Table 3.
Validity of WQS regression and quantile g-computation under the null (no exposures affect the outcome or exposures counteract) and nonnull estimates when directional homogeneity holds; 1,000 simulated samples of . Corresponding estimates for are provided in Table S1.
| Scenario | Method | da | Truthb | Biasc | MCSEd | RMVARe | Coveragef | Power/type 1 errorg |
|---|---|---|---|---|---|---|---|---|
| 1. Validity under the null, no exposures are causal | WQSh | 4 | 0 | 0.00 | 0.09 | 0.09 | 0.95 | 0.05 |
| 9 | 0 | 0.13 | 0.12 | 0.94 | 0.06 | |||
| 14 | 0 | 0.15 | 0.15 | 0.95 | 0.05 | |||
| Q-gcompi | 4 | 0 | 0.00 | 0.08 | 0.08 | 0.94 | 0.06 | |
| 9 | 0 | 0.00 | 0.12 | 0.12 | 0.95 | 0.05 | ||
| 14 | 0 | 0.16 | 0.15 | 0.95 | 0.05 | |||
| 2. Validity under the null, causal exposures counteract | WQSh | 4 | 0 | 0.32 | 0.08 | 0.08 | 0.02 | 0.98 |
| 9 | 0 | 0.41 | 0.11 | 0.11 | 0.04 | 0.96 | ||
| 14 | 0 | 0.46 | 0.14 | 0.14 | 0.09 | 0.91 | ||
| Q-gcompi | 4 | 0 | 0.00 | 0.09 | 0.09 | 0.95 | 0.05 | |
| 9 | 0 | 0.00 | 0.13 | 0.13 | 0.96 | 0.04 | ||
| 14 | 0 | 0.16 | 0.16 | 0.96 | 0.04 | |||
| 3. Validity under single nonnull effect | WQSh | 4 | 0.25 | 0.07 | 0.07 | 0.07 | 0.83 | 1.00 |
| 9 | 0.25 | 0.15 | 0.10 | 0.10 | 0.67 | 0.98 | ||
| 14 | 0.25 | 0.21 | 0.14 | 0.13 | 0.57 | 0.94 | ||
| Q-gcompi | 4 | 0.25 | 0.00 | 0.08 | 0.08 | 0.94 | 0.88 | |
| 9 | 0.25 | 0.00 | 0.12 | 0.12 | 0.95 | 0.52 | ||
| 14 | 0.25 | 0.16 | 0.15 | 0.95 | 0.36 | |||
| 4. Validity under all nonnull effects with directional homogeneity | WQSh | 4 | 0.25 | 0.10 | 0.09 | 0.87 | 0.58 | |
| 9 | 0.25 | 0.13 | 0.13 | 0.87 | 0.26 | |||
| 14 | 0.25 | 0.17 | 0.15 | 0.88 | 0.19 | |||
| Q-gcompi | 4 | 0.25 | 0.00 | 0.08 | 0.08 | 0.95 | 0.86 | |
| 9 | 0.25 | 0.00 | 0.12 | 0.12 | 0.95 | 0.55 | ||
| 14 | 0.25 | 0.15 | 0.15 | 0.95 | 0.37 |
Note: MCSE, Monte Carlo standard error; RMVAR, root mean variance: .
Total number of exposures in the model.
True value of , the net effect of the exposure mixture.
Estimate of minus the true value.
Standard deviation of the bias across 1,000 iterations.
Square root of the mean of the variance estimates from the 1,000 simulations, which should equal the MCSE if the variance estimator is unbiased.
Proportion of simulations in which the estimated 95% confidence interval contained the truth.
Power when the effect is nonnull (scenarios 3 and 4); otherwise (in scenarios 1 and 2), it is the type 1 error rate (false rejection of null), which should equal alpha (0.05 here) under a valid test.
Weighted quantile sum regression (R package gWQS defaults).
Quantile g-computation (R package qgcomp defaults).