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ABSTRACT
The leishmaniases are a collection of vector-borne parasitic diseases caused by a number of different
Leishmania species that are distributed worldwide. Clinical and laboratory research have together
revealed several important immune components that control Leishmania infection and indicate the
potential of immunization to prevent leishmaniasis. In this review we introduce previous and ongoing
experimental research efforts to develop vaccines against Leishmania species. First, second and third
generation vaccine strategies that have been proposed to counter cutaneous and visceral leishmaniasis
(CL and VL, respectively) are summarized. One of the major bottlenecks in development is the transition
from results in animal model studies to humans, and we highlight that although American tegumentary
leishmaniasis (ATL; New World CL) can progress to destructive and disfiguring mucosal lesions, most
research has been conducted using mouse models and Old World Leishmania species. We conclude that
assessment of vaccine candidates in ATL settings therefore appears merited.
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Introduction

Through their residence in endemic regions, approximately
350 million people are currently at risk of infection with pro-
tozoan parasites of the genus Leishmania and subsequent
development of leishmanaisis.1,2 Estimates suggest that the dis-
ease is present in 98 countries and about 2 million new cases
occur each year. Three different clinical manifestations can be
observed: cutaneous leishmaniasis (CL), mucocutaneous leish-
maniasis (MCL) and visceral leishmaniasis (VL). The present-
ing form is determined by which of the more than 20
Leishmania species that can infect humans is actually manifest-
ing disease,3,4 with many different Leishmania species asso-
ciated with CL. CL is associated with a lower mortality than
VL, but it is more widespread and afflicts a higher number of
individuals. In the Old World L. major and L. tropica are the
major causes of CL, while in the New World the disease is
more commonly referred to as American tegumentary leisha-
maniasis (ATL) and is caused by infection with L. amazonensis,
L. braziliensis, L. guyanensis, L. panamensis, L. mexicana,
among others. Although ATL is usually relatively benign and
can cure spontaneously if given enough time, in some cases
symptoms exacerbate to cause MCL that presents with disfig-
urement and causes loss of productivity.4 Currently, the strate-
gies to reduce leishmaniasis are limited to vector control and
treatment of patients with outdated and toxic antimonial drugs
for which there are increasing reports of resistance.5 Thus,
there is both an opening and an urgent need for a safe and
effective vaccine against leishmaniasis.

Although a considerable amount has been revealed with
regard to the development of immunity during Leishmania
infection, most of the knowledge, especially of the parasite-
host relationship, has been derived from experimental studies
in animal models.6,7 Leishmania infection is established when
promastigotes, the flagellated form of the parasite, are trans-
mitted during the bite of an infected sand fly on mammalian
hosts. Once in the skin, the parasites are phagocytosed by
different cell types, including inflammatory monocytes and
dendritic cells (DCs) that are recruited to the site of infection.
Over the first few days following infection, these cells become
the predominant foci of Leishmania.8 Among the most
important innate mechanisms that control the infection are
the production of reactive oxygen species (ROS), generated by
the respiratory burst during phagocytosis, and production of
nitric oxide (NO), generated by inducible NO synthase
(iNOS), followed by the activation of interferon gamma
(IFN-γ) mediated cells.9 The interaction of parasites and
DCs is one of the main factors that determines the outcome
of Leishmania infection with DC-mediated development of
Leishmania-specific CD4 and CD8 T lymphocytes well estab-
lished as being important for protection.10,11 In murine mod-
els, the activation of Th1 and CD8 T cells depends upon
antigen presentation through major histocompatibility com-
plexes/human leukocyte antigen (MHC/HLA) complexes on
the surface of infected DC in the presence of interleukin (IL)-
12, driving the T cells to produce IFN-γ that in turn activates
macrophages to produce NO. This cascade of events contri-
butes to the elimination of the parasites, whereas T cell
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production of IL-4 and TGF-β in the local microenvironment
inhibits DC secretion of IL-12 and favors parasite survival.9

The observation that recovery from primary infection with
L. major, and to some extent with L. braziliensis is typically
associated with long term protection against reinfection, indi-
cates that vaccines can be developed against CL.12,13

Spontaneous cure has been documented in endemic areas for
L. braziliensis infection (usually occurring with a clinical evolu-
tion of less than 3 months) and this suggests that an immune
response that controls the infection has developed.14 Carvalho
et al.15 discovered that patients with rapidly self-healing
L. braziliensis ATL exhibited positive intradermal skin test
results, lymphocyte proliferation and IFN-γ production, indicat-
ing a strong T-cell response to Leishmania antigens. Infection
with L. braziliensis is often difficult to heal, however, and some-
times produces mutilating lesions in the nasopharyngeal mucosa
with responses significantly higher in healed patients than in
those with active disease.

It is noteworthy that majority of our understanding of
Leishmania infections has been generated in mice using tightly
controlled L. major infection models, and the better understand-
ing of experimental immunity against L. major might be one of
the reasons why most current vaccine candidates are focused on
Old World species instead of those found throughout the New
World. Until recently it was believed that long-lived memory
cells generated during chronic L. major infection were required
for durable protection, and vaccination strategies based on gen-
erating such cells were therefore desirable. Peters et al demon-
strated that for T helper 1 (Th1) concomitant immunity, in
which protection against reinfection coincides with a persisting
primary infection, preexisting CD44(+)CD62L(-)T-bet(+)Ly6C
+ effector T cells that are short-lived in the absence of infection
and are not derived frommemory cells reactivated by secondary
challenge, mediate immunity.16 Such gaps in our knowledge
regarding immunity against Leishmania infections in humans
may be confounding vaccine development, and it is noteworthy
that the New World Leishmania species induce a response pat-
tern distinct form that induced by Old World Leishmania
species.17 IL-17 has been linked to a massive influx of inflam-
matory cells that lead to disease exacerbation,18 while IL-10 has
been linked with strong immunosuppression and exacerbated
pathology.19 The immune response against Leishmania in
humans is not fully understood, and a far more complex
response appears to occur that likely involves important inter-
actions of a wide variety of cytokines and cells that dictate
clinical outcome. It remains unclear how to best generate the
immune memory that prevents reinfection and the immune
correlates that would be beneficial in determining this are also
not fully defined.9,20,21 Nevertheless, we believe that identifying
antigens that appropriately target of the anti-Leishmania
response is fundamental for the development of an effective
vaccine against CL/ATL. Indeed, many different peptides and
antigens from New World Leishmania species have been
screened using modern bioinformatics tools and appear to
have potential within vaccines for ATL.22,23 Most, however,
remain in research stages and have not been fully developed as
vaccines ready for clinical trials.

Currently, five vaccines have been licensed and approved
against Leishmania species. Two of these are approved for

administration to humans, with one in Brazil using killed
L. amazonensis parasites for immunotherapy of CL and the
other in Uzbekistan using live L. major parasites. The others
use recombinant proteins for prophylactic immunization of
dogs in Brazil.5,24–27 Although these vaccines were approved
by the respective national regulatory agencies, their effective-
ness remain controversial. For example, the vaccines used for
immunotherapy cannot be used alone but rather in combina-
tion with conventional chemotherapies.28 Whole parasites
need to be used with caution since they can induce chronic
lesions; and although the vaccine for dogs was proven to be
effective in the short term, its long term impact remains
unknown and further studies are needed to determine if its
use can reduce the spread of the disease.25,29 To date, there are
no licensed vaccines for human CL but those that have
advanced to clinical trials include two killed L. amazonensis
vaccines,30,31 each of which generated inconsistent results
between vaccine and placebo groups, and the defined poly-
protein-containing subunit vaccine LEISH-F1+ MPL-SE,
which was demonstrated to be safe while generating an anti-
gen-specific Th1 response.32

Vaccine development

A considerable challenge in developing a vaccine is identifying
the best type or set of antigens against which to direct an appro-
priate immune response. Additional variables such as the spe-
cific gene or protein targeted, the amount of antigen/vector used,
the number of immunizations, the Leishmania species priori-
tized for evaluation and the type of experimental challenge, can
confound results between studies and somewhat confuse the
vaccine landscape. As an example, it became understood only
recently that components within sand fly saliva can alternatively
inhibit or assist in promoting the anti-Leishmania Th1
response.33 It is clear, however, that a variety of different targets
and strategies can be used to develop a vaccine for leishmaniasis,
and in this regard the likelihood that an effective vaccine will
emerge should be considered as high.

In a simplified form, the composition of a vaccine consists
of two key elements: antigen(s) to generate a pathogen-
specific response and the adjuvant to initiate and direct the
immune response.34 In this sense, to direct and adequately
stimulate immunity against Leishmania, the vaccines require
specific parasite antigens and immunostimulatory molecules.
In first generation vaccines the antigen component is derived
from use of the whole parasite, either in a live attenuated
manner or inactivated and killed by chemical or physical
processes. In first generation vaccines the adjuvant compo-
nent is typically also inherent to the parasite, with multiple
pathogen-associated molecular patterns (PAMP) established
and defined for Leishmania species.35,36 Second generation
vaccines are composed of molecularly defined components,
using recombinant antigens, which can be one or more pro-
teins, and specified adjuvants. The panel of defined adjuvants
that can be used with recombinant proteins to tailor the
vaccine-induced response continues to expand,36–39 and
a variety of defined adjuvants have now been used in
studies with vaccines against Leishmania.32,40,41 Regarding
third generation vaccines, these include vaccines that use the
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pathogen-specific DNA or RNA, or a platform/carrier that
contains genetic component(s) of the pathogen to target the
immune response (Figure 1).

Antigen target selection

Concurrent with the development of new adjuvants, advances
in molecular and in silico tools in recent years has led to
a dramatic increase in the number of Leishmania-specific
targets that have been evaluated in vaccine studies.22,42,43

Genome sequencing revolutionized vaccine development
because the availability of pathogen genomes has informed
discovery of novel antigens while the exclusion of targets that
have homology with human genes. The number of
Leishmania species genomes that are available in public data
banks has grown over time, making it now possible to infer
the complete proteome of different species (predicted pro-
teome). The use of these genome sequences to make in silico
predictions of suitable targets (reverse vaccinology)44 provides
an efficient means with which to identify important epitopes
of both CD4+ and/or CD8 + T cells.45,46 Numerous research
groups are now applying reverse vaccinology to identify anti-
gens that are common, or highly homologous, across the
published genomes of various Leishmania spp. One approach
has used linear methods to search for epitopes in different
Leishmania species proteomes,47 while another has focused on
identifying epitopes within already known antigens.48 The
latter approach led to the development of a refined vaccine
candidate containing multi-epitope peptides of Leishmania
Cysteine Protease A (CPA160–189) that provided partial pro-
tection against L. infantum infection in BALB/c mice.49

Freitas-Silva et al., used a combination of in silico methods
to identify epitopes of CD4 and CD8 T cells within the
predicted proteome of Leishmania (Viannia) braziliensis.22

These peptides had a high binding affinity to both MHC/
HLA complexes and the immunogenicity of some was
demonstrated by stimulation of peripheral blood mononuc-
lear cells (PBMC) from healthy controls and post-treatment
ATL patients. To validate the use of bioinformatics tools for
epitope prediction, protein-protein interaction networks and
metabolic pathways, Brito et al., integrated data from experi-
mental and in silico studies and demonstrated that some of
these methods correlated with protection observed in murine
models.23 This indicates that reverse vaccinology may not
only be important for screening of potential candidates, but

suggest that it may also help us better understand parasite
virulence mechanisms and how the host immune response
can curtail them.

Phage display, a high-throughput method where mimotopes
are presented on the surface of phages and are recognized by
specific target ligands, provides another strategy to rapidly select
potential candidates.50 A recent study used phage display and
PBMC from ATL patients to identify T cell-specific mimotopes,
then to evaluate the immunogenicity of two of the identified clones
in mice after challenge with L. amazonensis.51 The results were
promising as polarized Th1 responses were generated and immu-
nized mice had significant lower numbers of parasites when com-
pared with controls, but further testing is needed to determine if
these can advance. It is also noteworthy that despite being selected
by screening among ATL patients, animal testing was conducted
against L. amazonensis, a strain also associated with VL.

First generation vaccines

First generation vaccines consist of live-attenuated or killed
parasites that are used to generate broad immunity.
Leishmanization (LZ; the inoculation of a low dose of live
Leishmania parasites to generate a minor lesion but also
a natural anti-Leishmania response) was the first vaccine strategy
proven to be effective against leishmaniasis in humans and it was
widely used among soldiers in the Soviet Union.52 Clinical trials
in humans based on LZ were performed due to its high efficacy,
and motivated the return of this practice in high-incidence
regions.53 InVenezuela a relatively large number of ATL patients
received immunotherapy withmonthly intradermal injections of
a combined vaccine containing autoclaved promastigotes of
L. mexicana amazonensis MHOM/VE/84/MEL and viable
Bacillus Calmette- Guerin (BCG) during the 1980s and 90s.54

Clinical healing varied from 91.2 to 98.7%, with an average of
95.7%. The high percentage of clinical cures achieved with this
immunotherapy (> 90%) supported further use in the routine
treatment of localized ATL, and the immunotherapy was mod-
ified to use promastigotes of L. braziliensis strain MHOM/BR/
84/LTB 300 killed by pasteurization.54,55

Although first generation vaccines are attractive for devel-
oping countries because they can be produced at a relative low
cost,56 sustaining a consistent product can present a barrier.
There can be difficulties in standardizing culture conditions to
obtain the immunogen and progressive declines in infectivity
can occur when subculturing the parasites.40,57 This situation

Figure 1. Maturation and expansion of Leishmania vaccine development.
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is analogous to the Bacille-Calmette Guerin (BCG) vaccines
used to prevent tuberculosis, where numerous substrains,
each of which provide varying degrees of efficacy, are now
used worldwide.58

L. major LZ can provide protection against infection with
different Leishmania species in mice and suggests the possi-
bility of using L. major LZ to prevent VL.59 Among the
important considerations when using live Leishmania para-
sites in human populations is not only safety in the vaccinee
but also safety of introducing parasites into the local popula-
tion. Ideally, live parasites should induce a protective immune
response in the vaccinated individual but should be cleared
and not persist in the long term.60 LZ has the capacity of
inducing non-healing lesions in immunocompromised
patients, and persistent parasites could support recrudescence
in the event of immune suppression while also potentially
serving as a reservoir for transmission to susceptible indivi-
duals and the introduction of this species into a non-endemic
region. Murine studies have shown that although heat-killed
Leishmania can stimulate an early Th1 response and protec-
tion, protective immunity is not sustained and wanes with
time.61–63 One hypothesis is that a long-term anti-Leishmania
response is not generated because mice immunized in this
way are not able to induce effector memory cells following
a secondary challenge. When repeated boosts of killed para-
sites were provided, however, both effector and central mem-
ory T cells (TEM and TCM, respectively) were produced and
a prolonged protection against virulent challenge could be
observed.64 A number of strategies are being developed to
enhance LZ, including the concomitant inoculation of adju-
vant molecules (such as CpG-ODNs) to prompt the innate
immune response to rapidly kill the parasites or generate long
term immunity.64 Attempts to improve the efficacy of attenu-
ated/killed Leishmania vaccines against CL using different
types of immunization, different immunization schemes and
different ways of attenuation (i.e. photosensitization;65

impairing the mannose activation pathway66) and challenge
have indicated promise but have not yet reached advanced
phases of clinical development.67–69

Targeted genetic modification to attenuate or delete speci-
fic virulence genes within Leishmania is considered
a powerful strategy with the potential to provide cross-
protective parasites with improved safety profiles, examples
are described on Table 1. While the first attempts using
attenuated Leishmania parasites rendered protection in mur-
ine models, lack of knowledge regarding potential reversion to
a wild type genotype left the parasites unsuitable for use in
human populations.73–77 Advances in genetic manipulation
have provided new methods with which to address these
issues, however, and various reverse genetic modifications of
Leishmania parasites have now been characterized.78

Genetically engineered parasites lacking essential genes such
as dhfr-ts (L. major), lpg2 (L. mexicana and L. major), SIR2
(L. infantum), P27 (L. major), Centrin1 (L. donovani) and
ΔCPB (L. mexicana) have been developed and evaluated in
animal models.70–72,79–82 In addition to targeted genetic
attenuation, use of naturally attenuated Leishmania species
(i.e., those species that are nonpathogenic in humans) also
appears possible as indicated by the use of, L. tarentolae,

a species with the genus Sauroleishmania83 that typically
infects lizards. L. tarentolae is advancing on the basis that it
could also potentially be used as a prophylactic or immu-
notherapeutic vaccine in immunocompromised patients.84–87

Second generation vaccines

In contrast to first generation vaccines, second generation
vaccines use defined products to generate the desired immune
responses. Native proteins from Leishmania have been used
either crudely or in a purified manner to generate protective
responses and the majority of Leishmania vaccines currently
being explored include antigenic proteins from the parasite or
different individual antigens produced as recombinant
products.88 The search for antigenic proteins of Leishmania
is becoming more common and different strategies are being
used to characterize these antigens, including genomic or
proteomic approaches using serum samples or T cells from
Leishmania-infected individuals28,88 and bioinformatics tools,
which have facilitated the recombinant production of a variety
of targets.62,89 The most common production methods are
prokaryotic expression systems using Escherichia coli or
those using yeast.90,91 Proteins alone are insufficient as vac-
cines, however, and they need to be co-injected with adjuvants
to induce a satisfactory T cell response.63 Experimental evi-
dence also suggests that multiple injections of most sub-unit
vaccines are required to generate lasting immunity. Despite
this, in addition to a high degree of control and reproduci-
bility in production, one of the major advantages of
the second-generation vaccine approach is overall cost.
Mathematical modeling indicates that a vaccine dose costing
2 USD or less would be much more economically beneficial
then the currently available leishmaniasis treatments.92

Many Leishmania proteins have now been purified or
recombinantly expressed for evaluation as defined subunit
vaccine candidates (Table 2). Due to the fact that it is
expressed in both the insect and vertebrate host phases of
the parasite lifecycle, Leishmania homolog of receptors for
activated C kinase (LACK) has been widely evaluated and
mice immunized with LACK resist L. major infection.105,106

L. major H2B histone protein, and its divergent N-terminal
region, have also been used to confer protection against
experimental L. major infection.107 When histone H1 was
tested in conjunction with the Montanide ISA 720 adjuvant

Table 1. Examples of first generation vaccine candidates using genetically
modified parasites against CL associated with protection.

SPECIES MODIFICATION

OLD
WORLD

OUTCOME
NEW WORLD
OUTCOME REFERENCE

L. mexicana Mannose
pathway
impairment

Not
tested

Protection (live
parasites challenge) –
No protection (killed
parasites challenge)

66

L. mexicana Lack of the
dhfr-ts gene

Not
tested

No protection 70

L. major Lack of the
dhfr-ts gene

Protection Not tested 71

L. major Lack of the
P27 gene

Partial
protection

Not tested 72
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in monkeys, it reduced the lesions formed after L. major
infection and these self-healed over time.108 Among the pur-
ified proteins, the parasite cell surface metalloprotease GP63
mediated a robust protection against challenge with both
L. mexicana and L. major in mice but conferred only partial
protection in monkeys.109–111 With regard to using proteins
from one Leishmania species to protect against an alternate
species, sterol methyl transferase (SMT) of L. infantum, pro-
tected mice against L. major challenge when formulated with
MPL-SE.112 Another example of a protein that could poten-
tially yield cross-protection due to high sequence homology
between Leishmania species is L. donovani nucleoside hydro-
lase (NH36), which protected mice against both L. (L.) ama-
zonensis and L. (V.) braziliensis infection.113,114 Alves-Silva
et al. recently extended this initial finding by assessing the
efficacies of NH36, its F1 and F3 domains, and the recombi-
nant chimera F1F3, each formulated with Riedel de Haen
saponin, against L. braziliensis mouse infection, observing
some variance in the onset and magnitude of multifunctional
IL-2+TNF-α+IFN-γ+ antigen-specific CD4 and CD8 T cells
but finding that the F1F3 chimera resulted in the greatest
reduction of the ear lesions sizes.112 Similarly, L. major
recombinant ribosomal proteins L3 and L5 combined with
CpG-ODNs induced a Th1 response in BALB/c mice that
conferred protection against L. major and L. braziliensis
challenge.115

Interestingly, the impact of sand fly saliva has been system-
atically investigated over the last few years and it is now under-
stood that sand fly components inoculated during feeding can
modify the bite site environment.116 Several proteins found in the
saliva of Lutzomyia longipalpis (Lu. longipalpis), one of the main
vectors of the disease in the New World, appear to enhance the
parasite’s pathogenesis117 and based on these observations, vac-
cine candidates containing sand fly salivary proteins have been
proposed. Indeed, evaluation of these salivary proteins either
alone or in conjunction with Leishmania proteins has generated
promising results in animal models.117–120 Mice immunized with
the LJM11 protein from Lu. longipalpis have significantly reduced
parasite numbers in the ear and lymph node following challenge
with L. braziliensis plus Lu. longipalpis salivary gland sonicate, but

not when the parasites were inoculated with salivary gland soni-
cate from an alternate sand fly.121

Recombinant methods alsomake it possible to manipulate and
combine proteins and/or complementary epitopes into a single
polyepitope/polyprotein product. Leish-111f, an antigenmade of 3
fused proteins (L. major thiol-specific antioxidant [TSA], L. major
stress-inducible protein-1 [STI1], and L. braziliensis elongation
and initiation factor [LeIF]) provided protection against experi-
mental L. major infection.41,122 The combination of Leish-111f
with the adjuvant monophosphoryl lipid A plus squalene (MPL-
SE) became the first defined vaccine candidate to advance to phase
1 and phase 2 clinical trials, where it was found to be safe and
immunogenic.40When injected with the Toll-like receptor (TLR)-
4 agonist glucopyranosyl lipid A (GLA), KSAC, a recombinant
proteinmade ofKMP-11, SMT,A2 andCPB, conferred protection
in susceptible BALB/c mice against sand-fly transmission of
L.major.123 A fusion proteinmade ofL.major cysteine proteinases
(CP) A and B and L. pifanoi cysteine protease has also been shown
to provide partial protection against L. amazonensis in mice.124,125

It is not clear, however, if these vaccines can provide protection
against ATL-causing Leishmania species.

Third generation vaccines

In the last few years, genetic immunization consisting of
either nucleic acids alone or as genes added into delivery
vectors, has emerged as another alternative, namely third
generation vaccine strategy. These nucleic acid-based vaccines
also have a significant logistical advantage because their typi-
cally high stability appears to make them practical for use in
tropical areas. Additional advantages provided by this method
include the selective expression of proteins that are assumed
to be folded close to their native/natural conformation; pro-
duction or persistence of the antigen over several days; and
induction of antigen-specific memory cells.126 Both DNA and
RNA platforms have been developed, but those using DNA
need to access the nucleus and currently appear to work better
in small animal models. To date, higher doses of DNA have
been required in larger animals and humans and this has

Table 2. Examples of second generation candidate antigens tested in mice.18

SPECIES CANDIDATE ANTIGEN FUNCTION OLD WORLD OUTCOME NEW WORLD OUTCOME REFERENCE

L. braziliensis Thiol-specific antioxidant
(TSA)
LeiF
LACK

Tryparedoxin peroxidase Protection against
L. major

No protection 93

Leishmania putative eukaryotic initiation factor Protection against
L. major

No protection 93

Leishmania homolog of receptors for activated
C-kinase

Protection against
L. major

Partial protection 93

L. amazonensis P4 nuclease
Cysteine proteinase
HSP20
GP46

Endonuclease activity
Cysteine-type peptidase
Activity
Heat-shock protein
Membrane glycoprotein

Not tested
Not tested
Not tested
Not tested

Protection
Partial protection
No protection
Protection

94
95
96
97

L. mexicana GP63 Metalloendopeptidase activity Not tested Protection 98
L. major LmTSI

GP63
PSA2
TSA
Histone H1
LACK

Stress-Induced protein sti1
Metalloendopeptidase activity
Promastigote surface antigen protein 2
Typaredoxin peroxidase
DNA binding
Leishmania homolog of receptors for activated
C-kinase

Protection
Protection
No protection
No protection
Protection
Partial protection

No protection
(L. braziliensis)
Protection (L. mexicana)
Protection (L. mexicana)
Not tested
Not tested
Not tested

99
100
101
102
103
104
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raised some safety concerns.127,128 Furthermore, the low
immunogenicity of DNA vaccines observed in dogs and
humans has limited their advance and has necessitated the
use of approaches such as in vivo electroporation, micronee-
dle-based delivery and DNA encapsulation to increase their
immunogenicity.52 Despite this, a wide repertoire of antigens
has been investigated in the context of DNA vaccines.129 The
gene coding for GP63 was the first DNA vaccine developed
against leishmaniasis, mediating solid protection against
L. major infection in mice.130-132 LACK is perhaps the most
extensively studied DNA vaccine against Leishmania and in
clinical trials pairing of LACK with IL-12 increased the pro-
tection achieved relative to that observed with LACK alone.106

DNA-encoding the A2 protein has also mediated protection
in mice infected with L. amazonensis.133 In a recent report,
a TSA-based DNA vaccine was successful in promoting a Th1
immune response and protection against L. major
challenge.134 Experiments using the iron superoxide dismu-
tase of L. donovani demonstrated protection against
L. amazonensis in BALB/c mice by inducing IFN-γ that
reduced the parasite burden.135 Studies involving the
pcDNA3H3H4 plasmid expressing L. major histone proteins
H3 and H4 resulted in a partial resistance to L. major asso-
ciated with the development of Th1/Th2-type responses and
a reduced number of parasite-specific regulatory T cells at the
infection site.136 L. infantum histone genes H2A, H2B, H3,
and H4 have also been able to control both L. major and
L. braziliensis infections in BALB/c mice.137,138 Similar to the
ability to produce chimeric fusion proteins, multiple genes
can be fused together for use within third generation vaccines.
A recent study compared the responses generated by genes
encoding either LACK alone, TSA alone or a fusion of these
two genes named LACK-TSA, and found that LACK-TSA
triggered a stronger protective response against challenge
with L. major than the individual genes.139

In contrast to DNA, RNA platforms need access only to the
cytoplasm and have been demonstrated to be effective in both
small and large animal models.140–143 RNA can be generated in
non-replicating platforms optimized and/or modified to avoid
their detection by the immune system, or in self-replicating
platforms that use viral replication machinery. Self-replicating
RNA vaccines can engage the innate immune system in
a manner similar to the parent virus and essentially provide
a self-adjuvanting function.144 Unlike the responses generated
with second generation vaccines that typically consist of anti-
gen-specific CD4 T cells exclusive of CD8 T cells, an important
feature of third generation vaccines is the induction of both
antigen-specific CD4 and CD8 T cells.145 A fusion of the
kinetoplastid membrane protein 11 (KMP11) and hydrophilic
acylated surface protein B (HASPB) genes was cloned into
a lentiviral vector (pCDH-cGFP) that generated a protective
response with significant increases in both pro- and anti-
inflammatory markers (IFN-γ and IgG2a versus IL-10 and
IgG1).146 The higher levels of IFN-γ and IgG2a indicated
skewing toward a desirable Th1 response.

The influenza virus has also been used as a vector, and
a recombinant influenza virus expressing the single MHCII-
restricted peptide LACK158–173 achieved protection against
L. major while generating considerable levels of peptide-specific

IFN-γ.147 Recently, the first human trial using a third-generation
vaccine designed for VL and post-kala azar dermal leishmaniasis
(PKDL) was safely conducted and confirmed the ability of
a simian adenovirus (ChAd63) that encodes two Leishmania
proteins (KMP11 and HASPB) to generate antigen-specific
responses.148 Similar studies in primates and/or humans have
not yet been conducted against CL-causing Leishmania species.

In addition to the use of viral vectors, a number of bacteria
including Listeria monocytogenes, Mycobacterium bovis BCG
and Salmonella enterica serovar Typhimurium, have been used
as delivery systems for Leishmania antigens.62,131 An example
of this approach was shown in a study where novel
Leishmania antigens were selected through a proteomic/in
silico approach then expressed in Salmonella Typhimurium
SL3261. Immunization of mice with individual serovars of
Salmonella expressing the antigens LinJ08.1190 and
LinJ23.0410, or a pool of these constructs, significantly
delayed progression of L. major infection and increased resis-
tance against L. donovani.149 Some examples of these candi-
dates are listed on Table 3.

Conclusions

Cutaneous leishmaniasis (CL) and American tegumentary
leishmaniasis (ATL) remain important neglected tropical dis-
eases that directly or indirectly impact millions each year. In
addition to sand fly vector control efforts, the current control
strategies for leishmaniasis rely upon early and accurate diag-
nosis (when attainable) coupled with chemotherapeutic
approach to limit disease symptoms and ongoing parasite
transmission. These efforts are having more success on the
Indian subcontinent (against VL) than in South America,
where VL- and CL-causing Leishmania species co-exist.

It is our belief that integrating a vaccine within leishmaniasis
control strategies would have the greatest and most sustainable
impact. It is quite conceivable that a combination of approaches
may be used to achieve effective immunization. Indeed, we
modeled such an approach against VL-causing Leishmania spe-
cies, providing mice with a heterologous immunization regimen
that involved second and third-generation vaccines with the
same target proteins/inserts. This heterologous immunization
scheme stimulated robust antigen-specific T cell responses and
was capable of protecting against experimental L. donovani

Table 3. Examples of third generation (DNA) vaccine candidates against CL
associated with protection.

SPECIES GENE
OLD WORLD
OUTCOME

NEW WORLD
OUTCOME REFERENCE

L. major GP63 Protection Not tested 131
L. major LACK Protection Not tested 106
L. amazonensis A2 Protection

(L. chagasi)
Protection
(L. amazonensis)

133

L. major TSA Protection Not tested 134
L. major H3, H4 Partial

protection
Not tested 136

L. infantum H2A, H2B,
H3, H4

Protection
against
L. major

Protection against
L. braziliensis

134

L. major KMP11
+ HASPB

Protection Not tested 146
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infection.150 This approach could potentially provide the same
benefit against CL-causing Leishmania species. Until now, most
attempts to develop a vaccine against CL have been based onOld
World Leishmania species, however, and unfortunately these
species appear to have a response pattern that differs from the
species that predominate in the New World and especially so
from L. braziliensis. Even though most of the preclinical evalua-
tions have used experimental L. major infection to determine
vaccine efficacy, immunization to prevent ATL should be attain-
able given the plethora of targets and variety of platforms under
preclinical investigation. For this to happen, however, it will be
necessary to ensure that both ATL and its complications remain
a priority among public health policy decision makers and that
vaccine development efforts evaluate promising candidates
against ATL-causing species that are endemic throughout
South America.
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