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Hopfions emerge in ferroelectrics

I. Luk’yanchuk!, Y. Tikhonov'2, A. Razumnaya® 2 & V. M. Vinokur® 3*

Paradigmatic knotted solitons, Hopfions, that are characterized by topological Hopf invariant,
attract an intense attention in the diverse areas of physics ranging from high-energy physics,
cosmology and astrophysics to biology, magneto- and hydrodynamics and condensed matter
physics. Yet, while being of broad interest, they remain elusive and under-explored. Here we
demonstrate that Hopfions emerge as a basic configuration of polarization field in confined
ferroelectric nanoparticles. Our findings establish that Hopfions are of fundamental impor-
tance for the electromagnetic behavior of the nanocomposits and can result in advanced
functionalities of these materials.
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onfinement of a ferroelectric material changes its electric

properties radically. Termination of the of polarization at

the surface leads to the depolarization charges p = —div P
that produce the depolarization field E; In turn, the self-
consistent interactions result in a nonuniform texture that
minimizes electrostatic energy costs associated with these depo-
larization effects. The corresponding topologically nontrivial
textures include regular patterns of Kittel domains!~>, which can
be also viewed as the periodic array of vortex-antivortex pairs®
and lattice of skyrmions’ in the films and superlattices, vortices
and skyrmions in the nanords, nanodots3-1>, and
nanoparticles!®17, As we show below, a geometrical restriction of
a ferroelectric brings about a fundamental class of the topological
formations, Hopfions, that appear inherent to a broad variety of
nature phenomena!8-2,

Results

Hopfion topology and Arnold theorem. We consider a spherical
nanoparticle described by the isotropic free energy functional. It is
an exemplary system capturing the global topological properties of
a confined ferroelectric nanodot. After that we introduce the
perturbations, including anisotropy and electrostrictive coupling,
which preserve the topological stability of the solution. A uniform
mono-domain state of the nanoparticle is not energetically stable
because of formation of the surface depolarization charges located
at the termination points of polarization lines P, see Fig. la. To
minimize the energy associated with the depolarization field, E; =
—P/ey (where ¢,=28.85 x10712CV~1m™1), the system trans-
forms itself into a structure with the vanishing depolarization
charges so that div P = 0. Therefore, the divergenceless of the
polarization field is the fundamental condition defining the phy-
sics of the spatially nonuniform ferroelectricity. The absence of the
depolarization charges at the surface, implies that the polarization
vector, P is tangent to the surface of the particle.

An instant configuration stemming from the above conditions
is the vortex!!, see Fig. 1b. For the case of the isotropic spherical
nanoparticle, such a solution®? is stable just below the transition
from the high-temperature paraelectric phase into the ferro-
electric phase. However, in general, far from the transition, the
system seeks for the configuration in which the amplitude of the

Fig. 1 Formation of the Hopfion. a A uniform distribution of the
polarization, P, (green lines) in a spherical nanoparticle, blue arrows
showing polarization direction. Positive and negative depolarization charges
on the surface induce depolarization electric field, Eq (red lines).

b Polarization vortex. ¢ Escape of the polarization vortex into the third
dimension. d Polarization Hopfion.

polarization remains close to its equilibrium value everywhere,
hence strives to eliminate singularities.

A singularity at the vortex core can be removed by the
continuous deformation of the vector field P promoting its escape
into the third dimension along the vortex axis®!, see Fig. 1c. Had
this process been occurring in an unrestricted 3D space, it would
have resulted in a uniform polarization. However, in the confined
spherical geometry, this would have recovered the unfavorable
mono-domain configuration shown in Fig. la. To avoid that, the
polarization flow along the vortex axis spreads into a back-flow
over the sphere’s surface, maintaining polarization tangent to the
surface hence avoiding the onset of depolarization charges. The
resulting P-field configuration is a 3D knotted soliton, called
“Hopfion,” which is a set of interlinked circles or torus knots, see
ref. 2* and references therein. A simplest single polarization
Hopfion is shown in Fig. 1d.

To unravel the nature of an emergent polarization structure in
a nanoparticle, we observe that the lines of the divergenceless
polarization field, P(r), have no intersections, are looped, tangent
to the surface of the nanoparticle, and constitute a dense set in the
sphere. Polarization lines are identical by their topological
characteristics to the streamlines of an ideal incompressible
liquid inside the restricted volume, which enables us to employ
topological methods of hydrodynamics developed by Arnold32.
According to Arnold’s theorem, the analytic stationary flows of
the divergenceless vector field can belong in either of two classes:
the field flows fibered into the nested cylindrical surfaces and
those fibered into the set of the nested tori. The former
configurations correspond to vortices and the latter configura-
tions constitute Hopfion. We describe a layout of a Hopfion
starting with filling the interior of the nanoparticle by the set of
sequentially nested concentric tori, as shown in Fig. 2a. Then
polarization field lines form the dense set of trajectories twining
these tori, as shown by thin solid lines in Fig. 2b. A topological
structure that implements the streamlines of Hopfion is
characterized by its topological charge called Hopf invariant32

H= (P - A)dr, (1)
M?r

where the gauge field A is defined by P = rotA. This extends the
concept of an integer Hopf charge of the fields representing the
trace of the unit vector like spin in magnetic systems*#2728 or
director in liquid crystals?® maintaining its direction, onto the
wider class of the confined divergenceless fields. Importantly, the
Hopf invariant generalized by Arnold, is not necessary integer but
still conserves under the action of an arbitrary volume-preserving
diffeomorphism so that the Hopfion is stable and does not relax
out. The definitive property of the polarization lines in a Hopfion
is that each field line links through others. This property
illustrates an equivalent topological definition of the Hopf
invariant. According to Arnold32, the average self-linking (not
necessarily integer) of a confined divergenceless vector field
coincides with . Therefore, the observed non-zero linking is a
fingerprint of the Hopf fibration. However, the link indices of
different polarization loops can vary, and the exact value of H is
obtained only upon averaging.

Chirality of the Hopfion state. An associated feature that arises
in the Hopfion state is the chirality, which is the asymmetry with
respect to mirror-reflection. The corresponding symmetry group
is C.., and is eventually reduced by the crystal anisotropy. Hop-
fions can be the “left” and “right” ones, hence spontaneous chiral
symmetry breaking upon the formation of the Hopfion state.
Chirality marks the Hopfion off from the vortex, endowed with
the group C., that includes the reflection in the plane, oy,
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Fig. 2 The Hopfion structure. a A cross section of the spherical nanoparticle exposing a cut across the set of nested concentric tori. b The set of tori
obtained by rotation of the loops shown in a around the vertical axis. Each torus is entwined by a dense set of the polarization lines#°. ¢ A single Hopfion
torus wrapped up by polarization lines calculated in the framework of the isotropic model. d Three nested tori entwined by the polarization lines illustrating
their tendency to densely fill up the nanoparticle. @ Exemplary polarization lines belonging in the tori shown in d that illustrate linking of the loops in the
Hopfion. f The color map of the P,—component of the polarization over the meridian cross section of the nanoparticle. g, The color map of the distribution
of the amplitude of the polarization, |P|. h Whirlpool distribution of the polarization over the surface of the nanoparticle near the Hopfion axis. i, The color
map of the chirality, y, distribution inside the nanoparticle. j The temperature-radius, T-R, phase diagram of the Hopfion and vortex topological states in the
isotropic spherical nanoparticle. The circles display results of numerical computations of the paraelectric-vortex, T,, and vortex-Hopfion, T}, transition
temperatures. The dashed lines correspond to the geometrical scaling fit, see text. Importantly, the vortex phase occupies a very narrow region in the
vicinity of the paraelectric-ferroelectric transition and the dominant part of the phase diagram corresponds to the Hopfion state. The color gradient reflects

emergence of the chirality. The red asterisk symbols stand for the transitions in the anisotropic ferroelectric PZT nanoparticle. k The temperature

dependencies of the ferroelectric characteristics, mean-squared polarization, (P?)

, (blue lines), the absolute value of the mean toroidal moment, |T|, (red

lines), and the mean chirality ¥ (green lines), taken for three representative nanoparticle radii, R= 5, 12, and 25 nm.

perpendicular to the vortex axis. We thus use the chirality
parameter, y =P - rotP16, to characterize the Hopfion state. This
parameter compliments the toroidal moment T =rot P that is
ordinarily used for the description of the state containing topo-
logical excitations in ferroelectric nanoparticles®, since T cannot
expose the difference between the vortex state and the chiral
Hopfion state. Note, that the spontaneously arising chirality
opens an opportunity of manipulating the ferroelectric nano-
particles by circular-polarized laser tweezers, inducing and tuning
the optical activity of the media.

Hopfion structure in a ferroelectric. To investigate the Hopfions
arising in ferroelectric nanoparticle, we perform the relaxation
minimization of the Ginzburg-Landau (GL) functional coupled
with the electrostatic and elastic equations, see “Methods” and
Supplementary Methods section in Supplementary Information
(SI). An insight into the Hopfion emergence is gained by the
purposeful initial using the isotropic model functional capturing,
as mentioned above, the global topological properties of a
nanodot. We select, however, parameters that are close to those in
the realistic oxide materials and that partially account for the
elastic interaction. Shown in Fig. 2c-k are the results of compu-
tations. Figure 2c, d display the Hopf fibration in the isotropic
nanoparticle with radius R =25 nm at room temperature realiz-
ing the self-linking spiral-like structure of polarization lines. The
dense set of lines forming the knots at a single torus is shown in
Fig. 2¢, whereas the panel Fig. 2d exhibits the compactification of
entwined tori in the bulk of the nanoparticle. Figure 2e demon-
strates the pairwise linking of the polarization lines belonging to
the tori shown in Fig. 2d. The nontrivial knotting of the field lines

leads to the peculiar spatial distributions of the polarization
characteristics of the system. The tendency for the polarization
vectors to escape in the third dimension results in the up-stream
of the polarization lines near the Hopfion core and to their down-
stream at the periphery, as reflected in Fig. 2f showing the P,
component. At the same time, the distribution of amplitudes of
polarization vectors, becomes nearly homogeneous, (Fig. 2g), and
the residual singularities settle as whorles of the polarization at
the points of the termination of the Hopfion axis at the poles
of the sphere as shown in Fig. 2h. These residual singularities are
essentially non-removable and manifest the Poincaré hairy ball
theorem stating that there is no non-vanishing continuous tan-
gent vector field on two-dimensional sphere3’. Fig. 2i demon-
strates the distribution of the chirality, y, inside the particle that
concentrates mostly along the Hopfion core.

Panel (j) presents the T-R phase diagram for the spherical
particles with the radius R <30 nm. Notably, the Hopfion state
occupies its major part. The transition temperature T, from the
high-temperature paraelectric state to the low-temperature ferro-
electric one, lies only slightly below the bulk temperature T, in
large particles with R >20 nm. In small particles with R <20 nm,
T, is noticeably suppressed by the size-driven confinement. The
polarization texture of the ferroelectric state, which forms just
below the transition, has the vortex-like structure. In general, the
dependence T(R) is well fitted by the formula, following from the
dimensional analysis of GL equations, (T, — T,)/T, =~ (4&,/R)%
where &~ 0.7 nm is the coherence lengths and y.~2.0. Vortices
start expelling their core singularities into the third dimension
below the critical temperature Ty, which also scales as R~2, with
the coefficient uj,~2.8. The temperature interval of the vortex
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phase existence is negligibly small for R>10-15nm and further
cooling drives the system into a Hopfion state. The vortex state
becomes noticeable only in small enough nanoparticles, where the
geometry restriction stabilizes vortices.

The temperature dependence of the principal ferroelectric
characteristics, the mean-squared polarization, (Pz)l/z, the
absolute value of the mean toroidal moment, |T|, directed along
the Hopfion/vortex axis, and the mean chirality, ¥, chosen
negative for concreteness, are shown in the Fig. 2j for three
characteristic sizes of the nanoparticles: R =75, 10, and 25 nm.
The mean-squared polarization vanishes as a square root on
approach to the ferroelectric transition temperature, T, similar to
the uniform bulk case. The toroidal moment also vanishes at T,
whereas the chirality disappears below T, at the vortex-Hopfion
transition and is used to determine T). Note that for the 5nm
nanoparticles ¥ = 0 since the system remains in the vortex state.

Hopfion state in a PbZr,eTip40; nanoparticle and its
field dependence. Now we are equipped to turn to concrete
embodiments of Hopfions in specific ferroelectric materials.
The topological stability of Hopfions is secured by the
Kolmogorov-Arnold-Moser (KAM) theorem34, generalized for
the three-dimensional systems with static divergenceless (volume
preserving) vector fields3>39, stating that the tori winding of the
vector field remains intact under the adiabatic nonlinear pertur-
bations of the free energy. In our case, the perturbations are the
anisotropy and the electrostrictive coupling that deform Hopfions
but do not destroy them. We focus on the quasi-isotropic
PbZr( ¢Tip 405 (PZT) compound, which is close to the so-called
morphotropic phase boundary. Numerical simulations of the PZT
nanoparticle of R =25 nm are based on the relaxation of the full
GL functional with the elastic terms, see “Methods” and SI. We
find that the Hopfion state spans almost the entire ferroelectric
phase, so that the resulting phase diagram is close to the phase
diagram for the isotropic system with the similar parameters, as
evidenced by the calculated points of transitions in PZT, shown
by asterisks in Fig. 2j. The field-polarization characteristics of the
nanoparticle of R=25nm at room temperature are shown in
Fig. 3. The distinct polarization topological configurations are
marked as states (i)—(vii). The set-up used in the simulations of
the nanoparticle under the applied field is sketched in the insert
in the plot. The voltage U is applied to the plates of the capacitor
embracing the nanoparticle, which is oriented to have its [111]
crystallographic axis perpendicular to the capacitor’s plates.
Accordingly, U, induces average polarization, P, and average
internal field, E, along the [111] direction. The relation between
these quantities completely describes the dielectric properties of
the system, and is the constitutive relation P(E). We show that
P(E) dependence is the S-shape curve with slight hysteresis that
we describe below.

The state (i) in Fig. 3 corresponds to the Hopf fibration arising
after the zero-field quench of the nanoparticle from the paraelectric
state. As shown in Supplementary Figs. 1 and 2 in SI, this
configuration maintains the torus-winding character but the torus
now is deformed by the crystal anisotropy which bends the
polarization lines toward the equivalent to [111] crystallographic
directions, which in PbZr,4Tiy40; corresponds to the minimal
anisotropy energy, and fixes the Hopfion axis along [111]. The
resulting polarization texture is now alike the 6-fold flux-closure
structure of the adjoining domains. The anisotropy-induced
depolarization charges and fields remain, however, vanishing small.
In addition, the pole singularities extend into the bulk, to form two
respective vortices coexisting with the bulk Hopfion.

We next investigate the effect of the possible presence of the
semiconducting or impurity-induced free charges that can cause
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Fig. 3 Field-induced topological states in PbZr ¢Tio 403 (PZT). The P — E
polarization curve (blue line) demonstrates hysteretic behavior due to the
series of transitions (denoted by yellow circles) between different
polarization topological states (i-vii) in the 25 nm nanoparticles of the PZT.
The helices with the “upward” and “"downward” polarization flux are shown
in brick-red and blue, respectively, the green colour depicts the localized
Hopfion polarization lines, and yellow denotes the closed vortices. The
block yellow arrows show the direction of the evolution along the hysteresis
loop. The inset shows a conceptual setup. The applied voltage, U, induces
average polarization, P, and average internal field, E. The nanoparticle is
oriented to have its [111] crystallographic axis perpendicular to the
capacitor's plates.

electric screening. To that end we add the terms accounting for
the screening contribution in the GL functional (see “Methods”).
At typical for the PZT values of the screening length about A =
80-100 nm37-38, screening does not influence the Hopfion
texture. At elevated density of the free charges where A ~ 20 nm
the polarization lines maintain the winding texture. However, the
arising volume and surface charges break down the condition for
the field be divergenceless hence the polarization lines can now
thrust the surface of the nanoparticle. Accordingly, this violates
the conditions for the Arnold’s theorem, the fibered nested tori
structure slightly distorts, and the tori-twinning polarization lines
convolve or untwine along the spiral-like paths and creep from
torus to torus, see Supplementary Fig. 3 in SI. Further increasing
free charge density so that A <5nm cuts Hopfions and the cells
harboring vortex-like textures emerge. The complete unwinding
of the polarization lines into the monodomain structure requires
the very high metal-like concentration of the free carriers with A
<0.05nm (see SI). Note, however, that the strong anisotropy of
the sample (natural or strain-induced) can restitute the bound
charges in a form of head-to-head or tail-to-tail charged domain
walls?®, distributed depolarization charges in the soft Kittel
domains®, or in polar topological defects*® when the anisotropic
energy becomes comparable with the screened electrostatic one.

Upon applying the external field (in the negative direction), the
virgin curve P(E) jumps first to the left, across the singular
internal field, ¢, E ~ 1.4x 107> Cm™2, related to the topological
piercing of the Hopfion by helical polarization lines that will be
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Fig. 4 Polarization in a nanoparticle composite. a Dilute composite of isolated nanoparticles in a capacitor. b Sintered composite of contacting
nanoparticles. ¢ Field lines flow between moderately densified nanoparticles of R =25 nm, contacted along the [111] direction. The densification degree is
characterized by the thickness of the connecting neck 2h = 0.4 nm, see inset. The delocalized helical lines flowing between the particles are embraced by
the localized lines forming the toroidal Hopfion states. d In a composite of strongly densified nanoparticles with 2h =2 nm, all the field lines form
delocalized helices flowing across the entire composite. e The polarization hysteresis loops for a single nanoparticle in the sintered composite as a function
of the applied field, U/d for different densification degrees h. The inset sketches a model particle with cut skullcaps of the height h confined between the

electrodes which mimics the behavior of the composite.

described further. Then it descends along the left branch of the
hysteresis loop forming finally the down-oriented directional
helical structure (state (ii) in Fig. 3). In the emerging polarization
structure, open polarization lines thrust the nanoparticle, so that
the mean polarization flux gets aligned with the applied field.

Reversing the change in the field, we follow now the right hand
side branch of the hysteresis loop from the bottom to the top. The
evolution of the system upon the monotonic variation of the field
from the negative to the positive value, occurs through first,
compression, and then, stretching the helical polarization lines
with the change of the mean polarization flux direction from the
negative to the positive one. We observe that the system passes
through the sequence of topological phases that follow the
Arnold’s partitioning of the nanoparticle space into cells where
the polarization lines are entwined around the nested sets of
either cylindrical or toroidal surfaces, see in Supplementary Fig. 2
in SI for details. In the initial helical state (ii) the polarization
lines are entwined around the cylindrical surfaces. Upon the
decreasing field, the helical structure compresses while broad-
ening its central part (state (iii)) and, finally, a spherical cell
containing the toroidal Hopf fibration nucleates at the center of
the nanoparticle (state (iv)). The emerging Hopfion grows further
ousting the helical states toward the nanoparticle periphery,
which bypass Hopfion outside and carry the mean polarization of
the nanoparticle along the nanoparticle surface. When the applied
field vanishes, the Hopfion fills up the entire nanoparticle
asymptotically approaching to the state (i) with P = 0.

The change of the sign of the external field from negative to
positive leads to the topological phase transition in the course of
which the system "turns inside out" and a hyperbolic cell filled up
with the nested cylinders sets in along the axis of the nanoparticle.
This cell ruptures the Hopfion sphere into a torus (state (v)) and
hosts the open polarization helical lines carrying now the mean
polarization inside the nanoparticle along its axis. This transition
occurs abruptly at some threshold applied field and manifests as a
disruption of the smooth behaviour of the internal field E which
makes a singular turn in polarization curve. Upon the further
field increase, the Hopfion torus retires toward the equator and
eventually disappears there draining out of the nanoparticle,
which thus falls into the helical state. Just after the transition the
polarization helices maintains the fitted structure (state (vi)), as a
legacy of the vanished Hopfion tori, and only at higher applied
fields it crosses over to the helical state (vii) equivalent, up to sign

P(r) reversal, to the state (ii). Upon the sequential field reversal
and decreasing the field back, the system does not pass through
the reverse sequence of the states, but repeats the (ii) — (vii)
scenario with the replacement P(r) — — P(r), demonstrating thus
the weakly hysteretic behaviour (left descending branch in Fig. 3).
Again, the mean polarization flows, first, along the surface of the
nanoparticle and then along the nanoparticle axis.

Discussion

Complexity of the intertwined topological states encoded in the
P — E characteristic of Fig. 3 stems from the interplay of con-
finement and depolarizing effects. Most importantly, the system is
highly responsive to even weak internal fields, owing to the
utmost softness of the helical springs of the polarization lines. In
other words, the ease at which the open lines reconnect, ensures
an unobstructed redistribution of the field-induced depolarization
charge at the points of their termination, guaranteeing the almost
perfect screening of the applied field. This behaviour is similar to
that of the ferroelectric with domains, where the easy domain wall
motion results in the similar softness*!. Because of that, the
absolute value of the effective dielectric permittivity of the
nanoparticle, € = P/¢,E, can reach giant values of order 10* and
even more. Moreover, in the close resemblance of the nano-
particles with domains, the S-shape P-E characteristic demon-
strate segments having the negative slops, hence negative
capacitance effect, which is explained by the advancing reaction
of the polarization texture to the applied field*2. This P-E char-
acteristic and, in particular, the negative value of & can be
extracted from the total capacitance of the measuring capacitor
shown in the inset of Fig. 3 using the Maxwell Garnett mixing
rule®3 for the nanoparticle in dielectric matrix.

Note further, that in larger particles, polarization lines main-
tain their anisotropic toroidal winding, but new small toroidal
formations, "Hopfioninos," which can be perceived as newly
nucleating domains, bud off from the original Hopfion body, in
Supplementary Figure 4 in SI. Eventually, upon further increasing
of the particle size, a Hopfionino array can develop into a chaotic
texture.

We investigate now the Hopfion-governed physics in a com-
posite material comprising the high-¢ ferroelectric nanoparticles
embedded in the low-¢ dielectric matrix. Note, that according to
the Maxwell Garnett mixing rule the dilute high-e nanoparticles,
see Fig. 4a, only weakly renormalize the properties of the low-¢
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hosting matrix. This was confirmed by numerical simulation in#4.
We thus focus on the topological excitations in composite sin-
tered nanoparticles, where polarization lines can pierce the entire
system passing from one grain to another. The emergent inter-
connected Hopfion-like excitations in disordered ensemble of
contacting ferroelectric nanoparticles can also serve as a good
model of the polar nanoclusters in relaxors. For now, however, in
order to gain an insight into the behavior of sintered materials, we
restrict ourselves to a a rectangular array of contacting nano-
particles as shown in Fig. 4b.

Figure 4c displays the configuration that forms under the
conditions of the moderate densification of PZT nanoparticles
with R =25 nm, contacted along the [111] direction. The degree
of densification is quantified by the thickness of the contacting
neck, 2h =0.4nm (see inset), so that the area of the mutual
contact of the adjacent particles serves as an aperture for polar-
ization lines. Only a fraction of polarization helical lines passes
through the interfacial aperture. Another part of the lines is
confined into the Hopfions and does not interact with the applied
electric field. They are invisible to the entire dielectric response
of the system. In the case of strongly densified nanoparticles with
2h =2 nm all the field lines form helices flowing through the area
of the contact (Fig. 4d).

Figure 4e displays the polarization characteristics of the
nanocomposite, comprising the sintered 25 nm nanoparticles, as
functions of the applied voltage. The chain of the connected
particles with the repeating polarization pattern is modeled by a
single particle with cut off the skullcaps of the height h, the
electrodes covering its top and bottom cuts respectively. The
model setup is shown in the inset. As we already mentioned,
the particles with the vanishing contact area (h=~0nm) give
almost no contribution to the dielectric properties of the system.
The dielectric response grows with the degree of the densification.
For the moderate contact h =0.2 nm the switching between the
up- to down-polarized helices, occurs along the gently sloping
hysteresis loop. At each branch, the system quasistatically passes
through the sequence of the topological states, similar to those,
shown in Fig. 3. For the high degree of the densification, h = 1 nm,
the sharp hysteresis loop with the polarization jumps is observed.
The switching follows through the same sequence of the states, but
the system passes through the Hopfion states via dynamic
instability, as illustrated in Supplementary Movie 1.

Methods

Functional. The free functional, F, is written as follows

F= / ‘ ( [a/(T)P? + asP2P? + 0, PEPRPY]

i<j<k

1 1 _
+5Gijk1(aipj)(akpz) + (3;9)P; — 08 (Vo) +17%¢7]

1 3
= Cijta Qutun Wi PPy + 3 Cijathijtiyg > &r, (2)
were the summation over the repeated indices i, j, ... =1, 2, 3 (or x, y, 2) is
performed. The first square brackets term of Eq. (2) stands for the
Ginzburg-Landau energy written in the form given in ref. 4°. Importantly, the 4th-
order coefficients a}, and a4}, (and their cubic-symmetry homologs) are taken at
zero strain and are calculated by the Legendre transformation from the stress-free
coefficients af,, af,°, see also ref. 7. The second term of Eq. (2) with coefficients
Gijir corresponds to the gradient energy. The last terms are the electrostatic and
elastic energies, written in terms of the electrostatic potential ¢ and strain tensor u;;,
respectively. Here &, = 8.85x 1012CV~I m~! is the vacuum permittivity, &, ~ 10
is the background dielectric constant of the non-polar ions, typical for PbTiO516, A
is the screening length due to the free carriers when present, Cyy; is the elastic
stiffness tensor and Qg is the tensor of electrostrictive coefficients.

The polarization-induced distribution of the electrostatic potential ¢ and elastic
strains u; in functional Eq. (2) are found as solutions of equations

Eosb[vz - A72]¢ =90,P;, (3)

Cljklaj<ukl - lemanPn) =0. (4>

Material parameters. For the PbZr,¢Ti, 4O; the coefficients for the uniform part
of the functional Eq. (2) are as follows, a; = 2.3 (T — 364 °C) x 10° C"2m2N,
al, =0.44 x 10° C"*mPN, a, = 0.074x 10° C"4m°N, a,,, = 0.27 x 10 C~©¢
mloN, a;,,=121x10° C—6 m!°N, and a3 = —5.69 x 10 C-6 m!ON. The
electrostriction coefficients are Q;;1; = 0.073 C2 m4, Q120 = —0.027 C"2 m4, and
Q1212 =0.016 C~2 m* (with cubic symmetry permutations) were calculated on the
base of the expression, given in ref. 4¢ after transformation from Voigt to tensor
notations?”. The gradient energy coefficients G;;, =2.77 x 10710C~2m4 N,
G112 =0, and G215 =1.38 x 10710 C~2m* N selected to be the same as for
PbTiO;8. The elements Cyy;; = 1.68 x 101! m—2N, C,;5, = 0.82 x 10! m~2N, and
Ci212="0.41 x 101 m~2 N of the stiffness tensor C;;; were obtained by inversion of
the compliance tensor s;;, which elements are given in ref. 46. To evaluate the effect
of screening we varied the screening length from A = 80-100 nm which is typical
for the PZT37-38 down to nanometers.

To explore the isotropic model we dropped out the elastic part of the functional
Eq. (2), neglected the 6th-order polarization terms, and imposed
a¥, = 2a¥, = 0.27x 107 C™*m N, so that the uniform part of the functional
acquired the isotropic form a,(T)P? + aj, P*. Note that the gradient energy with
selected coefficients Gy is already invariant with respect to rotation.

Data availability

Computational scripts are available online at https://github.com/ferroelectrics/hopfion.
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