production of protein. Codon
Optimization OnLine (COOL, http://bioinfo.bti.a-star.edu.sg/
COOL/),106 is a new tool that functions to synthesize genes.
With the implementation of COOL, different codon optimiza-
tion parameters including codon pairing, codon adaptation
index, and specific codon usage, can be customized. An online
application known as OPTIMIZER (http://genomes.urv.es/
OPTIMIZER107) is built to optimize codon usage of a gene to
increase its expression level.108 However, OPTIMIZER can opti-
mize strongly expressed genes in more than 150 prokaryotic
species during the process of translational, thus, it can predict
highly expressed genes.

CpG is another technique applied for the optimization of
a codon and concerns CG dinucleotides. Studies have shown
that the immune response of DNA vaccines could be raised by
CpG motif engineering.109 Narum et al., 2001110 reported the
protein expression of DNA vaccines could be enhanced by the
optimization of gene fragments that code for Plasmodium
falciparum merozoite proteins, which ultimately raised immu-
nity in mice. Stachyra et al., 2016111 also showed that codon
optimization can be used to make potential DNA vaccines for
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avian influenza virus H5N1 in chickens and mice. Pattern
recognition receptors (PRRs) are the components of the
innate immune system used to differentiate DNA of prokar-
yotes from eukaryotes. They use ‘CpG dinucleotide motifs’ in
base specific context and do not disturb codon optimization.

Further modification of the sequence of a protein, DNA
and RNA can be performed to predict the codon usage via
a combinatory algorithm. Remarkably the optimized codon is
used in E. coli for the expression of recombinant TEV-
protease.112 Gao et al., 2004113 explained the advanced appli-
cation of GUI software applied to optimize and break the
open reading frame (ORF) of giving DNA into triplets.
CodonWizard is an also automatic software program for
modification of codon optimization and freely available for
scientists.114

5.6. Epitope prediction tools

The epitope is the determinant of the antibody attachment site on
the part of antigen and is recognized through the host immune
cells. An effective vaccine could be designed by the epitope pre-
diction tools as the epitope stimulates immune reactions from
both B cells and T cells.115 Different computational tools such as
support vector machines (SVMs), motif-based systems, QSAR
(quantitative structure-activity relationship analysis), structure-
based, neural networks, and Hidden Markov models (HMMs)
approaches are used to analyze the peptide interactions.116

Mapping of B cell andT cell epitopes is known as “epitope fishing”,
which can screen the potential epitope in a pathogen. Epitope

mapping in the genome of Mycobacterium tuberculosis was
reported and analyzed with the help of predictive algorithms.117

Thousands of alleles are present on the A and B loci of HLAs. This
group of alleles is termed as super type; they occasionally bind to
the same set of peptides and contribute to vaccine design.118

Different potential supertypes could be discovered through the
scoringmatrix of the position specified by the alignment ofMHC-
I peptides. Support Vector Machines (SVMs) are applied to dis-
criminate data into two distinct groups, based on the statistical
theory: the binders and non-binders.119 However, the Hidden
Markovmodel (HMM)helps find the sequences that have ‘binder-
like’ qualities and also identify complicated peptide patterns
through the implementation of a Bayesian neural network.

B-cell epitope prediction is performed by different methods
such as hydrophilicity profile, flexibility profile, surface prob-
ability and HMM.120 Antigen processing and its selection are
also important criteria in vaccine design. The development of
a potential vaccine candidate with the help of bioinformatics
tools are explained in Figure 3. These bioinformatics tools could
be successfully implemented for the prediction of protein epi-
tope domains targeted via human CD4+ T-cells.

There are different tools available for B-cell epitope
prediction.121 ElliPro is used to determine the presence of dis-
continuous and conformational epitopes. DiscoTope (http://
www.cbs.dtu.dk/services/DiscoTope/)122 predicts discontinuous
B-cell epitopes by analyzing 3D protein structures and has been
used to predict the epitope in Alkhumra hemorrhagic fever virus
(AHFV). DiscoTope can also be used for designing drugs and
peptide-based vaccine, and in the development of diagnostic

Figure 3. A review of applied computational methods for designing vaccines. Illustration showing various computational tools that help in the development of
a vaccine. The antibodyomics tools modify the antibody to enhance binding to the antigen. Codon optimization tools such as Codon Optimization Online (COOL),
OPTIMIZER, and Codon Wizard optimize the codon for enhanced gene expression. Epimatrix and TEPITOPE SYFPEITHI are scaffolding and epitope prediction tools.
Modeling tools such as CHARMm, MacroModel, and MOIL are used for modeling the structure of the protein.
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kits. The 3D-Epitope-Explorer (3DEX) software allows mapping
of conformational epitopes using 3D structures of proteins based
on an algorithm. Other prediction tools include CEP (conforma-
tional epitope prediction, http://bioinfo.ernet.in/cep.html),
Hopp-Woods hydrophilicity, Kyte-Doolittle hydrophilicity,
Eisenberg moment, Karplus-Schultz flexibilty, Emini surface
probability, and the PROTEAN module of the LASERGENE
software (DNASTAR, Inc, USA).121 Poorinmohmmad et al.,
2014123 reported that Discotope could be successfully applying
for the prediction of the conformational epitope in Alkhumra
hemorrhagic fever virus (AHFV).Moreover, it can be utilized for
designing of the drug, peptide-based vaccine, and development
of the diagnostic kit. The 3D-Epitope-Explorer (3DEX) software
allow mapping of conformational epitopes using 3D structures
protein based on algorithm.124

The Artificial Neural Network (ANN) and Quantitative
Matrices (QM) are the basis of nHLAPred, which is used for
the prediction of MHC-I binding peptides. Whether 9-mer
peptides would bind an MHC-I molecule or not will be
predicted by the Kernel-based Inter-allele peptide binding

prediction SyStem (KISS) in SVM. Different databases such
as MHCBN, LANL, SYFPEITHI Parker hydrophilicity,
BepiPred and Immune Epitope Database (IEDB; www.immu
neepitope.org) are additional online tools for the prediction
of B-cell epitopes125.

Different types of vaccines, along with their development
strategies based on epitope prediction under pipeline, are
discussed in Table 1. There has been no successful vaccine
against Plasmodium vivax until now. With the help of epi-
tope prediction, the potential epitope on AMA-1 was identi-
fied and developed as a highly effective vaccine candidate.148

Ren et al., 201919 developed a multi-epitope vaccine using
bioinformatic tools and evaluated its immune response in
mice. They observed a high production of IgG antibodies
that protect against lethal doses of Acinetobacter baumannii.
Trypanosomiasis is a tropical disease that is caused by the
genus Trypanosoma and affects domestic animals and
humans. Guedes et al., 2019149 used in silico tools to predict
and characterize B-cell epitopes for South American and
African T. vivax strain to be used in diagnostics.

Table 1. Different types of vaccines and their developing strategies.

S.No. Vaccine type Pathogen Disease Strategy Reference

1. Multi-epitope based Kaposi’s sarcoma-
associated
herpesvirus

Kaposi sarcoma Immuno-informatics Chauhan et al.,
2019126

2. Multi-epitope vaccine Pseudomonas
aeruginosa

Nosocomial infections Comparative proteomics Solanki et al.,
2019127

3. DNA vaccine Ebola virus Ebola virus disease Computer design; gene expression;
immunogenicity

Bazhan et al.,
2019128

4. Multi-epitope Peptide
Vaccine

Neisseria gonorrhoeae Gonorrhea In-silico hierarchical approach Jain et al.,
2016129

5. Subunit vaccine Marburg virus Hemorrhagic fever (MHF) Reverse vaccinology Hasan et al.,
2019130

6. Epitope-based Nairovirus Crimean-Congo hemorrhagic fever
(CCHF)

Molecular docking and dynamics
methods

Nosrati et al.,
2019131

7. Peptide-based vaccine Providencia stuartii Purple urine bag syndrome Reverse Vaccinology (RV) Asad et al.,
2018132

8. Multi-epitope vaccine Human papilloma
virus (HPV)

Warts and cancer Structural vaccinology Negahdaripour
et al., 2018133

9. Next generation
vaccines

Echinococcus
granulosus

Cystic echinococcosis Systems vaccinology and
mathematical/computational
modeling

Pourseif et al.,
2017134

10. Peptide vaccine Human
papillomavirus (HPV)

Cervical cancer Immunoinformatics and structural
vaccinology approaches

Doorbar et al.,
2015135

11. Multi-epitope peptide
vaccine

Brucella spp. Brucellosis Immuno-informatics Saadi et al.,
2017136

12. Epitope-Based Peptide
Vaccine

Mokola Rabies Virus Meningo-encephalo-myelitis In silico Approaches Mohammed
et al., 2017137

13. T cells with Chimeric
Antigen Receptor (CAR)

Acute lymphoblastic
leukemia

Acute lymphoblastic leukemia Genetic engineering Dokmanović
et al., 2017138

14. Peptide vaccine HPV HPV-associated cancer Conventional with Immuno-
informatics

Atherton et al.,
2018139

15. Dendritic Cell Vaccines Cancer antigens Cancer Immuno-informatics Doytchinova
et al., 2018140

16. DNA Vaccines Papillomavirus (HPV) Human Cervical cancer and cervical
intraepithelial neoplasia (CIN)

Genetic immuno-therapy,
pharmaco-logical tool

Cordeiro et al.,
2018141

17. Epitopes based Zika virus Guillain–Barré syndrome In silico-predicted immunogenic Makhluf et al.,
2018142

18. Epitopes based Vibrio anguillarum Vibriosis Reverse vaccinology Baliga et al.,
2018143

19. Multi-epitope subunit
vaccine

Chikungunya virus Chikungunya Immuno-informatics Narula, et al.,
2018144

20. Sub-unit vaccine Plasmodium
falciparum and
P. vivax

Malaria Rational design Draper et al.,
2018145

21. Epitope based vaccine Dengue virus Dengue Immuno-informatics and Molecular
Docking

Shen et al.,
2018146

22. Multi-Epitope based
vaccine

Staphylococcus aureus Skin infections and food poisoning Immuno-informatics and in silico
approach

Hajighahramani
et al., 2017.147
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T-cell epitopes are essential for designing the vaccines as they
play a vital role in the cellular response. These epitopes can be
identified through T cell receptors from various cells including
B-cells, CTLs etc.150 Examples of T-cell epitope prediction tools
are- BIMAS, IEDB, NetMHC, ProPred, TEPITPE, and CTLpred.
Epijen is a freely available online software used for the prediction
of T-cell epitopes and predicts epitopes based on quantitative
matrices.151 This approach can be applied to develop vaccines
against HIV and malaria. T-cell epitopes can be designed by the
use of recombinant DNA technology and bioinformatics tools
alongside the knowledge of the genetic background of the patho-
gen and host immune response.152 Recombinant DNA technolo-
gies make epitope-based vaccines more efficient, safe, and less
expensive. Moutaftsi et al., 2006153 reported that various
CD8 + T-cell epitopes can be predicted in a vaccinia virus WR
strain. Glanville et al., 2017154 showed that the GLIPH algorithm
accelerates the identification of T-cell epitopes by specifying T-cell
receptor groups. Gutiérrez et al., 2016155 validated the prediction
of T-cell epitopes in the swine influenza model. The function of
PigMatrix and its ability to differentiate between immunogenic
and non-immunogenic peptides were also validated.

6. Conclusion and future perspective

In summary, vaccine development can be considered as one of
the significant factors for global public health. The traditional
techniques have several drawbacks for vaccine design, but the
implementation of computational tools will overcome these
limitations. Immunoinformatics approaches are more beneficial,
and thus the demand for modern technologies such as reverse
vaccinology, epitope prediction, and structural vaccinology,
including rational approaches, are more in demand to develop
the potential vaccine candidates. Different tools applied for
protein scaffolding, and epitope prediction contribute an essen-
tial role in vaccine design. This approach is advantageous as it is
accomplished by analyzing the entire genome of the pathogen as
well as by recognizing the proteins that act as a potential anti-
gens. This allows flexible analysis that cannot be performed by
traditional methods. The use of computational tools is beneficial
for vaccine researchers, vaccine recipients as well as for public
health policy-makers and epidemiologists. These tools may also
be used to design vaccines for new, emerging diseases. The
development of vaccines requires sound knowledge of immu-
nology along with integration of the different areas, including
cell biology, physical chemistry, and computational science. The
combination of these disciplines will enhance the discovery of
potential vaccine candidates.
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