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SUMMARY

The relative contributions of genetic and environmental factors to variation in immune responses 

are poorly understood. Here, we performed a phenotypic analysis of immunological parameters in 

laboratory mice carrying susceptibility genes implicated in inflammatory bowel disease (Nod2 and 

§ Correspondence to: Png.Loke@nih.gov, Ken.Cadwell@med.nyu.edu, algraham@princeton.edu.
*These authors contributed equally
†These authors contributed equally
Author contributions: Design of experiments, data analysis, data discussion, and interpretation: J.D.L., J.C.D., F.Y., K.C., A.L.G, and 
P.L.; primary responsibility for execution of experiments: J.D.L., F.Y., CM., J.M.L., Y.H.C., A.C., C.H., and C.D.D.; MLN cell RNA 
and 16S analysis: J.C.D., K.V.R., J.D.L., and F.Y. Supervised and Unsupervised machine learning model analysis: J.C.D., K.V.R., and 
J.D.L. All authors discussed data and commented on the manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cell Host Microbe. Author manuscript; available in PMC 2021 May 13.

Published in final edited form as:
Cell Host Microbe. 2020 May 13; 27(5): 830–840.e4. doi:10.1016/j.chom.2020.03.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Atg16l1) upon exposure to environmental microbes. Mice were released into an outdoor enclosure 

(rewilded) and then profiled for immune responses in the blood and lymph nodes. Variations of 

immune cell populations were largely driven by the environment, whereas cytokine production 

elicited by microbial antigens was more affected by the genetic mutations. We identified 

transcriptional signatures in the lymph nodes associated with differences in T cell populations. 

Subnetworks associated with responses against Clostridium perfringens, Candida albicans and 

Bacteroides vulgatus were also coupled with rewilding. Hence, exposing laboratory mice with 

genetic mutations to a natural environment uncovers different contributions to variations in 

microbial responses and immune cell composition.

eTOC blurb

The impact of genetics verses environment on immunity is incompletely understood. By releasing 

laboratory mice carrying IBD susceptibility genes into the outdoors, Lin, et al. find that exposure 

to environmental microbes promotes variation in immune cell populations, whereas cytokine 

responses to microbial stimulation are affected more by genetic IBD susceptibility.

Graphical Abstract

INTRODUCTION

Variation in the magnitude of the immune response is an important determinant of 

susceptibility to pathogen infections, as well as a predisposition to autoimmunity and cancer 
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(Brodin and Davis, 2017; Schirmer et al., 2018). However, immunological studies with 

laboratory mice typically aim to control variation in order to focus on genetic factors that 

alter components of both the adaptive and innate immune system. Recent advances in 

technology and throughput have facilitated a systems immunology approach towards 

deciphering the relative genetic and environmental contributors to variation of the human 

immune system (Bakker et al., 2018; Brodin et al., 2015; Li et al., 2016; Schirmer et al., 

2016; Ter Horst et al., 2016). By altering the environment in which laboratory mice are 

conventionally housed, combined with analyses of immune responses and gut microbial 

compositions acquired from the environment, we describe here a resource dataset that we 

used to probe the role of genetic mutations in two susceptibility genes (Nod2 and Atg16l1), 
implicated in the development of inflammatory bowel diseases, versus environmental drivers 

of heterogeneity in the immune system. Such controlled experiments on specific groups with 

the same genetic mutations exposed to a new environment would be difficult to conduct in 

human studies.

Recently, there has been a growing effort to characterize wild mice and pet shop mice, which 

appear to share greater similarity to the immunological state and microbial challenges of 

humans than laboratory mice (Abolins et al., 2017; Beura et al., 2016; Rosshart et al., 2019; 

Rosshart et al., 2017). We have developed an outdoor enclosure facility that enables us to 

reintroduce laboratory mice into a more natural environment, a process termed “rewilding” 

(Leung et al., 2018). The enclosures include soil and vegetation as well as barnlike 

structures but no other mammals (e.g., no wild conspecifics from whom lab-bred mice might 

acquire infections). Over the course of several weeks, mice dig burrows and otherwise adapt 

to their new environment (Supplemental Video). Previously, we have observed C57BL/6 

mice in this environment exhibit a decreased type 2 and increased type 1 response to 

intestinal nematode (Trichuris muris) infection and greater susceptibility to heavier worm 

burdens (Leung et al., 2018). This facility provides us with a unique opportunity to rapidly 

alter the housing environment of laboratory mice that carry genetic mutations and be able to 

recover them for subsequent detailed immunological and gut microbial profiling.

Gene-bacteria associations have been identified in both human and wild mice indicating host 

genetic determinants of the gut microbial composition across mammals in natural 

environments (Suzuki et al., 2019). To interrogate the impact of host genetic variants on 

microbiota and inflammatory bowel disease (IBD) susceptibility in response to 

environmental changes, we investigated Atg16l1 and Nod2 variants which are among the 

highest risk factors for IBD associated with a dysregulated immune response to gut microbes 

(Wlodarska et al., 2015; Wong and Cadwell, 2018). Atg16l1 is a key component of the 

autophagy pathway, and Nod2 is involved in bacterial sensing. We and others previously 

demonstrated that mice harboring mutations in Atg16l1 or Nod2 develop signs of 

inflammation in a manner dependent on exposure to infectious entities (Biswas et al., 2010; 

Cadwell et al., 2010; Lavoie et al., 2019; Matsuzawa-Ishimoto et al., 2017; Pott et al., 2018; 

Ramanan et al., 2016; Ramanan et al., 2014). Mice with these particular mutations are 

sensitive to the presence of murine norovirus (MNV), Helicobacter species, and other 

commensal-like agents that are found in some animal facilities and excluded in others 

(Biswas et al., 2010; Cadwell et al., 2010; Caruso et al., 2019; Kernbauer et al., 2014; Pott et 

al., 2018; Ramanan et al., 2014). Since mice mutant in Atg16l1 or Nod2 can exhibit 

Lin et al. Page 3

Cell Host Microbe. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dysregulated immune responses to colonization by organisms that are otherwise commensals 

in wild type animals, we reasoned that they could be an interesting model system to 

investigate gene-environment interactions in the outdoor enclosure.

We hypothesized that by introducing laboratory mice carrying IBD susceptibility mutations 

into the outdoor enclosure, the drastic change in environment may trigger alterations in the 

immune response and the microbiota, which would have greater adverse effects on mutant 

mice than wildtype mice. Hence, to study the immunological consequences in response to 

environmental challenges after rewilding, we released Atg16l1T3I6A/T3I6A, Atg16l1T316A/+, 

Nod2−/− mice in addition to C57BL/6J wild type (WT) mice to determine whether mutations 

in these genes alter the immune response to microbial exposure in a natural environment. 

Here we present a detailed systems immunology profile of both rewilded and laboratory 

mice to investigate variation in microbial responses and the relationship with environment 

and genetic mutations.

RESULTS

Study design for immune profiling of rewilded and laboratory mice

From 116 mice released into the outdoor enclosure for 6–7 weeks we recovered 104 mice 

(25 WT, 28 Nod2−/−, 27 Atg16l1T316A/+, and 24 Atg16l1T316A/T316A) in time for analysis 

and compared them to 80 matched controls (19 WT, 19 Nod2−/−, 20 Atg16l1T316A/+, 22 

Atg16l1T316A/T316A) maintained under specific pathogen free (SPF) conditions (herein 

referred to as lab mice) (Figure 1A). Blood samples were collected at the time of sacrifice 

and analyzed by flow cytometry with a lymphocyte panel (Table S1). Additionally, cytokine 

production in the plasma was assayed (Figure 1A). Fecal samples and cecal contents were 

collected for microbial profiling, and for reconstitution experiments (Companion study, 

Yeung et. al.). Mesenteric lymph node (MLN) cells were isolated for flow cytometry 

analysis with the same lymphocyte panel as the blood and an additional myeloid cell panel 

(STAR METHODS). Immune activity in the MLN was measured through transcriptional 

profiles by RNA-seq and cytokine production assays in response to microbial stimulations 

(STAR METHODS). All of the lab mice were sacrificed in one week, whereas the rewilded 

mice were sacrificed over a 2-week period based on trapping frequency. This collection of 

multiparameter datasets from nearly 200 mice provides an opportunity to examine inter-

individual variation in innate and adaptive immune cell populations by flow cytometry 

analysis, evaluate cytokine responses to microbial stimulation, and integrate highly 

dimensional transcriptomics and microbiota data. In order to perform multi-omic analysis, 

81 mice were completely profiled with measurements from all four data types; flow 

cytometry, MLN RNA-Seq, fecal microbiota and MLN restimulation and cytokine profiles. 

A systems level analysis also enabled us to quantify effects of environmental influences (i.e. 

microbiota acquired from environment) and IBD susceptibility gene mutations, Nod2 and 

Atg16l1, on the heterogeneity of immunological parameters among individual mice.

Variation of immune cell populations in the blood is largely driven by the environment

In line with previous studies exposing lab mice to feral and pet shop mice (Beura et al., 

2016), we observed major differences in CD44hiCD62Ll° or CD44hiCD62Lhi T cells after 
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rewilding (Companion study, Yeung et. al.). To visualize the overall landscape of flow 

cytometry data in an unbiased manner, phenotypic heterogeneity was analyzed on total 

CD45+ cells per mouse across the blood lymphocyte panel (Table S1) in lab and rewilded 

mice. We down sampled to 1,000 CD45+ cells from each mouse for nearly 180,000 single 

CD45+ cell events and single cell flow cytometry data was visualized by uniform manifold 

approximation and projection (UMAP) (Becht et al., 2019). UMAP analysis was superior to 

t-distributed stochastic neighborhood embedding (t-SNE) (Becht et al., 2019) (Figure S1A) 

for identifying major immune cell subsets (Figures 1B and 1C; Figures S1B–E). Unexpected 

clusters of CD44hiCD19+ cells were increased in the rewilded mice compared to lab mice 

(Figure 1B), while lab mice had more CD62LhiCD4+ cells (Figure 1C). This unsupervised 

visualization strategy was useful for identifying unexpected differences (e.g. in the CD19+ 

compartment and other populations not investigated by (Beura et al., 2016; Rosshart et al., 

2019; Rosshart et al., 2017)) in cell clusters of the peripheral blood at a single cell level, 

which might have been overlooked by traditional flow cytometry gating.

In order to quantify known immune cell changes after rewilding, we employed a traditional 

gating strategy to systematically quantify the frequencies of immune cell subsets with a 

lymphocyte panel (Figures S2A–S2E; Table S2). The blood lymphocyte panel identified 13 

lymphocyte populations, a total myeloid cell population (CD11b/CD11c/DX5), and a total 

CD45+ cell population. From the proportions of these immune cell populations, we 

examined the inter-individual variation in lab and rewilded mice by principal component 

analysis (PCA) (Figure 1D). As shown by the separation of lab and rewilded mice along 

principle component (PC) 1 and 2, there is a strong effect of the environment on lymphocyte 

populations, and major differences between these populations can be attributed to 

CD44hiCD62Lhi CD4 and CD44hiCD62Lhi CD8 T cells as inferred by examining loading 

factors along PC1 and PC2 (Figure 1D). The reduced proportion of CD44loCD62Lhi T cells 

is consistent with some previous reports on wild mice (Abolins et al., 2017; Beura et al., 

2016), although we find that major mouse pathogens are absent in these rewilded mice. We 

also quantified the extent of variability between lab and rewilded mice by measuring the 

Euclidean distances between mice in our PCA. Notably, the within group distances in lab 

mice were significantly less than rewilded mice (Figure 1E) suggesting that the natural 

environment increases variability in immune cell populations. We then evaluated several 

population factors to identify covariates with the largest effect sizes on immune cell 

populations (STAR METHODS) (Figure 1F). As expected, the composition and activation 

state of immune cell populations as determined by cell surface marker expression in the 

peripheral blood are driven most strongly by environmental differences between the SPF 

facility and the outdoor enclosure. These differences far outweighed any effects of genetic 

deficiency in Nod2 or Atg16l1 in both environments (Figure 1F). Sex has a relatively small 

effect, although there is some indication that the environment may have different effects on 

male and female mice (Figures 1F, S3A, and S3B). These findings are consistent with the 

concept that non-heritable influences (i.e. environmental microbial challenges) explain the 

majority of the variation in the proportion of immune cell subsets as reported in twin studies 

(Brodin et al., 2015).
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Variation of cytokine production in response to microbial stimulations is driven more by 
genetic mutations than by the environment

Cytokine production capacity in humans has been reported to be more strongly influenced 

by genetic than environmental factors (Li et al., 2016). To investigate the relative roles of 

Nod2/Atg16l1 deficiency and environment on induced responses against bacterial and fungal 

antigens, we performed ex vivo stimulation experiments on total MLN cells from rewilded 

and lab mice. To examine cytokine responses to microbial antigens, we stimulated cells 

under eight conditions; with six different microbes (C. perfringens, P. aeruginosa, B. 
vulgatus, B. subtilis, S. aureus and C. albicans), αCD3/CD28 beads to activate T cells (as a 

positive control), as well as PBS as a negative control (Figures 1A and 2A). Despite no 

significant differences for PBS control samples between lab and rewilded mice (data not 

shown), we chose to normalize cytokine production per mouse by expressing cytokine data 

as a fold change levels over PBS to further minimize batch effects (STAR METHODS). A 

broad array of 13 cytokines was measured: IFN-γ, IL-1α, IL-1β, IL-13 IL-5, IL-10, IL-17, 

IL-6, CCL2, CXCL1, CCL3, CCL4 and TNF-α. Average fold changes in cytokine 

production as compared to PBS controls for both lab and rewilded mice indicate increases in 

IFN-γ and IL-17 after αCD3/CD28 activation, consistent with the production of these 

cytokines by T cells in the MLNs (Figure 2A). In general, bacterial antigens induced CCL3, 

IFN-γ, TNF-α, CCL4, and IL-6 production, while the fungus C. albicans induced the 

regulatory cytokine IL-10 (Figure 2A). Bacterial antigens also induced CXCL1, which was 

not induced by C. albicans or αCD3/CD28 (Figure 2A). As expected αCD3/CD28 beads 

only was one of the most potent inducers of cytokine production, especially for IFN-γ, 

CCL4, TNF-α and IL-5, and rewilded mice produced higher levels of these cytokines than 

lab mice post stimulation (Figure 2B). IL-1α, IL-1β, IL-13 and CCL2 were not appreciably 

altered by any stimulation (Figure 2A).

We next used PCA to assess the sources of variation in stimulated cytokine production for 

both lab and rewilded mice (Figure 2C). Lab and rewilded mice do not clearly segregate 

along PC1 or PC2 suggesting that environment is not a major source of variation (Figure 

2C). Effect size measures based on the Euclidean distance indicated genotype as a much 

stronger source of variation (Figure 2D). The differences in genotype are driven by IL-10 

and IL-6 production as indicated by the PCA loading factors (Figure 2C). More specifically, 

the rewilded Nod2−/− mice appear to cluster distinctly from other genotypes, suggesting key 

differences in microbial stimulated cytokine production of rewilded Nod2−/− mice (Figure 

2C). Genotype also had the greatest effect size on variation in plasma cytokine levels of 

individual mice (Figures S3C and S3D).

Rewilded Nod2−/− mice exhibit increased microbial stimulated cytokine responses 
compared to wild type rewilded mice

To better understand how Nod2 and Atg16l1 deficiency was affecting microbial stimulated 

cytokine production, we performed two-way comparisons and calculated a p-value for each 

comparison to determine which cytokine producing conditions were most significantly 

different between WT mice and mice with Nod2 and Atg16l1 deficiencies from laboratory 

and rewilded environments (Figures 3A and 3B). Compared to the lab mice, the rewilded 

mice had many more significant changes in stimulated cytokine production across Nod2 and 

Lin et al. Page 6

Cell Host Microbe. Author manuscript; available in PMC 2021 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Atg16l1 mutant mice (Figure 3A and 3B). These changes were largely driven by significant 

differences in rewilded Nod2−/− mice against rewilded WT mice (Figure 3A). Specifically, 

the Nod2−/− mice exhibited increases in IL-17, IL-5 and IL-10 in response to C. perfringens 
suggesting an increased responsiveness to this bacterial stimulant that was only observed in 

the rewilded condition (Figures 3A and 3C). Production of IL-10 in response to C. albicans 
was also elevated in Nod2 and Atg16l1 mutant mice, although Nod2−/− did not exhibit 

greater fungal colonization than WT mice (Figure 3C) (see companion study Yeung. et.al.). 

Despite these differences in cytokine responses, the rewilded Nod2−/− did not shown any 

signs of increased intestinal inflammation by histology or changes in goblet cell numbers 

(data not shown), which we have previously shown to be associated with susceptibility to B. 
vulgatus colonization (Ramanan et al., 2016; Ramanan et al., 2014). Together these results 

indicate that exposure to the outdoor environment (including wild microbial challenges) per 

se that induces elevated cytokine responses is not a sufficient hit by itself to trigger intestinal 

inflammation. Additional insults (i.e. a multi-hit model) may be needed to trigger full blown 

pathology (Ramanan et al., 2016).

An integrated classification model identifies features predictive of environment and 
genotype-specific effects

In addition to stimulated cytokine profiles, MLN cells were assessed for immune cell 

populations by flow cytometry analysis (Figures S2F–S2K and Table S2) and gene 

expression by RNA-seq analysis (Figures S4A and S4B; Table S2). Consistent with the 

peripheral blood, immune cell frequencies in MLNs showed a strong effect of environment 

(Figures S4C–S4E). Interestingly, a group of rewilded mice all sacrificed at week 7 of 

rewilding clustered separately in the PCA analysis of lymphocyte populations (Figure S4E). 

Between week 6 and 7 of rewilding it is possible specific events in the enclosure (e.g., a 

severe thunderstorm, high humidity and fungal blooms observed during that week), could 

have resulted in changes in T cell activation. Similar to blood lymphocyte populations, 

RNA-seq analysis (Figures S4A and S4B) and 16S rRNA profiling (Figures S4F–S4I; see 

companion study by Yeung et al) showed some environmental effects on variations. This 

large amount of data prompted us to use a multi-omic classification model that could 

prioritize features predictive of environment and genotype-specific effects, as well as 

identify relationships between these features.

We integrated multi-omic data from flow cytometry populations, gene expression, cytokine, 

and microbial profiles (Table S2) in a subset of mice (n=81) which had measures for all four 

data types. A concatenated matrix (Table S3) of these features was used to build a random 

forest classification model (STAR METHODS) to distinguish samples by environment or 

genotype (Figure 4). The contribution of each feature to the model was also assessed to 

identify features predictive of environment or genotype-specific effects (Figures 4A and 4C). 

When classifying the environment, a hub of transcription factors (including Zfp36, Atf4, 
Fos, several Jun and Klf family members) and Cd69 are strong predictive features of 

environment (Figure 4A). Pairwise correlation analysis between these top features also 

reveals associations to CD44hiCD62Lhi populations for CD4+ and CD8+ T cells in the blood 

and MLN, as well as IL-5 and TNF-α production in response to anti CD3/CD28 stimulation 

(Figure 4B). For the genotype model, our classification was not as accurate as the 
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environment, as measured by area under the receiver operator curve (AUC) of 0.78 versus 1 

on the test set (STAR METHODS). Pairwise correlation analysis revealed fewer associations 

between these features and overall less connected nodes (Figure 4D). Instead of cytokines i 

associated with T cell activation by αCD3/CD28 beads only, IL-17 responses to microbial 

antigen (B. vulgatus and P. aeruginosa) stimulation were correlated (Figures 4B and 4D). 

Interestingly, expressions of a number of ribosomal proteins (Rps and Rpl proteins) were 

also predictive of genotype (Figures 4C and 4D). In summary, we identified a network of 

transcription factor associated with T cells in the MLNs based on transcriptional profiling 

data that is strongly predictive of the effects of the different environments.

Integrative network analysis identifies co-regulated modules in rewilded mice

To evaluate the interactions between data types, we next utilized an unsupervised sparse 

partial least squares (sPLS) regression model to integrate the different data types into a 

multi-component network (Figures 5A and S5). To condense the size of our network, we 

collapsed our gene expression profiles according to known Gene Ontologies (STAR 

METHODS) (2015; Ashburner et al., 2000) for immune system processes in Mus musculus, 
which also focuses our attention on the most relevant genes. In short, we compared our gene 

expression profiles to all child terms of the Gene Ontology term “immune system process” 

(GO:0002376) and collapsed our genes into modules based on these pre-defined ontologies. 

954 genes were used to generate 91 specific gene ontologies from our gene expression data 

all related to the parent gene ontology “immune system process”. These modules were used 

as inputs alongside the cytokine profiles, microbial profiles and flow cytometry populations 

to generate an unsupervised multi-omic network. sPLS-regression models were built 

pairwise between each data type to generate a 188-node covariance network with 577 total 

connections between the four different types of features (Figures 5A and S5). In the 

resulting model, all microbial taxa fell below our 0.6 covariance threshold and were 

therefore removed (Table S4). This indicated that bacterial composition, determined by 16S 

sequencing alone, was not an important component of the network. Perhaps other strategies 

to assess microbial function (e.g. transcriptomics, metagenomics or metabolomics) would 

have yielded more connections to immune function.

While total CD4+ and CD8+ T cell populations in the MLN were among the most connected 

nodes of the network specific gene ontologies, cytokine responses and other immune 

populations were also strongly interconnected (Figure 5A). As expected from earlier 

analysis (Figure 1), the blood CD44hiCD62Lhi CD4 T cell population was strongly 

interconnected and enriched in rewilded mice (Figures 5A and 5B). Additionally, by 

collapsing our gene expression profiles into annotated gene ontologies, we identified a 

module (GO:0061844: antimicrobial humoral immune response mediated by antimicrobial 

peptides) as the most connected gene module that was enriched in rewilded mice (Figures 

5A and 5B). Interestingly, IL-5 production in response to C. perfrigens stimulation was the 

most connected cytokine response and was found to be higher in rewilded mice (Figures 5A 

and 5B; Figure S5). This node is part of a 15-node subnetwork connected to total CD4 and 

CD8 T cell populations in the MLN, several other cytokine responses and the GO:0030593: 

neutrophil chemotaxis module (Figure 5C). This module is of particular interest because of 

the increased neutrophilia observed in the rewilded mice (Yeung et.al. companion paper), 
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which is driven by increased fungal colonization. Indeed, this module is tightly linked with 

cytokine responses to C. albicans antigen stimulation (Figure 5C). While expressions of 

genes in this module are increased by the rewilding environment, there does not appear to be 

genotype specific differences regulating expression of the genes in this module (Figure 5D). 

This multi-omics network analysis therefore substantiated the omics-by-omics inferences 

(Figures 1 and 2) but also provided insight by identifying an important role for C. albicans 
responses during rewilding, which is more fully addressed in the companion study (Yeung 

et.al. companion paper).

DISCUSSION

In summary, we found that changing the environment profoundly contributes to the inter-

individual variations on immune cell frequencies, whereas cytokine responses to pathogen 

stimulation were more affected by genetic deficiencies in the IBD susceptibility genes Nod2 
and Atg16l1. While we have only examined the effects of two genes, these observations are 

reminiscent of human twin studies whereby the majority of cell population influences 

(measured by flow and mass cytometry) are determined by non-heritable factors (Brodin et 

al., 2015), whereas cytokine production capacity in response to stimulation may be more 

strongly influenced by genetic factors (Li et al., 2016). Another large human study indicated 

that features of innate immunity were more strongly controlled by genetic variation than 

lymphocytes, which were driven by environmental effects (Patin et al., 2018). Thus, 

although studies of lab mice, by design, often emphasize genetic effects on immune 

phenotype (including cell population distributions), here we show that even brief exposure to 

a natural environment renders predictors of immune phenotype in mice a better match for 

predictors of human immune phenotypes. Additionally, our dataset described here will be a 

useful resource for other investigators to delve into the immunological consequences and 

wild microbial acquirements of rewilding.

An attractive hypothesis arising from these findings is that perhaps environment is a primary 

driver of the composition of the immune system, but genetics is a stronger driver of per-cell 

responsiveness. However, in this study we only investigated how two genes (Nod2 and 

Atg16l1) influenced the immunological phenotypes that we measured. Additionally, we only 

measured immune phenotypes in the peripheral blood and the mesenteric lymph nodes. This 

was because it was not possible logistically to assess more tissues from the large number of 

mice that were analyzed at the same time. In future studies, examination of other peripheral 

tissues such as the intestinal tract, lungs, skin and brain, as well as immune organs such as 

the spleen and bone marrow may provide a more complete assessment of the total 

immunological effect of rewilding.

To test the above hypothesis further would require us to release mice from diverse genetic 

backgrounds into the outdoor enclosure in a similar experiment. This experiment only 

examined the effects of Nod2 and Atg16l1 deficiency in the C57BL/6 background. For 

example, analysis of macrophage activation from five different strains of mice that provided 

genetic variation on the order of the human population yielded considerable insights into 

how genetic variation affects transcriptional regulation mechanisms (Link et al., 2018). 

Alternatively, mice from the collaborative cross may enable high-resolution genome 
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mapping for such complex traits as cytokine production in response to stimulation (Noll et 

al., 2019). Studies of wild animal populations may also determine if per cell cytokine 

responses show a higher genetic variance than do immune cell population distributions. 

Hence, the combination of new environmental challenge strategies such as rewilding of 

mouse models, combined with modern multi-omic approaches in fully wild systems, should 

enable us to better define determinants of immune variation at a molecular level.

This study was initially designed to test the hypothesis that Nod2 and Atg16l1 mutant mice 

may respond to wild microbial exposure from the re-wilding environment in an adverse way. 

Our previous studies had found that B. vulgatus colonization of Nod2 and norovirus 

colonization of Atg16l1 mutant mice predisposed them to intestinal inflammation. Hence, 

we wanted to examine if these mice with mutations in genes associated with the 

development of IBD would be associated with environmental or wild microbial triggering of 

intestinal inflammation. However, we did not observe significant differences in intestinal 

inflammation based on histology for either the Nod2 or Atg16l1 mutant mice, although we 

find an elevated production of cytokines in the Nod2 mutant mice in response to the 

rewilding environment (including wild microbial challenges). While there were not 

significant differences in intestinal inflammation, it is possible that additional insults (i.e. a 

multi-hit model) are needed to trigger intestinal inflammation that is sufficiently severe to be 

discernable by histologic examination. In our previous studies, an additional piroxicam (for 

the Nod2 mutant mice (Ramanan et al., 2016) or dextran sodium sulfate (DSS) (for the 

Atg16l1 mutant mice (Matsuzawa-Ishimoto et al., 2017)) insult was required to drive 

pathogenesis of the B. vulgatus /norovirus colonized mice.

A systems level analysis identified interconnected networks of transcriptional signatures, 

immune cell populations and cytokine profiles to microbial stimulation, highlighting a 

potentially important role for fungal stimulation from rewilding (Companion study, Yeung 

et. al.). This unanticipated result may have been missed through conventional comparisons. 

Increased colonization by commensal fungi is perhaps the most striking environmental effect 

of the rewilding experiment that we performed. While Nod2 deficiency did not affect fungal 

colonization, Atg16l1 mutant mice are more susceptible (Companion study, Yeung et. al.). 
Future studies with mice from more genetically diverse backgrounds will better define the 

genetic basis of host susceptibility to commensal fungi colonization through rewilding and 

determine how this may affect the innate and adaptive immune responses.

Hence, rewilding laboratory mice of different genetic backgrounds and careful monitoring of 

other non-heritable influences (e.g. differential behavior via which divergent immunological 

experience of individuals may accrue, by analogy with causes of divergence in neurological 

phenotype (Freund et al., 2013) observed during rewilding (Cope et al., 2019) could be a 

powerful approach towards dissecting drivers of immune response heterogeneity under 

homeostatic as well as during disease settings or infectious challenges.
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STAR METODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Lead Contact, Dr. P’ng Loke (Png.Loke@nih.gov). All unique/stable reagents 

generated in this study are available from the Lead Contact with a completed Materials 

Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and wild enclosure—All animal work was approved by NYU Langone IACUC 

(#IA16-0087 and #IA16– 00864). All 6–10 week old mice on both genders were used for 

experiments. All mouse lines were bred onsite in an MNV/Helicobacter-free specific 

pathogen free (SPF) facility at NYU School of Medicine to generate littermates from 

multiple breeding pairs that were randomly assigned to either remain in the institutional 

vivarium (lab mice) or released into the outdoor enclosures (rewilded mice) to control for the 

microbiota at the onset of the experiment. Nod2−/− and Atg16l1T316A/T316A mice on the 

C57BL/6J background were previously described (Matsuzawa-Ishimoto et al., 2017; 

Ramanan et al., 2014). Atg16l1T316A/T316A mice, Atg16l1T316A/+, and wild-type (WT) 

control mice were generated from Atg16l1T316A/+ breeder pairs, and Nod2−/− mice were 

generated from Nod2−/− breeder pairs. Additional C57BL/6J mice were purchased from 

Jackson Laboratory and bred onsite to supplement WT controls for experiments. 16S 

microbial diversity at the conclusion of the experiment did not show appreciable differences 

in microbial composition within the lab populations (Supplementary Figure S5). Outdoor 

enclosures were previously described (Budischak et al., 2018; Leung et al., 2018) and the 

protocols for releasing the laboratory mice into the outdoor enclosure facility were approved 

by Princeton IACUC (#1982–17).

The enclosures consist of replicate outdoor pens, each measuring about 180 m2 and fenced 

by 1.5-m high, zinced iron walls that are buried >80 cm deep and topped with electrical 

fencing to keep out terrestrial predators. Aluminum pie plates are strung up to deter aerial 

predators. A (180 × 140 × 70 cm) straw-filled shed is provided in each enclosure, along with 

two watering stations and a feeding station, so that the same mouse chow used in the 

laboratory (PicoLab Rodent Diet 20) was provided ad libitum to all mice. Mice outdoors, 

however, also had access to food sources found within the enclosures, including berries, 

seeds, and insects. 26–30 mice of mixed genotypes but the same sex were housed in each 

enclosure for 6–7 weeks. Longworth traps baited with chow were used to catch mice 

approximately 2 weeks and 4 weeks after release and again 6–7 weeks after release; for each 

trapping session, two baited traps were set per mouse per enclosure in the early evening, and 

all traps were checked within 12 hours. For subsequent microbiome assessment, a fresh stool 

sample was collected directly from the caught mice, flash frozen on dry ice, and stored at 

−80°C until further analysis. Mice were weighed with a spring balance.

30 WT, 29 Nod2−/−, 31 Atg16l1T316A/+, and 26 Atg16l1T316A/T316A laboratory mice 

(Total=116) were released into the outdoor enclosure. 19 WT, 19 Nod2−/−, 20 

Atg16l1T316A/+, 22 Atg16l1T316A/T316A matched littermates (Total=80) were maintained in 
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the institutional vivarium for comparison. For rewilded mice, traps were set regularly until 

the remaining mice were caught and were sampled for fecal microbiota. 25 WT, 28 Nod2−/−, 

27 Atg16l1T316A/+, and 24 Atg16l1T316A/T316A rewilded mice (Total=104) were caught in 

the final trapping for terminal analyses. All lab control mice were recovered. Euthanasia was 

performed by CO2 asphyxiation, and blood, MLNs, and intestinal tissue were harvested. 

Two Atg16lr3 rewilded mice failed quality control and were not included in downstream 

analyses. One Atg16lrT316A/+ lab mouse was not appropriately processed and excluded in 

the final meta data table (Table S2; N=79 in lab mice and N=102 in rewilded mice).

METHOD DETAILS

Flow cytometry analysis—At harvesting, MLNs were removed and the single-cell 

suspensions were prepared in FACS buffer (HBSS containing 1% BSA, 1mM EDTA, 20mM 

HEPES, and 1mM sodium pyruvate). The whole blood were also collected in a heparin 

containing tube and after centrifuging at 2000 rpm for 5 minutes, the designated plasma 

from supernatant was removed and stored at −80°C until all samples were collected and 

analyzed together. After two rounds of red blood cell lysis with 1x RBC lysis buffer for 5 

minutes and wash with FACS buffer, the single-cell suspensions of whole blood cells were 

ready for the following staining procedure. MLN and whole blood cells were stained for 

live/dead with blue reactive dye and cell surface markers were labeled with the following 

antibody panels: Lymphoid panel: CD49b Pacific Blue, CD11b Pacific Blue, CD11c Pacific 

Blue, CXCR3 Brilliant Violet 421, CD27 Brilliant Violet 510, KLRG1 Brilliant Violet 605, 

CD3 Brilliant Violet 786, CD127 Brilliant Violet 711, PD1 PerCP/Cy5.5, CD4 APC/Cy7, 

CD19 PE/Dazzle594, CD8 Brilliant Violet 650, CD43 Alexa Fluor 488, CD62L APC, CD44 

PE, CD69 Alexa Fluor 700, CD45 Buv395, CD25 PE/Cy7. Myeloid panel: B220 Pacific 

Blue, CD86 Brilliant Violet 510, CD3 Brilliant Violet 605,CD69 Brilliant Violet 786, CD40 

Alexa Fluor 488, Ly6G PerCP/Cy5.5, PDL2 APC, IA/IE APC/Cy7, PDL1 PE, CD64 PE/

Dazzle594, F4/80 Alexa Fluor 700, CD11c Brilliant Violet 650, Siglec-F Brilliant Violet 

421, CD103 Brilliant Violet 711, Ly6C PE/Cy7, CD11b Buv395. FACS analyses were 

performed in a ZE5 cell analyzer (BIO-RAD) and recorded FACS data were analyzed by 

Flowjo v10.4.2.

MLN cell stimulation and cytokine profiling—Single cell suspension of MLN cells 

were reconstituted in RPMI at 2 × 106 cells/mL, and 0.1 mL was cultured in 96-well 

microtiter plates that contained 107 cfu/mL UV-killed microbes, 105 αCD3/CD28 beads, or 

PBS control. Overnight microbial cultures were reconstituted at 108 cfu/mL prior to 

irradiation. The stimulated microbes are as following: Staphylococcus aureus (Maurer et al., 

2015), Pseudomonas aeruginosa (PAO1) (kindly provided by Dr. Andrew Darwin, NYU) 

(Srivastava et al., 2018), Bacillus subtilis (ATCC 6633), Clostridium perfringens (NCTC 

10240), Bacteroides vulgatus (ATCC 8482), and Candida albicans (UC820, kindly provided 

by Dr. Stefan Feske, NYU). Supernatants were collected after 2 days and stored at −80°C. 

Concentrations of IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, CCL2, CCL3, 

CCL4, CXCL1, IFN-γ, and TNF-α in supernatants were measured using a custom mouse 

LEGENDplex assay (Biolegend) according to the manufacturer’s instructions. Plasma 

concentrations of IL-1α, IL-1β, IL-6, IL-10, RANTES, CCL2, CCL3, CCL4, CCL20, 
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CXCL1, CXCL10, TNFα, GM-CSF were measured using a second custom mouse 

LEGENDplex assay (Biolegend).

16S library preparation and sequencing—DNA was isolated from stool samples 

using the NucleoSpin Soil Kit (Macherey-Nagel). Bacterial 16S rRNA gene was amplified at 

the V4 region using primer pairs and paired-end amplicon sequencing was performed on the 

Illumina MiSeq system as previously described (Neil et al., 2019). Sequencing reads were 

processed using the DADA2 pipeline in the QIIME2 software package. Taxonomic 

assignment was performed against the Silva v132 database. Differential abundance taxa was 

identified using discrete false-discovery rate (DS-FDR) methodology in different biological 

groups at a threshold DS-FDR score of 30 (Jiang et al., 2017).

MLN cell RNA preparation and sequencing—Frozen samples of single cell 

suspensions from MLN of lab or rewilded mice were thaw to isolate RNA from 

approximately 106 cells by RNeasy Plus Mini Kit according to manufacturer’s instructions. 

CEL-seq2 were performed to do RNA sequencing on samples with good RNA qualities 

(RNA integrity number ≧ 5)

QUANTIFICATION AND STATISTICAL ANALYSIS

FACS data visualizations by t-distributed stochastic neighbor embedding (t-
SNE) and uniform manifold approximation and projection (UMAP)—Flowjo 

v10.4.2 software and plugin were installed per manufacturer’s instructions. The 

DownSample function in plugin was applied to filter out 1,000 cells on total gated CD45+ 

cells in blood lymphoid panel staining and the raw channel values from each staining marker 

were exported to make a FACS value matrix (16 X 1,000) per mouse. FACS data from 2 

mice were not passing the data filtrations and 180 FACS value matrixes were concatenated 

into a giant matrix to perform the downstream t-SNE (fitsne v1.0.1 package (https://

arxiv.org/abs/1712.09005), Python v3.6.5) or UMAP (umap-learn v0.3.7 package (https://

arxiv.org/abs/1802.03426), Python v3.6.5analysis for the immune cell cluster visualizations. 

The thresholds were set up for each marker base on expressing distributions across total 

cells.

Principal component analysis and effect size measures—In all cases principal 

component analysis was performed with the ape (https://www.springer.com/gp/book/

9781461417422) v5.2 package in R v3.4.1. Euclidean distances were calculated using base 

R functions and the subsequent distance matrix was used to determine principle components 

(PC). Biplots were constructed by projecting the weighted averages of each input feature 

(immune cell population, cytokine level etc.,) along PC1 and PC2 derived from the 

biplot.pcoa function from the ape package. Effect size measures were determined using the 

MDMR v0.5.1 (https://link.springer.com/artide/10.1007/s11336-016-9527-8) package in R.

Per mouse normalization of cytokine production levels—For each mouse profiled 

for cytokine production in response to microbial stimuli a PBS control was also sampled. In 

order to normalize per mouse cytokine production, we calculated the fold change of each 
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cytokine measure to the PBS control. There was no overall difference in baseline cytokine 

production for any cytokine in response to PBS between lab and rewilded mice.

Machine learning models for environment and genotype classification—For 

multi-omic classification modeling gene expression values, cytokine production levels, 

immune cell populations and operational taxonomic unit (OTU) counts were normalized by 

log2-transformation and concatenated together. From ~15,000 genes only the 200 most 

variable genes, as measured by total variance across all samples, were utilized for modeling. 

576 features (200 genes, 104 cytokine measures, 36 immune cell populations and 236 

OTUs) from 40 lab and 41 rewilded mice with around 20 mice from each of the four 

genotypes were supplied to the models. Two random forest models were trained with caret 

v6.0–80 (R v3.4.1) (5) on a 75% split (61 of 81 mice) with 5-fold cross validation repeated 

10 times. The first model was built to classify environment and the second to classify 

genotype. Both models were evaluated by area under the receiver operator curve (AUC) on 

the remaining 25% split (20 of 81 mice) left out from the training process. Due to data 

limitations we did not build an additional model to classify both environment and genotype 

simultaneously. Feature importance was assessed by the built-in variable importance 

function varImp within caret.

Unsupervised multi-omic network model built by sPLS—To further assess multi-

omic relationships between data features (cytokines, immune cell populations, genes and 

OTUs) an unsupervised network model was constructed. The same 81 mice used to build the 

classification models were also used to generate this network. The same four data types used 

to build the classification models were also used with the exception of the 200 most variable 

genes. Instead we queried the Mus musculus Gene Ontology for biological processes related 

to “immune system process”. From all subsequent child terms, we generated a list of all 

genes relevant to these processes. Using our gene expression data, we were able to match 

954 genes and generate 91 immune system specific gene ontologies. The average expression 

of all the genes in each ontology were averaged together and used as input into our multi-

component sPLS network. In order to generate a multi-omic network of interactions we 

performed pairwise sparse partial least squares regression as demonstrated by Li et al. (Li et 

al., 2017) between each of the four data types. After filtering for a covariance threshold of 

0.6 in either direction our network consisted of 188 nodes and 577 edges across three data 

types. None of the OTUs passed this threshold to be included in the network.

DATA AND CODE AVAILABILITY

Raw sequence data from 16S, ITS, and RNA sequencing experiments are deposited in the 

NCBI Sequence Read Archive under BioProject accession number PRJNA559026 and gene 

expression omnibus (GEO) accession number GSE135472. All processing was performed in 

R and analysis scripts can be found on Github at https://github.com/ruggleslab/

RewildedMice

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Immune and microbial phenotyping of lab and rewilded Nod2 and Atg16l1 
mutant mice.

• Environmental differences drive variation in population frequencies of 

immune cells.

• Cytokine responses to microbial stimulation are affected more by genetic 

mutations.

• Multi-omic models identify responses to specific microbes driven by 

rewilding.
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Figure 1. Environmental change drives inter-individual variation in immune cell populations.
(A) 25 C57BL/6+/+, 28 Nod2−/−, 27 Atg16l1T316A/+, 24 Atg16l1T3I6A/T3I6A mice 

(total=104) were housed in the wild enclosure (Rewilded) for 6–7 weeks and successfully 

trapped for flow cytometry analysis of lymphoid and myeloid cell populations in the blood 

and mesenteric lymph nodes (MLNs). Plasma was also collected for cytokine profiles. Age 

matched 19 C57BL/6+/+, 19 Nod2−/−, 20 Atg16l1T316A/+, 22 Atg16l1T316A/T316A mice 

(total=80) housed under SPF conditions (Lab) were analyzed as controls. Feces were 

collected for 16S rRNA sequencing. MLN cells were cultured with indicated stimulates for 
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48 hours and supernatants were collected for cytokine profiling. Samples that fail quality 

control are not included in downstream analyses. (B and C) UMAP projections of ~180,000 

CD45+, ~110,000 CD19+, and ~36,000 CD4+ cells on flow cytometry data of the blood 

from lab and rewilded mice. Events are color-coded according to CD19, CD44 (B), CD4, 

and CD62L (C) fluorescence level. Box plots show the abundance of CD44hi CD19+ cells 

(B) and CD62Lhi CD4+ cells (C) in the blood of individual lab and rewilded mice. (D) 

Principal component analysis (PCA) of gated immune cell populations in the blood and the 

density of each population along the principal component (PC). Right panel indicate biplots 

of the gated immune cell populations that are projected onto PC1 and PC2. (E) Box plot of 

pairwise Euclidean distance measures based on blood immune cell population in the blood 

of lab versus lab, rewilded versus rewilded and lab versus rewilded mice. (F) Bar plot 

showing the pseudo R2 measure of effect size on the entire distance matrix used to calculate 

the PCA of immune cell populations in the blood (D). ***P < 0.001 by Kruskal-Wallis test 

between groups (B, C) and ***P < 0.001 by Mann-Whitney-Wilcoxon test between groups 

(E).
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Figure 2. The genetic contribution towards variation in cytokine production in response to 
microbial stimulation is masked when mice are rewilded.
(A to D) MLN cells from lab and rewilded mice were ex vivo cultured with B. subtilis, S. 
aureus, C. perfringens, B. vulgatus, P. aeruginosa, C. albicans, and αCD3/CD28 beads for 

48 hours and the supernatants were assayed for 13 cytokines. (A) Heat map of average fold 

changes compared to cytokine levels of MLN cells cultured with PBS controls from all 

mice. (B) Box plot showing the top 10 log2 fold changes of cytokine responses to 

stimulation for MLN cells from lab and rewilded mice. (C) PCA plot of of fold change 

cytokine stimulation profiles with histograms of the total variance explained by each PC 

indicated on the axis. Right panel indicates the loading factor of each stimulated cytokine 

profile that contributes to each PC. (D) Bar plot showing the pseudo R2 measure of effect 

size on the entire distance matrix used to calculate the PCA of cytokine profiles (C). * P 

<0.05, ** P <0.01, *** P < 0.001 by Mann-Whitney-Wilcoxon test between groups (B).
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Figure 3. Rewilded Nod2−/− mice display greater changes in cytokine production compared to 
rewilded WT mice.
(A to C) MLN cells from lab and rewilded mice were ex vivo cultured with B. subtilis, S. 
aureus, C. perfringens, B. vulgatus, P. aeruginosa, C. albicans, and αCD3/CD28 beads for 

48 hours and the supernatants were assayed for 13 cytokines. (A and B) Heatmap of 

significant p-values from Mann-Whitney-Wilcoxon test between group results comparing 

fold changes of stimulated cytokine production in rewilded (A) and lab (B) WT mice against 

Nod2−/−, Atg16l1T316A/+ and Atg16l1T316A/T316A mice respectively. Within each cytokine 

condition the order of stimulation remains constant as follows; B. subtilis, B. vulgatus. C. 
albicans, aCD3/CD28, C. perfringens, P. aeruginosa, S. aureus. (C) Representative box plots 

of the most significant changes between WT and Nod2−/− mice. * P <0.05, ** P <0.01, *** 

P < 0.001 by Mann-Whitney-Wilcoxon test between groups (C).
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Figure 4. Multi-omic classification models identify predictive features of environment and 
genotype.
(A) Bar plot of the top 40 features predictive of the environment and (B) interaction network 

analysis of correlations (R2 > 0.6 or R2 < −0.6) between features (genes, immune cell 

populations, OTUs or cytokines) that are predictive of environmental changes. (C) Bar plot 

of the top 40 features predictive of the genotype and (D) network analysis of the associations 

between features that are associated with genotype differences. Data types are colored 

according to cytokine profiles (green), genes (red), immune populations (blue), and OTUs 
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(purple). The size of the nodes in B and D are scaled proportionally to the number of 

connections with other nodes in each network.
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Figure 5. An unsupervised multi-component model identifies a C. albicans and C. perfringens 
response network associated with environmental changes.
(A) Data matrices from flow cytometry data, transcriptional profiles, microbial profiles and 

stimulated cytokine profiles were used as inputs for a sPLS-regression model to generate a 

covariance network. (B) The most connected nodes, Blood CD4 T-cells CD44hi CD62Lhi, 

IL-5 in response to C. perfringens, and GO:0061844 (antimicrobial humoral immune 

response mediated by antimicrobial peptides) were evaluated for a difference between lab 

and rewilded mice populations. (C) The IL-5 C. perfringens subnetwork was derived from 
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the network and recalculated to highlight the connections most related to IL-5 production. 

(D) GO: 0030593 (neutrophil chemotaxis) was identified as a significant connection in the 

subnetwork and the genes found in that GO term were plotted as a heatmap. Color bars 

indicate environment and genotype. The size of the nodes in (A) and (C) are scaled 

proportionally to the number of connections with other nodes in each network. Data types 

are colored according to cytokine profiles (green), GO term (red), immune populations 

(blue). * P <0.05, ** P <0.01, *** P < 0.001 by Mann-Whitney-Wilcoxon test between 

groups (B).
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