Skip to main content
. 2020 Apr 7;128(4):047004. doi: 10.1289/EHP5838

Table 1.

Summary of simulation scenarios used to explore performance of quantile g-computation and WQS regression for small (n=100)- or moderate (n=500)-sized samples.

Simulation scenarioa β1 β2 β1,1 β1,2 βC ψ1 ψ2 ρX1,X2 ρX,C
1 0 0 0 0 0 0 0 0 0
2 0.25 0.25 0 0 0 0 0 0 0
3 0.25 0 0 0 0 0.25 0 0 0
4b 0.25/d 0.25/d 0 0 0 0.25 0 0 0
5 0.25 0.2, 0.1, 0.05 0 0 0 0.05, 0.15, 0.2 0 0.0, 0.4, 0.75 0
6 0.25 0 0 0 0.5 0.25 0 0 0.75
7 0.25 0.25 0 0.15 0 0.5 0.15 0 0
8 0.25 0.25 0.15 0 0 0.5 0.15 0 0

Note: Table columns are as follows: βC, true coefficient for unmeasured confounder C; β1, true coefficient for X1; β2, true coefficient for X2; β1,2, true coefficient for interaction term X1X2; ρX,C, true correlation between X1 and unmeasured confounder C; ρX1,X2, true correlation between X1andX2; ψ1, true mixture effect (main term); ψ2 true mixture effect (quadratic term).

a

Each scenario was repeated for sample sizes of 100 and 500 and a total number of exposures of 4, 9, and 14. Outcomes are simulated according to the model Y=0+j=1dβjXj+β1,1X1X1+β1,2X1X2+βCC+ε;where epsilon is the error term, andεN(0,1).

b

d refers to the total number of exposures.