Skip to main content
. 2020 Apr 7;128(4):047004. doi: 10.1289/EHP5838

Table 3.

Validity of WQS regression and quantile g-computation under the null (no exposures affect the outcome or exposures counteract) and nonnull estimates when directional homogeneity holds; 1,000 simulated samples of n=500. Corresponding estimates for n=100 are provided in Table S1.

Scenario Method da Truthb Biasc MCSEd RMVARe Coveragef Power/type 1 errorg
1. Validity under the null, no exposures are causal WQSh 4 0 0.00 0.09 0.09 0.95 0.05
9 0 0.01 0.13 0.12 0.94 0.06
14 0 0.01 0.15 0.15 0.95 0.05
Q-gcompi 4 0 0.00 0.08 0.08 0.94 0.06
9 0 0.00 0.12 0.12 0.95 0.05
14 0 0.01 0.16 0.15 0.95 0.05
2. Validity under the null, causal exposures counteract WQSh 4 0 0.32 0.08 0.08 0.02 0.98
9 0 0.41 0.11 0.11 0.04 0.96
14 0 0.46 0.14 0.14 0.09 0.91
Q-gcompi 4 0 0.00 0.09 0.09 0.95 0.05
9 0 0.00 0.13 0.13 0.96 0.04
14 0 0.01 0.16 0.16 0.96 0.04
3. Validity under single nonnull effect WQSh 4 0.25 0.07 0.07 0.07 0.83 1.00
9 0.25 0.15 0.10 0.10 0.67 0.98
14 0.25 0.21 0.14 0.13 0.57 0.94
Q-gcompi 4 0.25 0.00 0.08 0.08 0.94 0.88
9 0.25 0.00 0.12 0.12 0.95 0.52
14 0.25 0.01 0.16 0.15 0.95 0.36
4. Validity under all nonnull effects with directional homogeneity WQSh 4 0.25 0.06 0.10 0.09 0.87 0.58
9 0.25 0.09 0.13 0.13 0.87 0.26
14 0.25 0.10 0.17 0.15 0.88 0.19
Q-gcompi 4 0.25 0.00 0.08 0.08 0.95 0.86
9 0.25 0.00 0.12 0.12 0.95 0.55
14 0.25 0.01 0.15 0.15 0.95 0.37

Note: MCSE, Monte Carlo standard error; RMVAR, root mean variance: .

a

Total number of exposures in the model.

b

True value of ψ, the net effect of the exposure mixture.

c

Estimate of ψ minus the true value.

d

Standard deviation of the bias across 1,000 iterations.

e

Square root of the mean of the variance estimates from the 1,000 simulations, which should equal the MCSE if the variance estimator is unbiased.

f

Proportion of simulations in which the estimated 95% confidence interval contained the truth.

g

Power when the effect is nonnull (scenarios 3 and 4); otherwise (in scenarios 1 and 2), it is the type 1 error rate (false rejection of null), which should equal alpha (0.05 here) under a valid test.

h

Weighted quantile sum regression (R package gWQS defaults).

i

Quantile g-computation (R package qgcomp defaults).