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Abstract

Previous work has demonstrated that cognitive control can be influenced by affect, both when it is 

tied to the anticipated outcomes for cognitive performance (integral affect) and when affect is 

induced independently of performance (incidental affect). However, the mechanisms through 

which such interactions occur remain debated, in part because they have yet to be formalized in a 

way that allows experimenters to test quantitative predictions of a putative mechanism. To 

generate such predictions, we leveraged a recent model that determines cognitive control 

allocation by weighing potential costs and benefits in order to determine the overall Expected 

Value of Control (EVC). We simulated potential accounts of how integral and incidental affect 

might influence this valuation process, including whether incidental positive affect influences how 

difficult one perceives a task to be, how effortful it feels to exert control, and/or the marginal 

utility of succeeding at the task. We find that each of these accounts makes dissociable predictions 

regarding affect’s influence on control allocation and measures of task performance (e.g., conflict 

adaptation, switch costs). We discuss these findings in light of the existing empirical findings and 

theoretical models. Collectively, this work grounds existing theories regarding affect-control 

interactions, and provides a method by which specific predictions of such accounts can be 

confirmed or refuted based on empirical data.
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Introduction

Many of our everyday behaviors, including making coffee, turning on our computer, and 

opening a news website, are well-served by relying on automatic or habitual forms of 

processing. However, many situations require us to engage cognitive control in order to 

override these default processes and better achieve our goals (Botvinick & Cohen, 2014; 

Diamond, 2012; Friedman & Miyake, 2017; Posner & Snyder, 1975; Shiffrin & Schneider, 

1977). When we decide to stop reading the news and start working, we will need to inhibit 

any distractions and flexibly shift our attention between multiple tasks. A longstanding 

question centers on how we determine when control is needed, and how much. Over the last 

few decades, this question has been addressed by a variety of normative theories which 

postulate that the amount of control allocated varies based on changes in the task 

environment (e.g., the amount of conflict between competing response tendencies, or the 

likelihood of making an error) (Alexander & Brown, 2011; Botvinick, Braver, Barch, Carter, 

& Cohen, 2001; Brown & Braver, 2005; Verguts & Notebaert, 2008; Wessel, Danielmeier, 

Morton, & Ullsperger, 2012). More recent theories have focused on the role of motivation in 

cognitive control (e.g., variations in the incentives for and cognitive demands of the task) 

(Brown & Alexander, 2017; Holroyd & McClure, 2015; Lieder, Shenhav, Musslick, & 

Griffiths, 2018; Shenhav, Botvinick, & Cohen, 2013; Silvetti, Alexander, Verguts, & Brown, 

2014). This work has been successful in accounting for how control allocation varies with 

explicit incentives (e.g., monetary rewards) but, with few exceptions (Dreisbach & Fröber, 

2018; Inzlicht, Bartholow, & Hirsh, 2015; Pessoa, 2009), it has largely overlooked a major 

source of variability in control: affect.

A person’s affective state can have a substantial influence on how they allocate control. For 

instance, affect can determine the degree to which a person is motivated to reach a particular 

goal state (e.g., one that increases positive affect or reduces negative affect) in the moment. 

Affect can also determine how a person perceives their task environment. For instance, being 

in a positive or negative mood may alter what a person believes the requirements and payoffs 

of a task to be (e.g., answering email can seem easier when we are in a good mood). 

Research has demonstrated both forms of affective influence in the lab, showing that 

cognitive control varies as a function of affective experiences evoked by the incentives for 

performance – those integral to performance evaluation (i.e., performance-contingent 

rewards; e.g., Krebs et al., 2010; Locke & Braver, 2008; Padmala & Pessoa, 2011; for 

reviews see: Botvinick & Braver, 2015; Parro et al., 2018) – and as a function of affective 

experiences evoked by factors unrelated (incidental) to task performance, for instance those 

that induce a particular mood state (i.e., positive mood induction or performance non-

contingent rewards; e.g., Dreisbach & Goschke, 2004; van Steenbergen, Band, Hommel, 

Rombouts, &Nieuwenhuis, 2015; for reviews see: Inzlicht et al., 2015; Pessoa, 2008; 

Dreisbach & Fröber, 2018). While a number of such influences of affect on control 

allocation have been documented (see Table 1 for a non-exhaustive overview of the 

empirical findings), the mechanisms by which these influences occur remain mysterious. 

Here, we seek to leverage a recent integrative account of control allocation to help resolve 

this mystery by enumerating several possible mechanisms underlying affect-control 

interactions.
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The Expected Value of Control (EVC) theory offers a normative account of cognitive control 

allocation, suggesting that such allocation is determined by weighing relevant costs and 

benefits (Shenhav et al., 2013, 2017). The theory assumes that this cost-benefit decision 

determines the type(s) of control to allocate (control signal identities; e.g. pay attention to 

the ink color in a Stroop task) and the intensity with which to engage these control signals 

(e.g. the amount of attention paid to the ink color in a Stroop task). Building on past theories 

of motivation (cf. Atkinson, 1957; Brehm and Self, 1989; Vroom, 1964; Wabba and House, 

1974), the theory assumes that this decision-making process weighs the utility and cost of 

allocating control in order to specify a control signal with the highest expected value of 

control (Figure 1). At the neural level, the theory proposes that this decision-making process 

occurs in the dorsal anterior cingulate cortex (dACC) which then projects the output of this 

decision (a particular allocation of control) to downstream regions that execute this control 

(Shenhav et al., 2013; Shenhav, Cohen, & Botvinick, 2016). Recent work has implemented 

the EVC theory within an explicit computational framework (Lieder et al., 2018; Musslick, 

Cohen, & Shenhav, in press; Musslick, Shenhav, Botvinick, & Cohen, 2015; Musslick, 

Cohen, & Shenhav, 2018), and used this model to simulate an agent’s behavioral 

performance across a variety of tasks. These simulations have not only reproduced a number 

of key phenomena in the cognitive control literature – including performance costs related to 

response conflict (congruency effects), the influence of such congruency on subsequent 

control adjustments (congruency sequence effects), and performance costs resulting from 

switching versus repeating task sets (switch costs) – they have also demonstrated how these 

phenomena are influenced by changes in task demands, performance incentives and 

individual differences in decision-making parameters (e.g., how sensitive a given person is to 

reward, and how effortful they perceive control to be).

While the EVC model does not explicitly address the role of affect in influencing cognitive 

control, it does constrain the possible routes through which these influences may occur. 

From the perspective of this model, the overall value of control (and therefore the ultimate 

allocation of control) is determined by expected outcomes, perceived task difficulty, and the 

subjective cost of exerting mental effort. Each of these can be influenced either directly or 

indirectly by one’s affective state. For instance, expected outcomes (e.g., the rewards 

expected for task performance) will scale with their affective salience (Knutson & Greer, 

2008; Slovic, Finucane, Peters, & MacGregor, 2007; Tversky & Kahneman, 1991; Wilson & 

Gilbert, 2005), which can in turn vary in relation to a person’s current mood state (Clore, 

Gasper, & Garvin, 2001; Eldar & Niv, 2015; Eldar, Rutledge, Dolan, & Niv, 2016; Isen, 

Nygren, & Ashby, 1988). Affective states can also alter the perceived difficulty of a task, 

making it seem like more or less effort is required to achieve one’s goal (Efklides & Petkaki, 

2005; Gendolla, 2000; Gendolla, Abele, & Krüsken, 2001). Finally, variability in one’s 

affective state can also change how effortful it feels to exert control. For example, several 

studies have shown that individuals with depression, characterized by prolonged negative 

affect, experience a task as more effortful compared to healthy controls (Cléry-Melin et al., 

2011; Brinkmann & Gendolla, 2007, 2008). Critically, each of these hypothesized 

mechanisms (which are not mutually exclusive) have implications for how affect should 

influence control evaluation (Figures 2–5).
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In order to elaborate on these mechanisms, here we use the EVC model to investigate which 

components of one’s valuation of control may be influenced by affect. We simulate multiple 

possible accounts of these affect-control interactions, specifically whether affect influences 

one’s reward sensitivity, utility discounting, expected task difficulty, and cost of control. We 

examine the specific predictions each of these accounts makes for control allocation and 

resulting measures of task performance, showing that they produce dissociable influences on 

measures of conflict adaptation and task-switching. We discuss these results in light of 

existing empirical findings and theoretical frameworks. By enumerating specific accounts of 

affect-control interactions and their predictions for behavior, our work provides a path 

toward identifying the mechanisms that best account for such interactions, and to intervene 

on these mechanisms when they are maladaptive for an individual.

Methods

The computational implementation of the EVC theory allows for the simulations of behavior 

across different cognitive tasks. Here, we generate behavior from a computational model of 

EVC theory that has been previously used to simulate a variety of different control 

phenomena (Musslick et al., 2015; Musslick, Cohen & Shenhav, 2018; Musslick, Cohen & 

Shenhav, 2019). Simulated EVC agents solve a task by specifying the control signal on 

every trial. The control signal is chosen optimally based on an internal model of the next 

trial (inferred state Ŝ). This signal is then used to interact with the environment, for example 

to commit one of the two possible responses in the task (actual state S). After each trial the 

agent updates the internal model based on its observation of the current trial.

In order to generate reaction times and responses on each trial, we use the drift diffusion 

model (DDM; Bogacz et al., 2006; Ratcliff, 1978). Within the DDM framework, a response 

on the task can be conceptualized as a result of the noisy accumulation of evidence toward 

one of the two possible responses (e.g. responding based on the ink color in a Stroop task). 

Here we assume that the rate of evidence accumulation toward one of the two responses is 

governed by a controlled and an automatic component.

d = dcontrol + dautomatic

The automatic component reflects the automatic processing of the ink color and word 

content of the stimulus when no control is engaged:

dautomatic = acolor + aword

The magnitude of the color-response (acolor) and the word-response (aword) association 

depends on the strength of the association between the stimulus and the response. The sign 

of the association depends on the response (e.g. acolor < 0 when the response is associated 

one button, acolor > 0 if the response is associated with the other button). It follows that on 

incongruent trials the acolor and aword have the opposite sign, while they have the same sign 

on congruent trials.
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The controlled component of the drift rate is the sum of stimulus response-associations, 

acolor and aword, each weighted by the intensity of the corresponding control signal – one for 

processing the color (ucolor) and one for processing the word content (uword):

dcontrol = acolor · ucolor · ε + aword · uword

Each of the two control signals (ucolor and uword) bias the processing toward one of the two 

dimensions of the stimulus. In the case of the Stroop task, higher control signal for 

processing the ink color dimension improves the performance on the task. Reaction times 

and probabilities of each of the two responses are derived from an analytical solution to the 

DDM (Navarro & Fuss, 2009).

The optimal set of control signals U = {ucolor, uword} for each trial is determined on the basis 

of the internal model of the trial Ŝ = {âcolor, âword} so that the expected value of control is 

maximized. The expected value of control, for a set of control signals and for an inferred 

state, is calculated based on the expected rewards and costs associated with an outcome,

EV C(U, S) = P(U, S) · V (R) – Cost(U)

where P(U, Ŝ) represents the probability of reaching the decision threshold of a correct 

response and V(R) represents the value of committing a correct response (cf. Figure 1). To 

simulate the discounting of utility with increases in anticipated reward (increases in 

subjective value are assumed to diminish as a function of anticipated reward), subjective 

value and is calculated as V(R) = 25 · loge (v · R + 1) where R represents the anticipatory 

amount of reward offered for a correct response in the task1, which is discounted by the 

agent’s responsivity to reward v, henceforth referred to as reward sensitivity. The cost term 

Cost(U) = Costimpl(U) + Costreconf(U) represents the total cost of cognitive control (cost) 
and is composed of an implementation cost that increases exponentially with the amount of 

control being allocated,

Costimpl(U) = ecimpl ⋅ ucolor + ecimpl ⋅ uword

as well as a reconfiguration cost that scales exponentially with the degree to which control 

signals need to be changed relative to their previous state

Costreconf(U) = ecreconf ucolor, t − ucolor, t − 1
2 + uword, t − uword, t − 1

2

where the implementation cost is scaled by parameter cimpl and the reconfiguration cost is 

scaled by parameter creconf The two cost terms influence behavior in different ways. A 

higher implementation cost leads the model to allocate control with a lower intensity, 

1Note that the anticipated reward amounts to the agent’s expected internal reward associated with a correct response. The anticipated 
reward may differ from the actual reward obtained in the environment if the agents receives no prior information about the actual 
reward, or if the actual reward is changing over time. However, unless otherwise specified, we assume that the anticipated reward is 
equal to the actual internal reward that the agent receives.
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leading to overall poorer performance on a task. A higher reconfiguration cost prevents the 

model from adjusting its control signal when task demands change. The latter may result in 

performance costs associated with task switches. The model then selects a set of control 

signals U which maximize2 the EVC within the inferred next trial Ŝ:

U* argmaxi[EV C(U, S)]

The reaction time and the response in the actual state S are then determined by the influence 

of the chosen signals on the rate of the accumulation of evidence toward a decision bound 

(drift rate). After observing the actual state, the agent updates its inferred state for each 

stimulus-response association as follows

acolor, t = acolor, t − 1 + α acolor, t − 1 − acolor, t

where α is the learning rate. Finally, agent then re-evaluates the optimal control policy for 

the next trial based on its revised model of the task environment.

We simulated3 the effects of incidental and integral affect in the classic Stroop experiment, 

as well as a task switching experiment. In the Stroop paradigm, the agent is presented with a 

two-dimensional stimulus, one dimension representing an ink color and another dimension 

representing a color word. On each trial, the EVC model is required to indicate the response 

associated with the ink color. In congruent trials, the word feature of the stimulus is 

associated with the same response as the ink color whereas in incongruent trials, the color 

and word features are associated with different responses. The experiment sequence 

encompassed 101 trials, and was fully balanced (excluding the first trial) with respect to 

congruent and incongruent stimuli, as well as with respect to all four transitions between the 

two trial types (congruent-congruent, congruent-incongruent, incongruent-congruent, 

incongruent-incongruent). To simulate congruent trials, we set acolor = 0.38, aword = 0.40 

such that both stimuli dimensions promote the same response. On incongruent trials, we set 

aword = −0.40 such that the word dimension is associated with a different response than the 

color dimension. Note that the absolute magnitude of aword is higher than acolor, reflecting 

the assumption that word reading is a more automatic process than color naming (Cohen, 

Dunbar, & McClelland, 1990). We assessed the congruency sequence effect as an interactive 

effect between the congruency of the current trial and the congruency of the previous trial on 

performance.

In the task switching paradigm, the agent had to switch between two different tasks. Each 

tasks required the agent to indicate the response associated with a target stimulus while 

ignoring the response associated with a distractor stimulus. Similar to the Stroop task, trials 

in each of the two tasks could either congruent, with atarget = 0.38, adistractor = 0.40 or 

2EVC theory does not commit to any algorithm by which the optimal signal may be computed. For the simulations reported below, we 
determine the optimal control signal by searching over all possible control signals. Note that this search is computationally expensive 
and may differ from how people determine their optimal control signal. However, the presented results are independent of the exact 
algorithm by which the globally optimal control signal is identified.
3The code for all simulations is available on: https://github.com/musslick/EVCAffect
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incongruent, with atarget = 0.38, adistractor = −0.404. The trial sequence encompassed 100 

trials that were randomly sampled with respect to stimulus congruency (congruent, 

incongruent), the currently relevant task and the task transition with respect to the previous 

trial (task switch, task repetition). We assessed the switch costs in terms of the difference in 

RTs and error rates between task switch trials and task repetition trials. In both paradigms, 

the model allocated control between the two control signals (ucolor, uword in the Stroop task, 

utarget, udistractor in each of the tasks in the task switching environment) using the same range 

of control intensities as described in the Stroop task. All parameters were selected such that 

EVC agents achieved an overall accuracy of at least 70% for each of the affect 

manipulations. We varied the range of control signal intensities from 0 to 10 in steps of 0.2 

for both control signals and set the anticipated reward received for a correct response to R = 

70. DDM parameters were set as follows: starting point x0 = 0.0, noise coefficient c = 0.7, 

non-decision time T0 = 0.2s and threshold z = 0.4. Note that the noise parameter can c be 

used as a proxy for task difficulty, whereas the noise parameter of the inferred state ĉ can be 

taken as a proxy for the expected task difficulty. For each experiment, we simulated neutral 

affect using the following default values: reward sensitivity v = 1, implementation cost cimpl 

= 3, reconfiguration cost creconf = 1.5, and learning rate α = 0.4.

We simulated effects of integral affect by increasing the anticipatory amount of reward 

received for accurate performance to R = 300. We simulated the effects of positive incidental 

affect, by either decreasing an agent’s reward sensitivity to v = 0.1 (high utility discounting) 

or by decreasing its implementation cost to cimpl = 1. We also considered a decrease in 

expected task difficulty as a proxy for positive incidental affect, either for a low range of 

expected task difficulties (0.5 < ĉ < 1), or for a high range of expected task difficulties (1 < ĉ 
< 2). Note that we varied only one parameter at a time while holding the other parameters 

constant. For each parameter setting, we simulated 20 agents in both paradigms to assess 

congruency sequence effect, as well as performance costs associated with task switches.

Results

To examine potential mechanisms for affective influences on control, we focus on two 

cognitive control phenomena that have been found to be susceptible to manipulations of 

affective state (Table 1): (1) performance improvements (faster and more accurate 

responding) when an incongruent trial (e.g., in a Stroop or Eriksen Flanker Task) is preceded 

by another incongruent trial, referred to as a congruency sequence or conflict adaptation 

effect (Gratton, Coles, & Donchin, 1992); and (2) performance decrements (slower and less 

accurate responding) when the current task differs from the task performed on the previous 

trial (e.g., categorizing the parity rather than the magnitude of a numeral) referred to as 

switch costs (Allport, Styles, & Hsieh, 1994; Rogers & Monsell, 1995). As shown in Figure 

S1, the EVC model is able to reproduce these classic observations, as well as the more basic 

observation that performance worsens (slower and less accurate responding) on incongruent 

relative to congruent trials (Musslick et al., 2015; Musslick, Cohen, et al., in press; 

Musslick, Shenhav, & Cohen, in prep). We next consider how differences in integral and 

4Note that we used the same values for the automaticity of the target stimulus and the distractor stimulus in both tasks. Thus, both 
tasks were equal in terms of their difficulty.
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incidental affect could influence how these agents allocate control, and the implications this 

would have for observed behaviors. In accordance with findings in the literature, we focus 

our analysis on affect modulations of the congruency sequence effect, as well as task switch 

costs (for a depiction of congruency effects and overall control signal intensity, see Figures 

S2 and S3 in Supplementary materials).

Integral affect

People vary in the degree of positive affect they experience upon receiving a reward, and in 

the degree of positive affect they anticipate experiencing when deciding how strongly to 

weigh that reward when making a decision (Berridge & Kringelbach, 2015; Cloninger, 1987; 

Corr, 2004; Gray, 1970; Knutson & Greer, 2008; Pizzagalli, 2014; Zald & Treadway, 2017). 

We simulated this variability in anticipatory affect by varying the amount of expected reward 

across simulated agents; agents which anticipated higher rewards assigned a higher hedonic 

utility to a given performance-contingent reward (e.g., money or positive social feedback for 

completing a task) than agents which anticipated lower rewards (Figure 2A). Consistent with 

analogous simulations reported in previous work (Lieder et al., 2018; Musslick et al., 2015), 

we found that increasing anticipatory affect predicts increased control allocation for 

equivalent rewards (Table 2). As a result, compared to agents which anticipated low rewards, 

agents which anticipated high rewards perform better overall (are faster and more accurate; 

Table 2) and demonstrate lower congruency effects and higher congruency sequence effects 

(Figure 2B). At the same time, these agents also exhibit higher switch costs (Figure 2C). 

While counterintuitive on their face, these higher switch costs reflect a well-known tradeoff 

whereby increasing focus on a particular task (in this case, resulting from increasing reward 

expected from that task) means having to pay a higher cost to disengage and switch to 

another task (Dreisbach & Goschke, 2004; Goschke, 2000; Musslick, Shenhav, Jang, 

Shvartsman, & Cohen, 2018; Ueltzhöffer, Armbruster-Genç, & Fiebach, 2015, but see also: 

Kleinsorge & Rinkenauer, 2012, Umemoto & Holroyd, 2015).

Importantly, these findings express variability predicted both at the trait and state level – the 

different performance profiles we observe for agents high versus low in anticipated affect 

apply equally to states in which a given agent expects more or less performance-contingent 

reward, whether as a result of actual or perceived changes in available incentives. These 

state-based predictions are consistent with observed changes in performance with increasing 

performance-contingent rewards (Table 1). In sum, these results suggest that increased 

integral positive affect, resulting from receiving performance-contingent rewards, produces 

increases in control allocation.

Incidental affect

Positive affect can influence the subjective value of outcomes even when it is not tied to 

performance on a task (Clore et al., 2001; Eldar et al., 2016; Isen et al., 1988), for instance 

when an individual is induced to feel good by a performance-noncontingent reward (Eldar & 

Niv, 2015; van Steenbergen, Band, &Hommel, 2009) or a mood induction procedure 

(Dreisbach, 2006; van Steenbergen et al., 2015). Here we explore several possible 

mechanisms by which such changes in incidental affect (i.e., increases in positive mood) 

might influence decisions about control allocation.
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First, it has been proposed that the subjective utility of rewards increases logarithmically, 

such that rewards have decreasing marginal returns beyond some level (Bernoulli, 

1738/1954; Coombs & Avrunin, 1977; Kahneman & Tversky, 1984; Tversky & Kahneman, 

1991). Under this assumption, it is possible that a given performance-contingent reward has 

less utility to someone (i.e., utility is discounted) in a very positive mood compared to 

someone in less positive mood (Figure 3A). We simulated agents that exhibited such utility 

discounting, under conditions where they were already in an elevated baseline reward state 

(equivalent to greater positive mood) – and therefore cared less about potential task rewards 

– and compared these to conditions where those agents were in the equivalent of a neutral 

mood. In these simulations, positive mood led to decreased control allocation (because a 

given reward was viewed as having lower utility than when in a neutral mood; Table 2), 

resulting in smaller congruency sequence effects (Figure 3B) and smaller switch costs 

(Figure 3C). These effects were evident both in response times and error rates.

A second possible mechanism by which incidental affect could influence control allocation 

is via perceptions of task difficulty. It has been proposed that positive states lead people to 

perceive tasks as less difficult, that is, as requiring less effort to achieve a given outcome 

(Efklides&Petkaki, 2005; Gendolla, 2000; Gendolla et al., 2001; Gendolla & Krüsken, 

2001). We simulated such influences of mood on expected task difficulty (Figure 4A), and 

found that under these conditions positive mood exerts a nonlinear influence on control 

allocation. When tasks are perceived as low to moderate in difficulty, positive mood leads to 

a smaller control allocation than neutral mood because the agent (Table 2). Within this range 

of perceived difficulty, both types of agents perceive the task as manageable, with the agent 

in a positive mood perceiving it as less demanding of control. As a result, positive mood 

leads to smaller congruency sequence effects and smaller switch costs than neutral mood 

(Figure 4B–E). Conversely, when the task is perceived as especially difficult, an agent in a 

neutral mood is apt to divest their control allocation (and/or quit the task entirely) whereas 

an agent in a positive mood would be more likely to “persevere,” investing a higher level of 

control to meet the challenges of the task. As a result, in this upper range of perceived 

difficulties, the findings in Fig. 4 (B and C) reverse, with positive mood resulting in larger 

congruency sequence effects and larger switch costs (Figure 4D–E).

Finally, it is possible that, rather than incidental affect influencing the perceived utility of or 

demands for control, it instead influences how people experience the control being allocated. 

Specifically, it is possible that exerting control feels less effortful when one is in a positive 

rather than neutral mood (cf. Cléry-Melin et al., 2011). We simulated control allocation 

based on this account, allowing positive mood to decrease the expected cost of control (i.e., 

how aversive a given allotment of control is; Figure 5A). Under these conditions, agents in a 

positive mood were overall willing to invest more control in a task (Table 2), resulting in 

larger congruency sequence effects and larger switch costs (Figure 5B–E). Note that while 

the magnitude of the presented results is a function of the chosen parameter range, we 

focused our analysis on the qualitative direction of the effects5.

5Also note that the standard error of the mean for each effect decreases with the number of sampled EVC agents.
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Discussion

Affect has a pervasive influence on various cognitive processes such as perception and 

attention (Pourtois, Schettino, & Vuilleumier, 2013), cognitive control (Pessoa, 2008, 2009), 

and judgment and decision-making (Blanchette & Richards, 2010; Lerner, Li, Valdesolo, & 

Kassam, 2015; Slovic et al., 2007). While empirical studies have demonstrated the 

importance of affect in directing information processing (Dreisbach & Fischer, 2012; 

Dreisbach & Fröber, 2018; Inzlicht et al., 2015), normative theories of cognitive control have 

largely overlooked affect’s role in control allocation. In this study, we leveraged a 

computational implementation of the EVC theory (Lieder et al., 2018; Musslick et al., 2015; 

Shenhav et al., 2013) to simulate several candidate mechanisms through which cognitive 

control can be influenced by integral affect (e.g., performance-contingent rewards) and 

incidental affect (e.g., positive mood induced in a performance-noncontingent manner). In 

addition to capturing behavioral effects commonly found in conflict and task-switching 

paradigms (congruency sequence effects and switch costs), these simulations demonstrated 

how such effects would vary based on several putative accounts of affect-control interactions 

(including whether incidental positive affect modulates discounted utility, expected task 

difficulty, or the cost of control). These findings provide quantitative and testable predictions 

that can be compared directly with existing and future empirical findings.

People differ in the amount of positive affect they experience when anticipating potential 

rewards (Berridge & Kringelbach, 2015; Cloninger, 1987; Corr, 2004; Gray, 1970; Knutson 

& Greer, 2008; Pizzagalli, 2014; Zald & Treadway, 2017). We tested how variability in the 

(integral) positive affect one anticipates for successful completion of a task (i.e., 

performance-contingent reward) would influence their control allocation and performance 

on such tasks. Our results show that increases in anticipated rewards lead to increased 

allocation of control. This result is in agreement with empirical (Botvinick & Braver, 2015) 

and computational (Lieder et al., 2018; Musslick et al., 2015) work demonstrating that, 

holding the strength of anticipatory affect constant, increases in incentives lead to greater 

control allocation (Figure 1A). Our computational model successfully captures findings 

showing that conflict adaptation effects increase with increasing performance-contingent 

reward (Braem, Verguts, Roggeman, & Notebaert, 2012). At the same time, our findings also 
predict that larger performance-contingent rewards come at the expense of higher switch 

costs, reflecting a tradeoff between cognitive stability in the face of distraction (achieved by 

allocating high amounts of control to a single task) versus cognitive flexibility (achieved by 

allocating low amounts of control to a previously executed task, making it easier to 

reconfigure to a new task when a switch occurs) (Musslick et al., 2018). Large performance-

contingent rewards increased the amount of control allocated to a single task (Lieder et al., 

2018; Musslick et al., 2015), and therefore require overcoming higher reconfiguration costs. 

Finally, the results predict that traits that result in enhanced anticipatory affect (e.g., Carver 

& White, 1994), should result in both increased conflict adaptation and higher switch costs.

Positive affect can be induced by factors incidental to the task at hand, and can influence 

several components crucial for deciding how to allocate control. First, incidental affect can 

change the subjective value of outcomes in the task (Clore et al., 2001; Eldar et al., 2016; 

Isen et al., 1988). The subjective utility of performance-contingent rewards is known to 
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increase logarithmically (Kahneman & Tversky, 1984), thus having diminishing returns. 

Positive mood could increase the baseline expectation of rewards, thus resulting in 

discounted subjective utility for people in positive compared to those in neutral mood. 

Second, incidental positive affect can influence the expectations about task difficulty. 

Positive mood orthogonal to the task at hand can reduce the expected difficulty of the task 

(Efklides & Petkaki, 2005; Gendolla, 2000; Gendolla et al., 2001). Third, it is possible that 

affect modulates the subjective experience of the effort exerted in a task. In this way, positive 

affect could reduce the cost of control allocation (cf. Cléry-Melin et al., 2011). We simulated 

each of these accounts, and showed that they make divergent predictions, that can be 

validated against existing findings. For instance, a number of studies have shown that 

incidental positive affect reduces the conflict adaptation effect (Kuhbandner & Zehetleitner, 

2011; van Steenbergen et al., 2009; van Steenbergen, Band, & Hommel, 2010; van 

Steenbergen et al., 2015) and decreases switch costs (for a recent review see: Dreisbach & 

Fröber, 2018). Our results demonstrate that this pattern of findings can be reproduced by an 

account where incidental affect influences the marginal utility of reward but not the cost of 

control. A perceived difficulty account can explain such findings under some conditions but 

not others (see below). Thus, our model not only generates quantitative predictions regarding 

different underlying mechanisms of affect-control interactions, it also constrains possible 

accounts of prior findings.

Of the three proposed mechanisms for control’s interactions with incidental affect, 

modulation of the expected task difficulty was the only one which produced nonmonotonic 

changes in control intensity. From the perspective of this account, when a task is expected to 

be moderately difficult at “baseline” (under a neutral mood), positive mood will make it 

seem easier and will lead to a relaxation of control. However, when the baseline expectation 

is that a task is very difficult, positive mood can lead a person to increase control rather than 

give up. Thus, the influence of mood on control will crucially depend on the difficulty of the 

task(s) at hand. This result provides a clear set of predictions that can be tested in future 

studies.

Our current work focuses on potential influences of affect on the evaluation of control. Other 

theoretical frameworks have considered alternate roles for affect, including whether 

increases in control are driven by aversive experiences (e.g., anxiety) that are triggered by 

response conflict, in order to help regulate such affective experiences (Dreisbach & Fischer, 

2012; Inzlicht et al., 2015; van Steenbergen, 2015). These aversive experiences thereby 

induce increases in, for instance, conflict adaptation. These theories share our model’s 

prediction that control will tend to increase with increasing conflict. However, unlike our 

model, they do not predict (in any obvious way) that control should decrease once conflict/

difficulty exceeds a particular threshold. These theories and our own identify potential roles 

for affect in the selection/allocation of control, but there is an important gap between the 

determination and execution of control (for early work see: Ach, 1935; Gollwitzer, 1993) 

and other theories have proposed that affect/emotion could directly influence the way in 

which control is executed. For instance, it has been proposed that positive affect may 

increase cognitive flexibility (e.g., task-switching) by influencing the gating of information 

into and/or out of working memory (Ashby, Isen, & Turken, 1999; Dreisbach & Fröber, 

2018). There is reason to believe that positive affect may influence both the selection and 
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execution of control, through associated increases in dopamine (Westbrook & Braver, 2016). 

At the same time, recent work also shows that these same mechanisms produce significant 

individual variability in the encoding of incentives, showing that individual differences in 

baseline dopamine modulate the influence of incentives on control (Aarts et al., 2010, 2011, 

2014; Froböse et al., 2018), producing nonlinear (U-shaped) effects on performance and 

decision-making analogous to those we find when varying perceived difficulty.

Other frameworks have focused on the effects of positive affect on cognitive flexibility (e.g., 

task-switching). Ashby and colleagues have proposed that the increases in flexibility due to 

positive affect are mediated via the influence of positive affect on dopamine (Ashby, Isen, & 

Turken, 1999). More recently, it has been proposed that positive affect can lower the 

updating threshold of working memory and thus increase flexibility (Dreisbach & Fröber, 

2018). These mechanisms are assumed to be mediated by dopamine, a neurotransmitter 

crucial for reward processing and cognitive control (Cools, 2019). While our current work 

does not examine affect’s influences at each of these levels, it does not preclude the 

possibility that these function in parallel. Future modelling work should attempt to explicitly 

include the role of dopamine to better understand the interactions between affect and 

cognitive control. Importantly, we also provide potential points of divergence from the 

existing frameworks. For instance, while the aversive conflict account shares our model’s 

general prediction that control will tend to increase with increasing conflict, our account 

differs in its prediction (noted earlier) that control should decrease once conflict/difficulty 

exceeds a particular threshold.

Our computational approach to investigating the role of affect in cognitive control offers 

several important directions for future research. First, in order to understand the mechanisms 

by which affect exerts its effects on task performance (e.g., conflict adaptation and task-

switching), it will be crucial to further investigate how affect modulates perceived demands 

and incentives for engaging in cognitively demanding tasks. Recent work provides a 

promising example of such modeling being applied to understanding how mood dynamically 

shapes expectations of reward (Eldar et al., 2016), providing a platform for building on (and 

further constraining) the work we describe here. Second, our approach also reveals that the 

same measurable outcome (e.g., a reduction in the conflict adaptation effect) can result from 

multiple mechanisms (e.g., higher utility discounting or decreased cost; cf. Musslick, Cohen, 

et al., 2018). Determining which of these provide the best account of affect-control 

interactions will therefore require combining modeling, measures of behavior and neural 

activity, and, most importantly, task paradigms that are carefully designed to vary the 

construct of interest (e.g., perceived utility vs. difficulty). By the same token, our work 

points to additional sources of heterogeneity in empirical findings, arising from individual 

differences in affect’s influence on control valuation both within and across individuals.

The formal approach used here allows for a more direct comparison between the predictions 

of different models. In this study we have used the computational implementation of the 

EVC theory, but several other neurocomputational models of cognitive control (Brown and 

Alexander, 2017; Holroyd and McClure, 2015; Verguts et al., 2015) and theories of 

motivation (Brehm & Self, 1989; Manohar et al., 2015; Silvestrini, 2017) include some of 

the components which we have investigated here and make a number of predictions that 
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qualitatively overlap with the EVC theory. For example, motivational intensity theory 

(Brehm & Self, 1989) posits that effort investment depends on task difficulty in a non-

monotonic fashion: as the difficulty of a task increases, an agent may choose to invest more 

effort as long as success is possible. However, once the task difficulty is high enough so that 

success on the task is no longer expected, an agent may choose to disengage from the task. 

Support for this prediction comes from physiological studies which use the responses of the 

cardiovascular system as a measure of effort mobilization (Wright, 1996; Silvestrini & 

Gendolla, 2019). In this way there is a convergence of motivation theory and physiological 

studies on one side, and the neurocomputational accounts of effort investment (Manohar et 

al., 2015; Shenhav et al., 2013; Verguts, Vassena & Silvetti, 2015) on the other. Silvestrini 

(2017) has proposed an integrated framework that aims to bridge the research on effort and 

cardiovascular reactivity with the cognitive control research with a specific focus on the 

EVC theory. Future modelling work should explore similarities and differences between the 

predictions of these different theoretical accounts when it comes to the role of affect in 

cognitive control.

Divergent predictions of these accounts can be tested with a combination of behavioural 

measures that index task selection and performance; peripheral physiological measures that 

index arousal, affect, attention, and effort output (e.g., pupil dilation, corrugator muscle 

contraction, cardiovascular activity); and neural measures that index the processing of 

incentives, task demands, motivation, and control (Gendolla et al., 2012; Inzlicht et al., 

2015; Shenhav et al., 2017; van der Wel, P., & van Steenbergen, 2018). In particular, several 

theories predict that dACC sits at the interface of affect, motivation, and cognitive control 

(Cavanagh & Frank, 2014; Holroyd & Yeung, 2012; Inzlicht et al., 2015; Shackman et al., 

2011), including the EVC theory, which proposes that dACC integrates EVC-relevant 

information to calculate EVC and determine (and subsequently motivate) the optimal 

allocation of control (Shenhav et al., 2013, 2016). These theories would thus predict that the 

influence of affect on control should be observable in dACC activity and associated EEG 

indices of performance and feedback monitoring, consistent with extant findings (Cavanagh 

& Shackman, 2015; Hajack et al., 2004; Proudfit, 2015; Shackman et al., 2011; Ullsperger et 

al, 2014).

Formalizing the relationship between affect and cognitive control, as we have here, can also 

help to inform research on psychopathology. For instance, reward-related anticipatory affect 

and approach motivation are known to be enhanced in certain disorders (e.g., addiction; 

Dalley & Robbins, 2017; Koob & Volkow, 2010) and diminished in others (e.g., depression 

and schizophrenia; Barch, Pagliaccio, & Luking, 2015; Pizzagalli, 2014; Zald & Treadway, 

2017). While our current work has focused on factors related to positive affect (like reward 

anticipation), a similar approach can be used to also inform our understanding of 

maladaptive influences of negative affect and cognitive control, which have been observed in 

disorders of mood (Gotlib & Joormann, 2010; Joormann & Vanderlind, 2014) and anxiety 

(Eysenck & Derakshan, 2011; Eysenck, Derakshan, Santos, & Calvo, 2007). An important 

next step in this field is to propose and test putative maladaptive mechanisms through which 

affect interacts with cognitive control and other cognitive processes (cf. Grahek, Shenhav, 

Musslick, Krebs, & Koster, 2019). While the research on affect and cognitive control in 

psychopathology has mostly been guided by qualitative models (Grahek, Everaert, Krebs, & 
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Koster, 2018), further computational work could lead to formalized models that can be 

studied within the framework of computational psychiatry (Huys, Maia, & Frank, 2016; 

Montague, Dolan, Friston, & Dayan, 2012). We hope that this formal approach can help 

guide future studies in this direction. One interesting candidate for a maladaptive 

mechanisms of negative affect is the precision with which control signals are implemented 

once they are specified. In this work, we investigated how the specification of control signals 

is affected by different motivational parameters. However, EVC theory distinguishes the 

specification of a control signal from its implementation. Constraints on the latter may 

account for variability in one’s capacity to exert cognitive control (see Musslick, Shenhav & 

Cohen, 2019). A promising avenue for future work is therefore the exploration of 

computational mechanisms that mimic impaired performance in cognitive control as a result 

of negative affect.

In conclusion, here we have demonstrated multiple routes through which affect can 

influence the allocation of cognitive control. While empirical data points to an important 

role of affect in cognitive control allocation, the normative models of control have largely 

overlooked the role of affect. Here we have relied on the computational implementation of 

the EVC theory to simulate the potential mechanisms which can explain the existing 

empirical data. Our results suggest that affect can influence cognitive control via its 

influence on perceived task difficulty, the amount of effort needed to complete a cognitive 

task, and/or the influence of affect on the marginal utility of successfully performing the 

task. In this way affect plays a crucial role in determining when and how much cognitive 

control to allocate.
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Highlights

• Currently there is a need for formal models which can account for the 

interactions between affect and cognitive control

• To examine how integral and incidental affect can influence cognitive control 

allocation, we leverage the computational implementation of the Expected 

Value of Control theory

• Affect can influence cognitive control via its influence on perceived task 

difficulty, the amount of effort needed to complete a cognitive task, or the 

influence of affect on the marginal utility of successfully performing the task

• We discuss how normative models of cognitive control can be used to advance 

the theoretical and experimental understanding of the interface between affect 

and control
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Figure 1. 
According to the EVC theory, people select the type and intensity that maximizes the overall 

expected value of control (blue curves), which is calculated as the difference between the 

expected payoff for a given control allocation (e.g., the reward for giving a correct response; 

green curves) minus the associated controls costs (red curve). The peak of the EVC curve 

identifies the optimal control allocation (vertical black arrows). A) Increases in task 

difficulty result in a rightward shift in the payoff curve (reflecting the fact that more control 

is needed to attain a given level of accuracy), in this example resulting in a rightward shift in 

the peak EVC (recommending an increase in control). B) An increase in the payoff for a 

correct response results in a heightening of the payoff curve, and attendant increases in the 

EVC-maximizing control intensity. Adapted from Shenhav et al. (2013).
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Figure 2. Effects of anticipated reward on the expected value of control and behavior.
A) According to the EVC theory, anticipation of higher rewards is predicted to increase 

control intensity. B) Higher anticipatory affect (anticipation of higher rewards) increases the 

congruency sequence effect in reaction times and in error rates. C) Higher anticipatory affect 

(anticipation of higher rewards) increases the switch cost in reaction times and in error rates.
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Figure 3. Effects of utility discounting on the expected value of control and behavior.
A) According to the EVC theory, discounted utility is predicted to decrease control intensity. 

B) Positive mood (high utility discounting) reduces the congruency sequence effect in 

reaction times and in error rates. C) Positive mood (high utility discounting) reduces the 

switch cost in reaction times and in error rates.
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Figure 4. Effects of perceived task difficulty on the expected value of control and behavior.
A) According to the EVC theory, higher perceived difficulty is predicted to decrease control 

intensity. B-C) In the lower range of expected task difficulty, positive mood (low expected 

difficulty) reduces the congruency sequence effect and switch cost in reaction times and in 

error rates. D-E) In the upper range of expected task difficulty, positive mood (low expected 

difficulty) increases congruency sequence effect and switch cost in reaction times and in 

error rates.
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Figure 5. Effects of control costs on the expected value of control and behavior.
A) According to the EVC theory, higher costs are predicted to decrease control intensity. B) 
Positive mood (low cost) increases the congruency sequence effect in reaction times and in 

error rates. C) Positive mood (high utility discounting) increases the switch cost in reaction 

times and in error rates.
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Table 1

Effects of affect on two classic measures of cognitive control performance, conflict adaptation and task-

switching behaviour (See main text for examples of affect’s influence on other measures of performance.)

Integral affect

Process Performance-contingent rewards

Conflict adaptation Increased conflict adaptation (Braem et al., 2012).

Task-switching Performance contingent rewards increase switch costs (cf. Müller et 
al., 2007).

Incidental affect

Mood induction Performance non-
contingent rewards

Conflict adaptation Reduced conflict adaptation (Kuhbandner & Zehetleitner, 2011; van 
Steenbergen et al., 2010; van Steenbergen et al., 2015)

Reduced conflict 
adaptation (van 
Steenbergen et al., 2009)

Task-switching Reduced switch costs (Dreisbach & Goschke, 2004)
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Table 2

Results of the simulations

Integral Affect Incidental Affect (positive vs. neutral)

Enhanced 
anticipated 

rewards

Decreasing 
marginal utility

Decreasing expected 
difficulty

(lower range)

Decreasing expected 
difficulty

(upper range)

Decreasing cost of 
control

Control intensity ↑ ↓ ↓ ↑ ↑

Overall 
performance ↑ ↓ ↓ ↑ ↑

Congruency 
sequence effect ↑ ↓ ↓ ↑ ↑

Switch costs ↑ ↓ ↓ ↑ ↑

Note. The arrows pointing up indicate an increase, and the arrows pointing down a decrease in the effect. Performance improvements are marked in 
green, and performance decrements in red.
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