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Abstract

Background: Currently there is a high prevalence of humor disorders such as anxiety and depression throughout
the world, especially concerning advanced age patients. Aniba riparia (Nees) Mez. (Lauraceae), popular known as
“louro”, can be found from the Amazon through Guianas until the Andes. Previous studies have already reported
the isolation of alkamide-type alkaloids such as riparin III (O-methyl-N-2,6-dyhydroxy-benzoyl tyramine) which has
demonstrated anxiolytic and antidepressant-like effects in high doses by intraperitoneal administration.

Methods: Experimental protocol was conducted in order to analyze the anxiolytic-like effect of riparin III at lower
doses by intravenous administration to Wistar rats (Rattus norvegicus) (n = 5). The experimental approach was
designed to last 15 days, divided in 3 distinct periods of five days: control, anxiogenic and treatment periods. The
anxiolytic-like effect was evaluated by experimental behavior tests such as open field and elevated plus-maze test,
combined with urine metabolic footprint analysis. The urine was collected daily and analyzed by 1H NMR.
Generated data were statistically treated by Principal Component Analysis in order to detect patterns among the
distinct periods evaluated as well as biomarkers responsible for its distinction.

Results: It was observed on treatment group that cortisol, biomarker related to physiological stress was reduced,
indicating anxiolytic-like effect of riparin III, probably through activation of 5-HT2A receptors, which was
corroborated by behavioral tests.

Conclusion: 1H NMR urine metabolic footprint combined with multivariate data analysis have demonstrated to be
an important diagnostic tool to prove the anxiolytic-like effect of riparin III in a more efficient and pragmatic way.
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Background
Currently there is a high prevalence of humor disorders,
such as anxiety and depression [1, 2]; concerning advanced
age patients, these psychiatric disorders are considered even
more prevalent [3]. Many factors are involved in the eti-
ology of anxiety, including genetics, gender, brain chemistry
and incontrollable stressful events [4]. Previous research
have demonstrated that medicinal plants have anxiolytic-
like activity [5–10] and have been successfully used by folk
medicine [11]. Aniba riparia (Nees) Mez. (Lauraceae) is a
popular plant well known as “louro”, found from the Ama-
zon and Guianas until the Andes, rich in Alkamide-type al-
kaloids, which were isolated from the green fruit of this
species, such as riparin III (O-methyl-N-2,6-dyhydroxy-
benzoyl tyramine) [12–14]. Previous in vivo studies have
demonstrated anxiolytic and antidepressant-like effects of
riparin III in high doses by intraperitoneal and oral admin-
istration [15]. Moreover, alkamides with similar chemical
structures, such as riparin I and II have already demon-
strated antinociceptive [16, 17] anxiolytic [18] and
antidepressant-like effects [19]. Besides, semisynthetic
chemicals (riparin A) have also proved its anxiolytic-like
effects [20], supporting the important pharmacological ac-
tivity of riparin and its variations.
Metabolomics is the science that studies the endogenous

metabolites as a reflection of pathophysiological processes
[21–24]. These metabolites play an important role as bio-
markers, once its dynamic balance at biological fluids and
tissues indicates a homeostasis state [25, 26]. In this con-
text, abnormal metabolite processes or alterations in the
metabolic balance caused by exogenous products
characterize a certain profile that can be analyzed by tech-
niques such as nuclear magnetic resonance (NMR) and
mass spectrometry (MS) [21]. NMR is a technique that pro-
vides qualitative and quantitative measures of several com-
pounds contained in a complex matrix [27]; unlike MS,
NMR does not require complex pre-treatment of samples.
Recently, numerous techniques have been developed in
order to characterize metabolites and biological fluids [28].
The data obtained from these techniques treated with a
chemometric approach can be used for clinical applications
or as diagnostic tools [29], therefore, metabolomics plat-
form associated with principal component analysis (PCA)
[30] has demonstrated to be a very useful method in order
to interpret multivariate data generated from the analyses
of biological matrixes such as urine [31–33]. No bioanalyti-
cal method regarding determination of metabolic profile of
anxious and stressed rats has been previously reported in
the literature, as well as the detection of biomarkers
correlated to riparin III administration at lower doses.
Therefore, this present study has demonstrated the
psychopharmacological effect of riparin III, through
metabolic profiling of rats urine samples, performed
by 1H NMR combined with multivariate data analysis.

Methods
Chemicals and reagents
Riparin III was obtained by organic synthesis and do-
nated from Dr. Stanley Juan Chavez Gutierrez, and Dr.
José Maria Barbosa Filho from Universidade Federal da
Paraíba, Brazil, according to methodology previously de-
scribed in literature [34].
During the whole experiment it was used ultra-pure

water (Type I) obtained by Option-Q Purelab labwater-
system (Elga, São Paulo, Brasil), deuterated water with
sodium salt of 3-(trimethylsilil) propionic acid-d4 (TSP,
0.1% [w/v] in D2O) (Sigma-Aldrich, Brasil). Phosphate
buffer (0.2 M Na2HPO4/NaH2PO4, pH 7.4).

Standard solutions preparation
Riparin III was diluted in ultra-pure water with 0.1% of cre-
mophor EL (Sigma-Aldrich, Brazil) in order to obtain an
equivalent solution to a 5mg.kg− 1 dose, which was injected
in each rat the correspondent value in volume of the
solution.
Riparin III was also diluted with 50 μL of acetonitrile,

HPLC grade (Tedia, Brazil), and phosphate buffer 0.2M in
order to obtain a final solution of 1mg.mL− 1 as NMR ref-
erence standard using the PRESAT method and TOCSY.
Another sample of riparin III was also diluted with 50 μL
of acetonitrile and rat urine in order to obtain a solution
of 1mg.mL− 1 as NMR reference standard which was also
evaluated by the PRESAT method and TOCSY, this same
procedure was repeated using water instead of urine for
further observation of chemical shifts.

Animals
The wistar rats (Rattus norvegicus), weighing approxi-
mately 250 g, 90 days old, were obtained from the Prof.
Dr. Thomas George bioterium and maintained on stand-
ard laboratorial conditions: controlled temperature (21 ±
1 °C), 12 h light-dark cycle (lights on from 07:00 AM to
7:00 PM), with “pellet” type diet (Presence© – rats and
mice, Brazil) and water ad libitum. The whole experi-
ment was approved by the ethics committee in animal
research (ECAR) under protocol n° 0107/08, from the
Universidade Federal da Paraíba, João Pessoa/Paraíba,
Brazil. The protocols are in agreement with the guide-
lines of the National Institute of Health (NIH Publica-
tion, Health Research Extension Act of 1985 Public Law
99–158, November 20, 1985 “Animals in Research”) re-
garding animal care in laboratory.

Experimental protocol
Firstly, the experimental protocol was performed with five
Wistar rats, which were set in metabolic cages for 3 days
[35], individually housed and maintained on standard labor-
atorial conditions. After 3 days, the animals remained for 5
days in its cages with the same conditions, with urine
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collection in every 24 h, for further analysis; this period was
termed as control period (CP). The method was adapted
from Aikey, Nyby [36], Broadhurst [37] and Broadhurst
[38]. After the control period (CP), on the 5th day, the ani-
mals were submitted to the open field (OF) and elevated
plus-maze tests (EPM), followed by the anxiogenic period
(AP), which lasted 5 more days. The animals of AP went
through food restriction in alternate days (24 h with food,
followed by 24 h without food) [39, 40]. During this period,
the animals were also placed collectively in the open field
instrument and were submitted in a certain period of the
day (10:30 a.m. - 03:00 GMT) to a sequence of sounds,
from 5Hz to 90 kHz, with an intensity of 80 dB, for 10min
[41, 42], these same procedure was repeated in the after-
noon (4:30 p.m.− 03:00 GMT). The animals also went
through forced swimming in plastic container (37 cm of
diameter and 42. 5 cm of height, containing 30 cm of water
a 25 ± 2 °C), individually, once a day, for 3min. After each
test, the animals were retrieved, dried and returned to its
respective cages [43], the execution of the procedure was
conducted twice a day, during the morning (10:30 a.m. −
03:00 GMT) and afternoon (4:30 p.m. − 03:00 GMT). On
the 5th day of AP, the animals went through open field and
elevated plus-maze tests. Posteriorly the animals were sub-
mitted to a period termed as treatment period (TP), for five
more days, where they went through the same manipula-
tion of AP, with an additional intravenous administration
of riparin III, every day at 10:15 a.m. Finally, on the 5th day
of TP, the animals were also submitted to open field and
elevated plus-maze tests. After these experiments, the
animals were anesthetized with ketamine hydrochloride
(150mg/kg), by intramuscular administration and xylazine

hydrochloride (11mg/kg) by intraperitoneal administration
in order to eliminate the corneal reflex [44], after verifica-
tion of the absence of this reflex, the animals suffered eu-
thanasia by potassium chloride administration (2mmol/Kg)
followed by cervical dislocation [45]. Experimental design
concerning animal manipulation and sample collection is
demonstrated in Fig. 1.

Behavioral tests
Elevated plus-maze test
The elevated plus-maze test (EPM) was conducted with a
plus-shaped apparatus (10 × 10 cm), made of acrylic, with
two open (50 × 10 × 0.5 cm) and two enclosed arms (50 ×
10 × 42 cm), slightly elevated (54,5 cm), specifically designed
to study behavioral changes predominantly associated with
anxiety [46], once general behavior of rodents related to
anxiety is the avoidance of open and elevated spaces [47,
48]. For behavioral evaluation, rodent was placed at the
central platform facing the open arm, to manually measure
the number of entries in the open and closed arms, as well
as the time of permanence in both open arms, during the 5
min test [49]. The entry to one arm was only scored when
the four paws of the animal were fully inside. During the 5
min test the behavior of rodent was recorded by video cam-
era (SONY, model DSC-W180).

Open field test
The open field test (OF) was performed with a specific ap-
paratus from Insight Equipamentos Científicos, model EP
154, made with acrylic, white floor with 70 cm2 area,
delimited by black stripes in order to keep animal locomo-
tion score. The field is constituted of two concentric

Fig. 1 Experimental design concerning animal manipulation and sample collection
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circles, one circle with 30 cm of diameter and the other
with 60 cm, in which the latter is delimited by a transpar-
ent cylinder of 50 cm (height) × 60 cm (diameter) with an
illumination level of 225 1x. The behavior was scored ac-
cording to definitions previously stablished [50]: the data
were registered according to the number of ambulations
(number of squares explored by each mouse with the four
limbs), grooming, rearing and defecation. During the 5
min test, the animal behavior was recorded by video cam-
era (SONY, model DSC-W180).

Urine collection
This experiment was conducted for 15 days (excluding the
first 3 days), all animals were weighed, the ration was mea-
sured during feeding days for consumption observation,
volume of consumed water was also measured every 24 h,
as well as the urinary volume and its pH, monitored with
Merck tape. Aliquots of 300 μL of urine from each rodent
were sampled for instant analysis every 24 h.

Measure of urine samples by 1H NMR spectroscopy
To each aliquot (300 μL) of urine, from each animal,
300 μL of phosphate buffer were added (0,2M Na2HPO4/
NaH2PO4, pH 7.4) in order to minimize chemical shift vari-
ation. After mixing, the sample was homogenized in vortex
for 30 s, followed by centrifugation at 14000 x g, during 10
min, at 15 °C. The supernatant (500 μL) was retrieved and
mixed with 60 μL of D2O with TSP 0.1% [w/v], for “lock-
ing” field frequency and the sodium salt of 3-(trimethylsilil)
propionic acid-d4 (TSP, 0.1% [w/v] em D2O) was used as
internal standard, as chemical shift (δ 0) reference.
The aliquots were transferred to 7 mm NMR tubes
[51], and all the spectra were determined by a 500
mHz spectrometer from Varian, operating at 30 °C
and spin frequency of 20 Hz. Unidimensional spectra
were acquired by the PRESAT methodology with the
following parameters: spectral window 8012.8 Hz, 32 K
complex data points, 64 transients, acquisition time
2.3 s, relaxation time 2.0 s, pulse observation 4.56 μs
with a 45° angle, line-broadening of 0.5 Hz. Additional
conditions such as saturation time at 1.5 s and satur-
ation power at 10 dB were stablished to suppress the
water signal [52, 53]. Confirmation of the metabolites
structure was achieved by bidimensional spectra ac-
quired with TOCSY methodology following the pa-
rameters: spectral window 8012.8 Hz, 32 K complex
data points, 8 transients, acquisition time 2.3 s, relax-
ation time 2.0 s, pulse observation 4.56 μs with a 45°
angle, line-broadening of 0.5 Hz and additional condi-
tions such as saturation time of 1.5 s and presatura-
tion of the water peak with saturation power at 10 dB
for suppression. Confirmation of the substances were
also done by literature research.

Statistical analysis
Statistical analysis of 1H NMR spectra from urine samples
Spectral intensities (peaks) were integrated into regions or
binnings of equal width (0.02 ppm) comprising the range
from 0.005 to 10 ppm. Spectral regions, corresponding to
residual water (δ 4.75) were suppressed from all samples, in
order to avoid efficiency variation of the process. Spectra
were referenced to TSP as internal standard [53]. The 1H
NMR spectroscopic data were reduced into 496 integral
segments of equal length (0.02 ppm) and were exported
into ASCII format to produce a data matrix of sample ver-
sus integral segments. Integrated areas were normalized to
equal the total area and were submitted to Principal Com-
ponent Analysis, using “The Unscrambler”, version 9.7 as
statistical software (CAMO Process AS, Norway).

Statistical analyses of anxiety parameters from open field
test, elevated plus-maze test, physiologic parameters and
metabolic peaks
The data obtained were evaluated with one-way ANOVA
followed by Bonferroni post hoc test, results with p values
< 0.05 were considered statistically significant.

Results
The elevated plus-maze is a validated test designed to
evaluate the effects of anxiolytic drugs, once rodents have
natural fear of heights and open spaces, therefore, in this
particular test, the fact that the animal avoids open arms,
characterize an anxiety-like behavior [47, 54].
The results have demonstrated that there was no sig-

nificant difference among CP, AP and TP groups, con-
sidering the number of entries on open arms. The same
was observed concerning closed arms entries. However,
the number of entries on closed arms by all tested
groups were significantly higher than the number of en-
tries on open arms by its respective groups (Fig. 2a).
Regarding the remaining time of the animals on open

and closed arms, there was no significant change among
groups. However, CP, AP and TP groups have remained
more time on closed arms than its respective groups on
open arms (Fig. 2b).
Therefore, the TP group, treated with Riparin III did

not present a decrease regarding the number of entries
or remaining time on closed arms when compared to
CP and AP groups, indicating an anxiolytic-like effect.
Comparing altogether (number of entrances to open

arms, closed arms and remaining periods), it could be
observed that there was no alteration in associative
memory and processing [55]. The use of drugs with hyp-
notic or sedative activity also diminishes mobility [56],
in this context, treatments that block conditional fear
may not necessarily block anxiety [57]. Therefore, stress
would be defined as a threat to the homeostasis, which

Golzio dos Santos et al. BMC Complementary Medicine and Therapies          (2020) 20:149 Page 4 of 13



may be restored by a complex repertoire of physiological
and behavioral responses concerning its adaptation [58].
The open field test is used to evaluate the locomotor ac-

tivity of the animal as an essential parameter to analyze the
drug effect towards central nervous system (CNS). On this

specific test, the animal is submitted to a new environment,
promoting a tendency to be explored, evoking fear and
curiosity, being considered a behavioral model [59]. The
principle of this test is based on the increasing number of
ambulations and rearings frequencies, characterizing an

Fig. 2 Elevated Plus-maze test. Numbers of entries to arms (a). Time of permanence on the open and closed arms (b). CP-o: Control Period (open
arms). CP-c: Control Period (closed arms).AP-o: Anxiogenic Period (open arms). AP-c: Anxiogenic Period (closed arms). TP-o: Treatment Period
(open arms). TP-c: Treatment Period (closed arms)

Fig. 3 Open Field test. Mobility (a). rearings (b). groomings (c). feces amount (d). CP: Control Period. AP: Anxiogenic Period. TP: Treatment Period
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anxiolytic-like behavior, while the reduction of locomotion
stands for sedative effect [60].
There was also observed no alteration of fear, when

mobility was evaluated, showing no significant differ-
ences among periods (CP, AP and TP) (Fig. 3a), demon-
strating that at this dose the drug has no hypnotic or
sedative effect, as well as fear inhibition [61]. On Fig. 3b,
it was observed that the treatment with riparin III (TP)
has diminished significantly the rearing frequencies of
the animals, when compared to AP, and has not pre-
sented significant difference when correlated with CP,
suggesting that the drug at this dose caused alteration
on alert behavior [62]. This same observation was cor-
roborated by evaluation of grooming (Fig. 3c), which has
decreased significantly when comparing TP to AP.
Moreover, TP did not present significant alteration when
related to CP, demonstrating anxiolytic-like effect of the
drug [63]. Number of defecations (Fig. 3d) has decreased
significantly when comparing CP to AP and TP, besides,
no significant difference was observed between AP and
TP, demonstrating that the anxiogenic facts have altered

the animals emotionally [64, 65], leading only to activity
decrease [66].
Concerning behavioral evaluation, it was observed that

the anxiogenic factors have stressed the animals during
the whole experiment, preserving the vigilant state and
leading the animals to escape and seek for safe places
[63], typical defensive reactions related to anxiety [67].
On Fig. 4a, concerning feeding, as physiological par-

ameter, measured by ration consumption, there was ob-
served significant difference between CP and AP (p <
0.0001), as well as, between CP and TP (p < 0.05), but no
significant difference between AP and TP.
The difference related to CP is due to the null values, reg-

istered during feeding restriction time of 24 h, nevertheless,
it was not observed the riparin III effect regarding hanger/
feeding parameter [68], when comparing AP to TP.
On Fig. 4b, regarding weight, as physiological param-

eter, there was observed a significant difference between
CP and AP (p < 0,0001), as well as, between CP and TP
(p < 0.0001), but no significant difference between AP
and TP; these differences presented, do not reflect

Fig. 4 Evaluation of physiological parameters. Ration weight (a). Animal Weight (b). Urinary volume (c). Water consumption volume (d). CP:
Control Period. AP: Anxiogenic Period. TP: Treatment Period
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directly on the anxiogenic factors or the riparin III to-
wards the CP due to fee restriction of 24 h, suggesting
the influence of innutrition towards substantial weight
loss [69–72].
On Fig. 4c, regarding urinary volume, it was detected a

significant difference between CP and AP (p < 0.05), CP
and TP (p < 0.0001), as well as between AP and TP (p <
0.0001). These data have demonstrated that during
anxiogenic period, physiological alterations decreased
the average urinary volume eliminated by the animals,
corroborating with the data of Ullrich, Lutgendorf [73].
The use of riparin III (5 mg.kg− 1) has reduced the aver-
age urinary volume [74]. Regarding bladder functions,
considering that the micturition reflex is controlled by
inhibitory mechanisms, and that the storage urine func-
tion is more important than micturition reflex by evolu-
tionary reasons [75], the serotoninergic system may be
involved at blocking mechanisms over afferent nerve of
micturition reflex and urethra contraction, probably
through glycinergic neurone inhibition, from lumbosa-
cral marrow. Furthermore, the 5-HT2A receptors may be
involved on bladder and urethra functions as well. The
results suggest that riparin III has effect over the 5-
HT2A receptors from amygdala [76], once this drug has

demonstrated its anxiolytic-like effect on open field tests,
by decreasing activity parameters, such as grooming and
rearing (Fig. 3 B e D) [77]; however, it has presented no
effect over reward system which has the 5-HT1B, 5-
HT2A and 5-HT2C receptors [78].
Previous research has demonstrated that behavioral re-

sponses are related to visceral responses, which is
reflected by the reduction of urinary volume after riparin
III treatment [75, 79] proving stress treatment reduces
urinary incontinence.
On Fig. 4d, physiologic parameters such as water con-

sumption (24 h), did not demonstrate significant differ-
ence among periods (CP, AP and TP).
Spectral analyses of 1H NMR from urine samples of

CP, AP and TP (Fig. 5) were submitted to multivariate
data analysis, using PCA as statistical tool in order to
visualize and detect slight differences among the distinct
periods [80–82].
PCA analysis was used in order to verify differences

among samples and classify them according to its 1H
NMR results, resulting in groups or clusters, reflecting on
its distinct periods. According to the scores plot (Fig. 5a)
it could be observed the formation of three distinct
groups, classified as CP, AP and TP, which according to

Fig. 5 PCA Scores plot of urinary 1H NMR spectra regarding metabolite concentration (a), (b) and (c). The colors reveal the different analysis
periods (CP – blue, AP – red, TP – green). Numbers represent the days of each analysis. (CP – Control period, AP – Anxiogenic Period and TP –
treatment period). a Profiles of 3 analyzed periods. The best adjustment and predictability for these models were evaluated by R2 = 0.71 and
Q2 = 0.89). b Profiles of AP and TP on days of food restriction. The best adjustment and predictability for these models were evaluated by R2 =
0.76 and Q2 = 0.85). c Profiles of AP and TP on days of ad libitum feeding. The best adjustment and predictability for these models were
evaluated by R2 = 0.62 and Q2 = 0.83). d Loadings plot of urinary metabolites responsible for the differentiation of the 3 analyzed periods (CP, AP
and TP)
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the loadings plot, (Fig. 5d) were differentiated by influence
of five significant components [83]: cortisol (δ 1.91 s), cre-
atinine (δ 3.03 s), riparin III (δ 3.69 s), 5-hydroxy-L-tripto-
phan (δ 4.03dd) and allantoin (δ 5.38 s), which were
identified with the aid of TOCSY technique and con-
firmed by scientific literature [84–87].
The statistical analysis on Fig. 5b has also demonstrated

that during food restriction, when analyzing only AP and
TP, the discrimination between groups was more evident,
with a higher variance of AP along the PC1 dimension,
and a R2 = 0.76. On the other hand, during ad libitum
feeding the R2 correlation has diminished to 0.62 (Fig. 5c),
indicating that feeding reduces stress.
It could be observed in the loadings plot (Fig. 6), vari-

ables or peaks responsible for the differentiation of each
period or group. Regarding the loadings plot of control
period (CP), on Fig. 6a, it was demonstrated that the
most important peaks responsible for its segregation
were δ 2.53 and δ 2.63 for cyanocobalamin (vitamin
B12), δ 1.91 for cortisol, δ 5.38 for allantoin and δ 5.78
for urea, whereas the most influential peaks of the load-
ings plot concerning the anxiogenic period (AP) (Fig.
6b), were δ 1.91 for cortisol and δ 3.03 for creatinine.
Moreover, in relation to the loadings plot of treatment
period (Fig. 6c), it has demonstrated that the most influ-
ential peaks towards this particular group were δ 3.69
for riparin III, δ 1.91 for cortisol, δ 3.03 for creatin-
ine, δ 5.38 for allantoin, δ 4.03 for tryptophan and δ
5.78 for urea.

The metabolic profile of control period (Fig. 6a) is ba-
sically defined by metabolites from food constituents,
among which, the peaks δ 2.53 and δ 2.63 from cyano-
cobalamin were one of the most important components
from the ration provided, rich in B-complex vitamins.
The presence of the cortisol peak is suggestive due to
the permanence of the animals in a cage, with no phys-
ical activity during the whole experiment [1]; regarding
the peaks of allantoin (δ 5.38) and urea (δ 5.78), it would
be due to the expected physiology of rodents, cataboliz-
ing nitrogenized products. The anxiogenic period (Fig.
6b) was characterized by the presence of cortisol (δ 1.91)
and creatinine (δ 3.03), which might be related to phys-
ical effort, caused by forced swimming, besides food re-
striction [88–90], indicating that these factors would be
related to significant weight loss presented on Fig. 4b,
once bioterium animals are sedentary, therefore the
presence of these metabolites were not significantly im-
portant on EPM (Fig. 2) or OF tests (Fig. 3a). Regarding
TP profile, the cortisol peak (δ 1.91) still had influence
over this period, demonstrating that anxiogenic factors
have remained, corroborating with Fig. 2 and Fig. 3a.
The presence of creatinine (δ 3.03) and allantoin (δ 5.38)
have indicated high catabolism of proteins, due to food
restriction, however, the presence of the peak related to
riparin III (δ 3.69) was a very important parameter for
this group, reflecting on the animal behavior of TP
demonstrated by Fig. 3b, with the strong reduction of
rearing and grooming (Fig. 3d) when compared to AP.

Fig. 6 Main loadings variables responsible for group differentiation. Loadings variables of control period (CP) (a). Loadings variables of anxiogenic
period (AP) (b). Loadings variables of Treatment Period (c)
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Furthermore, the observation of no significant difference
between TP and CP regarding these two specific behav-
iors has reinforced its anxiolytic-like effect [62, 66, 91].
The significant influence of tryptophan peak (δ 4.03)

on TP (Fig. 6c) has suggested a deviation on metabolic
path towards biosynthesis and/or storage of serotonin,
once tryptophan is one of serotonin’s precursor [92].
ANOVA one-way analysis, applying Bonferroni post-test
upon the tryptophan areas of urine samples (Fig. 8b) has
demonstrated significant difference between CP and AP
periods, as well as between CP and TP, but did not
present significant difference between AP and TP. The
peak δ 4.03 was predominantly detected on animals
from the TP group, indicating that those animals were

under anxiolytic-like effect [57]. However it was also de-
tected on treated animals, a peak related to riparin III (δ
3.69) and a decrease related to cortisol (δ 1.91), indicat-
ing an antagonistic effect, or a reduction of cortisol
levels due to riparin treatment, consequently inhibiting
the anxiogenic induction.
Regarding the urea peak (δ 5.78) on Fig. 6, it has pre-

sented a significant decrease on CP, when correlated to
AP and TP, but it was not observed a significant differ-
ence between AP and TP, which would be due to
physiological needs of the animals in order to obtain en-
ergy [93], once they went through physical effort and
food restriction, corroborating with creatinine peaks at δ
3.03, observed on Fig. 7a, which has increased

Fig. 7 Creatinine (a), Urea (b), Allantoin (c), Cortisol (d), Tryptophan (e) and Riparin peak (f) after physical effort and food restriction. CP: Control
Period. AP: Anxiogenic Period. TP: Treatment Period. p < 0.05 (*). p < 0.001 (**). p < 0.0001 (***)
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significantly on AP when compared to CP. The energetic
needs were supplied by catabolism provided from muscu-
lar tissue [94]. The lack of significant difference between
CP and TP, as well as between AP and TP (Fig. 7a), have
suggested that during TP, there was a decrease concerning
muscular stress, but no difference was detected on the
previous period (AP) [95].
The Fig. 7 d and f have indicated an antagonistic ef-

fect, correlating cortisol (δ 1.91) and riparin III (δ 3.69),
which were also supported by behavioral studies (Fig. 3
b and d). According to statistical analysis, it was ob-
served a significant increase of riparin III (Fig. 7f) when
comparing CP to TP, and AP to TP, besides, it was also
observed a significant reduction of cortisol (Fig. 7d)
when correlating AP to TP and no significant difference
between CP and TP, demonstrating that the increase of
riparin III has reduced the cortisol levels; consequently,
the behavioral effects caused by cortisol (Fig. 3b and d)
have diminished significantly due to the presence of
riparin III, promoting anxiolytic-like effect [96, 97].
On Fig. 8 it could be highlighted the increasing area of

peak δ 3.69 from day 11 to 15, corresponding to TP,
however, on days 13 and 15, it was observed smaller
areas, closer to day 11. The animals went through food
restriction on alternate days, from day 5 to 15, with no
ration at odd days. Riparin III is strongly bonded to al-
bumin, and pre-albumin, considered by previous studies
an indicative parameter of chronic innutrition [98], and
acute innutrition respectively [99], along with high levels
of creatinine and allantoin (Fig. 7 a and c) on AP and
TP periods. Therefore, suggesting that on odd days, dur-
ing AP and TP periods, the animals suffered of acute
innutrition aggravated by forced swimming. It was also
observed that on days 12 and 14, peak area at δ 3.69 has
increased to an average value of 0.0793 ± 0.0175 (Mean ±
SEM) and 0.1558 ± 0.0141 (Mean ± SEM) respectively.
Pre-albumin has a half-life of approximately 48 h [100,
101] the average value of the peak area at δ 3.69 has

augmented 1.96 times when comparing day 12 and 14,
however, on days 13 (0.0289 ± 0.0109) and 15 (0.0282 ±
0.0055), these values came closer to day 11 (0.0180 ± 0,
0031). If on odd days, the concentration of pre-albumin
drops due to the increase of catabolism caused by food
restriction and physical effort, considering that its half-
life is of 48 h and that on even days the anabolism in-
creases due to food availability, consequently riparin III
(δ 3.69) has a half-life up to 12 h, and the minor values
at days 13 and 15 would be also due to the bond of
riparin III with pre-albumin.
Previous research have demonstrated anxiolytic and

antidepressant-like effect of riparin III in high doses by
intraperitoneal administration [102]. In this work, the
anxiolytic-like effect has been demonstrated at a lower
dose by intravenous administration supported by meta-
bolic profiling and behavioral tests. Moreover, it has
been speculated that, due to its anxiolytic-like effect,
riparin III in a 5mg.kg− 1 dose acts on serotoninergic
neurons [96] promoting a behavior controlled by amyg-
dala [103], once previous studies have already indicated
the role of amygdala on anxiety, specially its central core
[57]. 1H NMR data of urine samples were statistically
treated by principal component analysis in order to de-
tect patterns among the distinct periods evaluated, as
well as biomarkers responsible for its distinction [104].
Cortisol, biomarker related to physiological stress, poorly
indicates the psychological state [105], however it was
supported by not only behavioral tests such as OF and
EPM, but physiologic parameters analyses, that the re-
duction of cortisol by riparin III was related to anxiety
reduction probably through activation of 5-HT2A recep-
tors [75]. Previous study has demonstrated that behav-
ioral responses are related to visceral responses [75], in
this context, the reduction of urinary volume after
riparin III treatment [79] was also observed, corroborat-
ing with the cortisol level reduction, proving that stress
treatment reduces urinary incontinence.

Fig. 8 Riparin III peaks on urine samples between days 11 and 15. The x-axis represents the days of the analyses. Days 0 to 4: Control Period (CP),
days 5 to 10: Anxiogenic Period (AP) and days 11 to 15: Treatment Period (TP)
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Conclusion
Anxiolytic-like effect of riparin III has been demon-
strated by behavioral tests such as open field and ele-
vated plus-maze tests. The results were obtained at a
lower dose by intravenous administration to Wistar rats.
Moreover, it was not observed any hypnotic or sedative
effect towards the animals whatsoever, ergo, preserving
the vigilant state. These results were also supported by
metabolic profiling from urine samples, obtained by the
combination of 1H NMR analysis and statistical treat-
ment of its data by principal component analysis, which
could detect cortisol, creatinine, allantoin and trypto-
phan as biomarkers. Therefore, urinary metabolic
profiling by 1H NMR spectroscopy combined with
multivariate data analysis have demonstrated to be an
important diagnostic tool to prove the anxiolytic-like ef-
fect of riparin III in a more efficient and pragmatic way.
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