Skip to main content
. 2020 Apr 7;128(4):047004. doi: 10.1289/EHP5838

Table 4.

Validity of WQS regression and quantile g-computation under nonnull estimates when directional homogeneity holds, individual exposure effects are nonadditive, and the overall exposure effect includes terms for linear (ψ1) and squared (ψ2) exposure (e.g., quadratic polynomial) for 1,000 simulated samples of n=500. Corresponding estimates for n=100 are provided in Table S2.

Scenario Method da Biasb MCSEc RMVARd
ψ1 ψ2 ψ1 ψ2 ψ1 ψ2
7. Validity when the true exposure effect is nonadditive/nonlinear WQSe 4 0.21 0.07 0.34 0.11 0.31 0.10
9 0.21 0.07 0.73 0.24 0.64 0.21
14 0.13 0.04 1.12 0.37 1.02 0.34
Q-gcompf 4 0.01 0.00 0.13 0.04 0.13 0.04
9 0.00 0.00 0.16 0.03 0.16 0.04
14 0.00 0.00 0.19 0.04 0.18 0.04
8. Validity when the overall exposure effect is nonlinear due to underlying nonlinear effects WQSe 4 0.20 0.07 0.31 0.12 0.31 0.10
9 0.15 0.07 0.61 0.22 0.61 0.20
14 0.11 0.05 0.97 0.34 0.98 0.32
Q-gcompf 4 0.01 0.00 0.15 0.04 0.15 0.04
9 0.00 0.00 0.18 0.05 0.18 0.05
14 0.00 0.00 0.20 0.05 0.20 0.05

Note: MCSE, Monte Carlo standard error; RMVAR, root mean variance: .

a

Total number of exposures in the model.

b

Estimate of ψ1 or ψ2 minus the true value.

c

Standard deviation of the bias across 1,000 iterations.

d

Square root of the mean of the variance estimates from the 1,000 simulations, which should equal MCSE if the variance estimator is unbiased.

e

Weighted quantile sum regression (R package gWQS defaults, allowing for quadratic term for total exposure effect).

f

Quantile g-computation (R package qgcomp defaults, including an interaction term between X1 and X2 (scenario 7) or a term for X1X1 (scenario 8) as well as quadratic term for total exposure effect).