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A B S T R A C T

Electroconvulsive therapy (ECT) works rapidly and has been widely used to treat depressive disorders (DEP).
However, identifying biomarkers predictive of response to ECT remains a priority to individually tailor treat-
ment and understand treatment mechanisms. This study used a connectome-based predictive modeling (CPM)
approach in 122 patients with DEP to determine if pre-ECT whole-brain functional connectivity (FC) predicts
depressive rating changes and remission status after ECT (47 of 122 total subjects or 38.5% of sample), and
whether pre-ECT and longitudinal changes (pre/post-ECT) in regional brain network biomarkers are associated
with treatment-related changes in depression ratings. Results show the networks with the best predictive per-
formance of ECT response were negative (anti-correlated) FC networks, which predict the post-ECT depression
severity (continuous measure) with a 76.23% accuracy for remission prediction. FC networks with the greatest
predictive power were concentrated in the prefrontal and temporal cortices and subcortical nuclei, and include
the inferior frontal (IFG), superior frontal (SFG), superior temporal (STG), inferior temporal gyri (ITG), basal
ganglia (BG), and thalamus (Tha). Several of these brain regions were also identified as nodes in the FC networks
that show significant change pre-/post-ECT, but these networks were not related to treatment response. This
study design has limitations regarding the longitudinal design and the absence of a control group that limit the
causal inference regarding mechanism of post-treatment status. Though predictive biomarkers remained below
the threshold of those recommended for potential translation, the analysis methods and results demonstrate the
promise and generalizability of biomarkers for advancing personalized treatment strategies.

1. Introduction

Major depression affects over 350 million lives and contributes to
approximately 1 million suicides each year. Though treatable, current
interventions are only moderately successful. Two-thirds of patients
require two or more antidepressant drug trials and one-third remain
unresponsive to multiple trials (McGrath et al., 2006; Trivedi et al.,
2006). At least 50% of patients who respond to initial treatment will
experience additional episodes, as recurrence is seen in ~80% of pa-
tients with a history of two or more episodes (Fava et al., 2006;
Greden, 2001; Nemeroff, 2007). The length and frequency of depressive
episodes tend to increase and symptoms become more refractory over

time (Greden et al., 2011). Chronic depression leads to profound per-
sonal suffering, low quality of life, and higher morbidity and mortality
(Greden, 2001; Nemeroff, 2007). Personalized treatment strategies
offer a potential solution for minimizing these societal and economic
crises of depression.

Biomarkers that can predict an individual's response to treatment
would provide the opportunity for more successful, personally-tailored
treatment strategies (Meng et al., 2019). Biomarkers that change in
association with clinical response would inform mechanisms that could
also lead to more successful interventions (Osuch et al., 2018). How-
ever, a major impedance to identifying biomarkers for antidepressant
response stems from the modest overall response rates of standard first-
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line pharmacotherapies and the typical weeks-to-months delay for these
treatments to work. By contrast, ECT is an established treatment that
induces an acute and robust clinical response in ~70% of severely
depressed patients (Husain et al., 2004;Kho et al., 2003), albeit the ECT
response remains variable at the individual level. Consequently, though
biological indicators of treatment response are expected to overlap with
other forms of treatment, there is also strong rationale for developing
evidence-based methods to yield predictors of ECT treatment itself. For
example, in the pre-procedural evaluation and consent process, the ECT
clinician must balance the anticipated benefits and risks for an in-
dividual patient. Ideally, the ECT clinician would be able to accurately
predict a patient's likelihood of remission with particular ECT dosage
parameters (e.g., unilateral or bilateral electrode placement), socio-
demographic information (e.g., family psychiatric history), and
symptom severity and phenomenology. However, a recent meta-ana-
lysis of ECT predictors has shown that these clinical predictors lack
reliability (Haq et al., 2015). Longer symptom duration and anti-
depressant treatment resistance appear to be the only predictors that
impact potential ECT non-response, although alone these factors have
been of little practical value for informing clinical practice
(Dombrovski et al., 2005; Haq et al., 2015).

Prior neuroimaging studies have utilized data-driven methods to
identify predictive biomarkers associated with ECT response (Cao et al.,
2018; Jiang et al., 2018a; Leaver et al., 2018; Moreno-Ortega et al.,
2019; Redlich et al., 2016; van Waarde et al., 2014; Wade et al., 2016)
and relapse (Wade et al., 2017). Both functional and structural pre-ECT
MRI data have predicted eventual response with 68 to 90% accuracy.
However, most included small sample sizes (between 18 and 53 sub-
jects with a depressive episode), thereby increasing the risk of over-
fitting (dependency on the validation data sets) and limiting the gen-
eralizability and clinical utility of the identified predictive networks.
Furthermore, several of these investigations focused on an a priori de-
fined region of interest such as the striatum (Wade et al., 2016) or
hippocampus (Cao et al., 2018). Whole-brain analyses have been per-
formed using structural data in two investigations (Jiang et al., 2018a;
Redlich et al., 2016). Both of these investigations have identified pre-
dictive (baseline network patterns associated with eventual response)
and non-overlapping treatment responsive (network changes during
treatment course associated with response) biomarkers. Despite these
results, the identified predictive biomarkers from these two investiga-
tions have not been replicated with larger datasets and other imaging
modalities. Overlap of both predictive- and treatment-responsive bio-
markers with different imaging modalities could identify biomarkers for
targeted engagement and more focal stimulation for neuromodulation
therapies.

In the current investigation, we aim to extend prior findings in
smaller samples to identify both functional connectivity predictive and
treatment responsive biomarkers from a large, multi-site database
(n=122 subjects with a depressive episode). Functional connectivity
has been widely used to describe and predict neuropsychiatric disease
severity and cognitive impairment (Jiang et al., 2018b). In this study,
we used functional connectivity (FC) to identify predictors of ECT
treatment response. Resting state fMRI data permit the assessment of
both positive (correlated) and negative (anticorrelated) FCs. In addi-
tion, FC are more dynamic and compliment the longer time scale of
sMRI neuroplasticity (Batista-Garcia-Ramo and Fernandez-
Verdecia, 2018). For the predictive biomarkers, we assessed outcomes
with both depression rating scales (continuous outcome) and remitter/
non-remitter classification (dichotomous outcomes). For treatment re-
sponsive biomarkers, we assessed functional connectivity changes
during treatment associated with change in depression ratings. Based
on our previous investigation with predictive and treatment responsive
biomarkers with structural MRI (Jiang et al., 2018a), we hypothesized
that the predictive and treatment responsive biomarkers would be re-
lated, but also consist of non-overlapping functional networks.

2. Materials and methods

2.1. Participants and clinical outcomes

Patients with a depressed episode and diagnosis of major depressive
disorder or bipolar disorder (DEP) (n=122) were included from
University of New Mexico (UNM) and University of California Los
Angeles (UCLA). Exclusion criteria for patients included the following:
(1) defined neurodegenerative or neurological disorder (e.g.,
Alzheimer's disease, epilepsy or head injury); (2) other psychiatric
conditions (e.g., schizoaffective disorder, schizophrenia); (3) current
alcohol or drug dependence; (4) pregnancy; and (5) contraindication to
magnetic resonance imaging (MRI) (e.g., pacemaker). The clinical as-
sessment was the Hamilton Depression Rating Scale-17 items (HDRS)
before and after the ECT sessions. ECT response was defined as >50%
improvement from baseline in HDRS, and ECT remission defined as
final HDRS-17 of <7 (Heijnen et al., 2010). All subjects received their
initial assessment prior to the initiation of the ECT series and the final
assessment within one week of completing the ECT series. Earlier in-
vestigations at UNM included subjects with concurrent psychotropic
medications, but the latter investigations at UNM and all UCLA subjects
discontinued psychotropic medications prior to commencement of the
ECT series. The demographical, clinical and medical characteristics of
the sample are summarized in Table 1. All participants provided written
informed consent prior to participation in the study. This study was
approved by the institutional review boards of UNM and UCLA.

2.2. ECT procedure

ECT procedures, which were similar at both sites, are previously
described (Jiang et al., 2018a). Subjects started with right unilateral
electrode placement, ultra-brief pulse width (0.3ms) ECT, with the
initial session devoted to seizure threshold (ST) titration and sub-
sequent sessions administered at 6 × ST. Non-responding subjects were
transitioned to bitemporal electrode placement for the remainder of the
ECT series as clinically determined by the treating psychiatrist. Further
adjustments to pulse train duration and frequency occurred as needed
to maintain adequate seizure duration (>25 s electroencephalogram
seizure activity) and/or acceptable EEG progression and morphology.
Treatments occurred three times weekly until maximal sustained clin-
ical response or clinical decision to stop treatment in the context of non-
response. Patients were oxygenated throughout the procedure with a
disposable bag and mask and received adequate induction (methohex-
ital or etomidate) and relaxation (succinylcholine). Blood pressure,

Table 1
Demographic and clinical information.

UCLA DEP
mean (SD)

UNM DEP
mean (SD)

All DEP mean
(SD)

Sample size 45 77 122
Age: years 41.2 (13.5) 65.1 (9.0) 56.3(15.9)
Gender: M/F 20/25 23/54 43/79
Education degree 5.8 (1.7) 4.6 (2.3) 5.0 (2.2)
Handiness (R/L) 41/4 77/0 118/4
Pre-ECT HDRS 25.2 (6.2) 25.9 (6.2) 25.6(6.1)
Post-ECT HDRS 16.2 (9.3) 8.9 (8.0) 11.6(9.2)
ΔHDRS (pre-post) 9.0 (9.1) 17.0 (10.0) 14.1 (10.4)
Rate of ΔHDRS ((pre-post)/

pre)
0.34 (0.33) 0.64 (0.35) 0.53 (0.37)

Responder (%) 27/45 (60.0) 44/77 (57.1) 71/122(58.2)
Remitter (%) 6/45 (13.3) 41/77 (53.2) 47/122(38.5)
Framewise displacement (pre-

ECT)
0.22/0.09 0.26/0.16 0.25/0.14

Framewise displacement
(post-ECT)

0.23/0.11 0.27/0.17 0.27/0.16

Antidepressants (%) 0/77 (0.0) 40/77 (51.9) 40/122 (32.8)
Antipsychotic (%) 0/77 (0.0) 22/77 (28.6) 22/122 (18.0)
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pulse and oxygen saturation were monitored throughout the procedure.

2.3. Data acquisition and preprocessing

The sMRI imaging parameters have been detailed previously
(Abbott et al., 2013; Leaver et al., 2016). At UNM, magnetic resonance
imaging data were collected on a 3-T Siemens Trio scanner (Siemens
Healthcare, Malvern, PA, USA). A whole-brain gradient-echo echo-
planar imaging sequence consisted of the following parameters: Re-
petition time (TR) = 2 s (s), echo time (TE) = 29 milliseconds (ms), flip
angle (FA) 75°, voxel size = 3.75 × 3.75 × 4.55mm, and 154 vo-
lumes. At UCLA, magnetic resonance imaging data were collected on a
3-T MAGNETOM Allegra MRI scanner (Siemens, Erlangen, Germany).
Functional images consisted of the following parameters: TR = 5 s,
TE = 30ms, FA = 70°, 3.4 × 3.4 × 5mm3 resolution, and 180 vo-
lumes. Standard preprocessing of fMRI in SPM12 (https://www.fil.ion.
ucl.ac.uk/spm/) included the following: 1) realignment; 2) slice timing
correction; 3) normalization to an EPI template (Calhoun et al., 2017);
4) spatial smoothing using a 6-mm full width half-maximum Gaussian
kernel; 5) band-pass temporal filtering (0.01–0.15 Hz); 6) regression of
nuisance variables (six parameters obtained by rigid body head motion
correction, cerebrospinal fluid, white matter signals and global signal);
and 7) regression of the site-covariate from the fMRI data. To further
assess motion artifacts, we calculated mean framewise displacement
(Table 1). The pre-/post-ECT and UNM/UCLA contrasts were not sig-
nificant (p< 0.05). We were unable to further censor the data based on
framewise displacement secondary to the short acquisition time (154
volumes) (Power et al., 2014).

2.4. Resting-state functional connectivity analysis

The method of calculating resting-state functional connectivity
analysis is the same as our previous study (Jiang et al., 2018b). For all
subjects, the registered functional MRI volumes in Montreal Neurolo-
gical Institute standard space were divided into 246 regions of interests
(ROI) from the Brainnetome Atlas (Fan et al., 2016) (https://
scalablebrainatlas.incf.org/human/BNA), serving as 210 cortical and
36 subcortical nodes for calculating FC. Mean regional time series were
obtained for each individual by averaging fMRI time series over all
voxels in each of the 246 ROIs. Pearson correlations of time courses
between each node pair were calculated, and were normalized to Z
scores using Fisher transformation, resulting in a 246× 246 symmetric
FC matrix for each subject. After removing 246 diagonal elements, we
extracted the upper triangle elements of the FC matrix as features for
prediction, namely, each subject has a feature vector in the dimension
of (246×245)/2= 30,135.

2.5. Individualized prediction method

Connectome-based predictive modeling (CPM) (Shen et al., 2017) is
a data-driven model integrating several machine-learning methods.
This method, which has demonstrated utility for predicting brain-be-
havior relationships from connectivity data using cross-validation, was
used for prediction in the current study. To predict individual ECT re-
sponse for DEP, we selected pre-ECT (baseline) resting-state functional
imaging features to predict eventual change in depression rating scores
with proportional change in depression ratings:%HDRS= (pre-ECT
HDRS−post-ECT HDRS)/pre-ECT HDRS. Although more conservative
than absolute change or post-ECT depression outcomes (Vickers, 2001),
the rationale for the use of the proportional change score was to control
for the variability of the pre-ECT HDRS.%HDRS and pre-ECT HDRS
were correlated (r=0.2, p=0.02). Fig. 1 illustrates the individualized
prediction framework used in this investigation. We regressed out site
prior to the predication analysis and used leave-one-out-cross-valida-
tion (LOOCV) to train multiple models.

In the leave-one-out loop, one subject was left out for the testing

dataset, the remaining N-1 subjects were used as the training dataset,
which was repeated N times (equal to the subject number) to test all
subjects. First, the training stage was divided into three main parts:
feature extraction, feature subsets selection and training multiple linear
regression (MLR) model. For details of feature extraction, please refer to
Section 2.4, Resting-state Functional Connectivity Analysis. Second,
feature subsets selection identified representative feature subsets for
building the regression model. We computed the spearman correlation
(Abubacker et al., 2014; Tripoliti et al., 2010) between%HDRS and the i
th feature (i=1,2,…,30,135) in FC vector, and the r and p values be-
tween each group of ith feature and%HDRS were obtained. Then, the
K+ features satisfying r>0 and p<positive threshold (PT) were re-
corded as positive features (PF). The K− features satisfying r<0 and
p<negative threshold (NT) were recorded as negative features (NF).
The optimal positive and negative threshold were obtained by the grid
search method. Finally, all the PF and NF were summed separately to
get the final positive features sum (PFS) and negative features sum
(NFS). Feature subsets selection thus reduced the degree of redundancy
between features. Preferred subsets of features are highly correlated
with the predicted measure and have low inter-correlation with other
features (Kohavi and John, 1997). Third, combinations of%HDRS and
PFS,%HDRS and NFS and%HDRS with summed PFS and NFS trained
the MLR. In the testing stage, K+ PF and K− NF were extracted from the
testing dataset and by summing PF and NF separately. Finally, PFS and
NFS of the testing dataset were combined in the three trained MLR
models to predict the continuous value of%HDRS (%HDRSpredict). Based
on%HDRSpredict and pre-ECT HDRS, the post-ECT HDRSpredict for each
patient could be calculated (i.e., post-ECT HDRSpredict = pre-ECT HDRS
-%HDRSpredict × pre-ECT HDRS). Each patient could be further classi-
fied as remitter or non-remitter according to post-ECT HDRSpredict
(Heijnen et al., 2010). The sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and the prediction ac-
curacy for remitter/non-remitter classification were calculated with
comparison to true ECT response. Furthermore, in the feature subsets
selection, we applied a covariate-control method to retrain the pre-
dictive model (Hsu et al., 2018). Specifically, we excluded any FC that

Fig. 1. Flowchart of the prediction framework.
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was significantly correlated with age, sex, and medication use (two-
sample t-test, p < 0.01). This conservative method filters out FCs that
covary with%HDRS, potentially decreasing predictive power but
minimizing the impact of medication use. We also assessed differences
in longitudinal changes in predictive FCs between remitters and not-
remitters.

2.6. Identified predictive FCs networks

In the jth leave-one-out loop, Kj+ PF and Kj− NF (j=1,2,…,122)
were extracted from the training dataset to train MLR model. All these
functional connectivity networks had the potential to predict%HDRS.
The relative weights for all selected FCs (PF and NF) were determined
by recording the frequency of each FC in 122 loops. For better inter-
pretation and visualization (Rosenberg et al., 2016), the 246 FC nodes
were grouped into 24 relatively larger brain regions anatomically de-
fined by the Brainnetome atlas (Fan et al., 2016; Rosenberg et al.,
2016). The contributing weights of these pairs of macroscale regions
were estimated by summing the relative weights for the FC (PF and NF
respectively) connecting among each pair of macroscale regions. Be-
cause different macroscale regions had different numbers of nodes
(range from 4 to 16), the contributing weights were divided by the
number of nodes in each pair of macroscale regions to get the final
mean contribution weights to circumvent the influence of dispropor-
tionate nodes. Two groups of predictive FC networks were obtained by
performing above process for PF and NF separately. Furthermore, in
order to clearly observe the macroscale region most relevant to the
prediction of ECT response, we also filtered out PF and NF that were
repeatedly extracted in 122 loops (i.e. with a 100% occurrence rate) as
consensus FC (Dosenbach et al., 2010; Zeng et al., 2012). We performed
the process for two groups of consensus FCs separately to get more
concise predictive FC networks.

2.7. Longitudinal analyses and group comparison

For contrasting prediction and treatment response (longitudinal
change associated with ECT response), longitudinal analyses and group
comparisons were performed. First, we identified FC associated with
pre-/post-ECT longitudinal change with paired t-tests. We then ex-
amined the degree of overlap between brain regions associated with
longitudinal change and predictive brain regions (positive features and
negative features) by visual inspection. Second, we identified treatment
responsive networks by preforming linear regression (%HRDRS ~
∆FC+ age+ sex+medication use+ treatment number+ site). Third,
we assessed longitudinal FC group differences by averaging positive
and negative FC between remitters and non-remitters (two-sample t-
tests and paired t-tests).

3. Results

3.1. Individualized prediction of ECT outcome

To optimize the hyper-parameters of the prediction model, we
performed grid search method using training data. The hyper-para-
meters for positive (PT) and negative thresholds (NT) were chosen from
p= [0.001, 0.002,…, 0.02]. We found the optimal parameters for PT (r
> 0, p < 0.012) and NT (r < 0, p < 0.003). These thresholds corre-
sponded to extracted positive (PF) and negative features (NF) of 179
and 101, respectively. The three FC-based prediction regression models
achieved significant correlations between%HDRSpredict and the%
HDRStrue for 122 DEP (Fig. 2). Specifically, Spearman`s correlations of
r=0.27 (p=2.30× 10−3, NRMSE = 0.22), r=0.51
(p=6.20× 10−10, NRMSE = 0.19) and r=0.46 (p=7.84×10−8,
NRMSE = 0.20) were achieved for three combinations of features (PF,
NF and PF&NF). To evaluate statistical significance of the r values be-
tween true%HDRS and predicted%HDRS generated from LOOCV, we
also conducted permutation testing (Hsu et al., 2018). P- values de-
termined with permutation testing were 0.015, 9.99×10−4 and
9.99×10−4 for PF, NF and PF & NF, respectively. (Supplementary
Material Section 2).

Based on the%HDRSpredict and the pre-ECT HDRS, the post-ECT
HDRSpredict could be estimated, and DEP could be further classified as
remitter or non-remitter (Heijnen et al., 2010). The classification results
using negative features were the most accurate (accuracy=76.23%,
sensitivity=51.06%, specificity=92.00%, PPV=80.00%,
NPV=75.00%) (Table 2). Please refer to Supplementary Material Sec-
tion 3 for 10-fold cross-validation, Section 4 for receiver operating
curves, and Section 5 for the more conservative covariate-control pre-
dictions analysis. Only 47 out of 122 subjects (39%) were ECT re-
mitters. We assessed longitudinal differences in predictive FC by aver-
aging positive and negative predictive FCs and comparing remitters and
non-remitters in Supplementary Material Section 6. We performed an
analysis with responder criteria (77 out of 122 subjects or 63% were
ECT responders) in Supplementary Material Section 7.

3.2. Predictive networks for positive and negative FCs

The identified consensus FC (repeatedly extracted in all 122 loops)
and the mean contribution weights of consensus FC between each pair
of the 24 anatomically defined macroscale areas represented pre-
dominately frontal, temporal and subcortical regions (see Fig. 3, details
of the relative weights for all selected FC between each pair of mac-
roscale areas in Supplementary Material Section 1). For the positive
feature networks, FC demonstrated the most predictive power were
between the thalamus (Tha) / superior temporal gyrus (STG), medio-
ventral occipital cortex (MVOcC) / precuneus (Pcun), basal ganglia

Fig. 2. Scatter plot of the predicted%HDRS with respect to the true%HDRS using PF, NF and PF&NF. Spearman`s correlation of r=0.27 (p=2.30× 10−3), r=0.51
(p=6.20× 10−10) and r=0.46 (p=7.84× 10−8) were achieved for three combinations of features, respectively.
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(BG) / superior frontal gyrus (SFG) and BG / orbital gyrus (OrG). For
the negative feature networks, FC demonstrated the most predictive
power were between the inferior frontal gyrus (IFG) / the inferior
temporal gyrus (ITG), IFG / parahippocampal gyrus (PhG) and IFG /
fusiform gyrus (FuG). Other important negative feature networks in-
clude the precuneus (Pcun) / middle frontal gyrus (MFG) and BG /
insular (INS).

In addition, for better visualization, we display the most relevant
circuits of positive features and negative features association with
treatment response (Fig. 4) with BrainnetViewer (https://www.nitrc.
org/projects/bnv/), which showed FCs that demonstrated the most
predictive power in Fig. 3.

3.3. Longitudinal analyses and group comparison

First, to examine longitudinal changes, paired t-tests (pre-/post-
ECT) were performed for 30,135 FC. Longitudinal changes were sig-
nificant (p< 0.01, FDR corrected) in 41 FCs (Fig. 5). FC networks that
changed significantly were mainly concentrated in frontal and limbic
networks: IFG / SFG, cingulate gyrus (CG) / MFG, inferior parietal lo-
bule (IPL) / OrG, and LOcC / MFG. Compared with FC with predictive
power (positive features and negative features, Fig. 3), longitudinal
change overlapped with two predictive FCs: right lateral area of OrG
(42,31,−9) / left dorsal area of CG (−4, −39, 31) and right lateral
area of OrG / right dorsal area of CG (4, −37, 32). To prove that the

Table 2
The predicted results of%HDRS and ECT remitters using three combinations of features with LOOCV.

Positive features (PF) Negative features (NF) Positive & Negative (PNF)
correlation r/p 0.27/2.30×10−3 0.51/6.20× 10−10 0.46/7.84× 10−8

RMSE 0.38 0.33 0.34
NMRSE 0.22 0.19 0.20

Predicted Predicted Predicted Predicted Predictedremitter Predictednon-remitter
remitter non-remitter Remitter non-remitter

Ture remitter 14 33 24 23 19 28
True non-remitter 11 64 6 69 6 69
Sensitivitya 29.79% 51.06% 40.42%
Specificitya 85.33% 92.00% 92.00%
PPVa 56.00% 80.00% 76.00%
NPVa 65.98% 75.00% 71.13%
Accuracya 63.93% 76.23% 72.13%
Balanced accuracy 57.56% 71.53% 66.21%

a Abbreviations: ECT, electroconvulsive therapy; HDRS, Hamilton Depression Rating Scale; DEP, major depressive disorder; RMSE, root mean squared prediction
error; NRMSE, normalized root mean squared prediction error; NPV, negative predictive value; PPV, positive predictive value.

Fig. 3. The identified consensus FCs (extracted
in all 122 loops) and the mean contribution
weights of consensus FCs between each pair of
the 24 anatomically defined macroscale areas.
The left half and right half represented the
results of the positive and negative feature
networks respectively. Circle plots: the 246 FC
nodes were grouped into 24 macroscale brain
regions that were anatomically defined by the
Brainnetome Atlas. Each line indicated that the
FC between the two nodes had been repeatedly
extracted 122 times in all loops. Matrix plots:
rows and columns represented predefined
macroscale regions in Brainnetome Atlas, and a
bigger and darker circle represented a higher
contribution weight. Names of 24 macroscale
regions were colored according to their lobe
locations.
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overlap was not accidental, we performed permutation tests. The dice
coefficient (dice=2|x∩y|/(|x|+|y|)) for two edges overlap between the
41 longitudinal edges and the predictive edges (179 positive FC and
101 negative FC) was 0.0125. Then, we randomly selected 41 edges in
1000 times to test the number of overlaps with the predictive edges.
There were only 45 times in which the number of overlapping edges
was equal to or larger than two, so p value determined with permuta-
tion testing were 0.046, which determined that this was more likely
than would occur by chance. Second, treatment-responsive networks
(remitter/non-remitter contrasts and regression analysis with%HDRS)
were not significant (FDR-corrected p > 0.05).

4. Discussion

One of the goals of identifying biomarkers and the underlying sys-
tems-level neural mechanisms of successful response is to achieve in-
dividualized prediction of clinical outcomes, which can play a guiding
role in clinical practice (Sui et al., 2018). The present study had modest
predictive accuracy for individual ECT response based on the

combination of whole-brain FCs when implementing a generalized
prediction framework. The positive feature network and the negative
feature network were extracted as predictors of the change in HDRS-17,
achieving 63.93% and 76.23% accuracy of remission and non-remis-
sion, respectively. The accuracy for combined positive and negative
features was 72.13%. The prediction algorithm also predicted the post-
ECT depression rating (maximum r=0.51, while the corresponding
NRMSE is only 0.19). We also assessed longitudinal changes in FC in
predominately frontal and limbic networks. Several of the longitudinal
change FCs were also associated with prediction, but treatment re-
sponsive networks were not identified with the FC data. In the fol-
lowing section, we discuss our findings in the context of ECT predictive
and treatment responsive biomarkers and translational implications.

To date, most ECT prediction investigations have focused on sMRI
(Cao et al., 2018; Jiang et al., 2018a; Redlich et al., 2016; Wade et al.,
2016, 2017). The few resting state fMRI prediction investigations have
either utilized data reduction with independent component analysis
(van Waarde et al., 2014) or combined rs-fMRI features with other
imaging modalities to improve accuracy (Leaver et al., 2018). Our

Fig. 4. The most relevant circuits of positive features and negative features association with treatment response. Each FC node was colored according to their lobe
locations.
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investigation utilized novel methods to assess both positive (increased
FC strength) and negative features (decreased FC strength or degree of
anti-correlation) associated with ECT response from whole brain rs-
fMRI. The predictive performance of the extracted negative features
was significantly better than that of the positive features for both pre-
dicting post-ECT depression severity (HDRS) and remission status,
which may be due to the general decrease of brain functional network
connectivity in depressive episodes, and the extent of the decrease may
be related to recovery after ECT. Similar to previous investigations
(Jiang et al., 2018a; Leaver et al., 2018), our prediction results had
strong representation from frontal and temporal networks. Specifically,
the positive features were represented subcortical /frontal and sub-
cortical / temporal FC. The negative features had a narrower re-
presentation with the inferior frontal gyrus / temporal FC. Our overall
accuracy rates were below the 80% accuracy, which is suggested as the
standard for clinical utilization (American Psychiatric
Association, 2012). The lower accuracy of this investigation may be a
function of the larger, multi-site dataset (relative to other ECT predic-
tion studies). A larger dataset may result in less over-fitting or de-
pendency on the test dataset with improved generalizability at the ex-
pense of lower accuracy. Furthermore, our rs-fMRI results are less
robust than a previous sMRI prediction analysis with a smaller but
overlapping sample (Jiang et al., 2018a). Aside from the limitations of
the current investigation, comparing these two investigations suggests
that pre-ECT sMRI may have more predictive potential than rs-fMRI.
Nonetheless, our results are consistent with previous ECT-imaging
prediction studies that utilized smaller sample sizes (Redlich et al.,
2016; van Waarde et al., 2014).

Previous whole brain sMRI prediction investigations have not de-
tected an intersect between predictive and treatment responsive net-
works (Jiang et al., 2018a; Redlich et al., 2016). These previous in-
vestigations identified smaller predictive and treatment responsive
networks based on sMRI features. In the current investigation, the 41 FC
networks demonstrating longitudinal change were not related to anti-
depressant response and are subsequently referred to as “longitudinal-
change networks” as opposed to “treatment-responsive networks” for
clarity. The predictive FC overlapped with FC networks demonstrating
longitudinal change with ECT with the right orbital and cingulate gyri.
The right hemisphere changes in longitudinal change networks are
consistent with previous ECT-imaging investigations demonstrating
neuroplasticity ipsilateral to right unilateral electrode placement
(Abbott et al., 2014; Bouckaert et al., 2015). The right orbital frontal
cortex was also identified as a top-ranked feature in a recent ECT pre-
diction investigation (Leaver et al., 2018). The overlap of predictive and
longitudinal-change biomarkers may have implications in the context of
the development of more focal stimulation patterns with an identified
target region as well as the elucidating the relationship between

predictive and treatment responsive biomarkers.

5. Limitations

Some limitations of this investigation should be acknowledged.
First, although the sample size of this paper was larger than previous
studies, it was still relatively small considering that the feature di-
mension of whole-brain FCs was high. Thus, further work in larger
samples with validation on multiple independent datasets is preferred,
as did in Jiang et al. (2019a,b). Second, before baseline assessment
(pre-ECT), UCLA subjects had gradually reduced and stopped the use of
antidepressants. However, a subset of the UNM subjects received psy-
chotropic medications before baseline scanning and throughout the
ECT series. Simultaneous use of some antidepressant and antipsychotic
treatments may work in conjunction with ECT for some patients and
share a similar but less effective mechanism of action (Austin et al.,
2001). Specific clinical, illness and treatment features (number of de-
pressed episodes, illness course and onset, total number of ECT treat-
ments, etc.) were not assessed in this investigation and will be the focus
of a following study. However, we did perform a more conservative
covariate control analysis that demonstrated similar results (Supple-
mental Material Section 5). Finally, our study design did not include an
active control group treated with alternative antidepressant treatments
(pharmacotherapy, transcranial magnetic stimulation). Thus, we are
unable to compare the probability of response to ECT relative to al-
ternatives (pharmacotherapy), which would be highly relevant to
clinical decision making during the ECT consultation. We are unable to
exclude other factors (regression to the mean, placebo response, other
psychosocial factors) that may be responsible for longitudinal changes
in depression severity or the specificity of the identified prediction
network to ECT.

6. Conclusion

To the best of our knowledge, this is the largest sample size for an
ECT prediction investigation to date. Despite the use of multi-site data
and the increased sample size, our data-driven methods were able to
produce only comparable accuracy results relative to previous, smaller,
single site investigations though benefit from increased generalizability.
Accuracy and generalizability may be improved with different atlases,
multi-modal imaging (fusion of sMRI and rs-fMRI) and incorporating
clinical and demographic features into the predictive analysis. Future
work could leverage group independent component analysis (ICA) de-
noising and/or the use of ICA components instead of atlas-based re-
gions, which provide additional protection against artifacts (Du et al.,
2016). In addition, longitudinal study designs where only treatment
resistant patients advance to the next phase (for example,

Fig. 5. Functional connectivity networks changed
significantly before and after ECT and the brain
regions corresponding to those FCs in response to
ECT therapy. Circle plots: the 246 FC nodes were
grouped into 24 macroscale brain regions that
were anatomically defined by the Brainnetome
Atlas. Each line indicated that functional con-
nectivity changed significantly before and after
ECT (paired t-test, p < 0.01, FDR corrected).
Matrix plots: rows and columns represented pre-
defined macroscale regions in Brainnetome Atlas,
and a bigger and darker circle represented a bigger
number of FCs. Names of 24 macroscale regions
were colored according to their lobe locations.
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pharmacotherapy to transcranial magnetic stimulation, to ECT) could
elucidate treatment-specific biomarkers. ECT prediction imaging in-
vestigations will not replace but may augment clinical decision making
where the probability of benefit (response) are less robust or clear
(Dombrovski et al., 2005; Haq et al., 2015). Future research may utilize
similar methodology with ECT-mediated neurocognitive impairment to
further improve the individualization of the risk and benefit procedural
discussion. Finally, prediction studies may improve accuracy with
methods to recognize diagnostic and phenomenological heterogeneity
such that sub-groups may have unique patterns of predictive bio-
markers as opposed to a singular diagnostic or procedural biomarker of
eventual clinical outcome (Drysdale et al., 2017).
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