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Owing to internal homeostatic mechanisms, cellular traits may
experience long periods of stable selective pressures, during
which the stochastic forces of drift and mutation conspire to gen-
erate variation. However, even in the face of invariant selection,
the drift barrier defined by the genetic effective population size,
which is negatively associated with organism size, can have a
substantial influence on the location and dispersion of the long-
term steady-state distribution of mean phenotypes. In addition,
for multilocus traits, the multiplicity of alternative, functionally
equivalent states can draw mean phenotypes away from selective
optima, even in the absence of mutation bias. Using a framework
for traits with an additive genetic basis, it is shown that 1) opti-
mal phenotypic states may be only rarely achieved; 2) gradients
of mean phenotypes with respect to organism size (i.e., allometric
relationships) are likely to be molded by differences in the power
of random genetic drift across the tree of life; and 3) for any par-
ticular set of population-genetic conditions, significant variation
in mean phenotypes may exist among lineages exposed to identi-
cal selection pressures. These results provide a potentially useful
framework for understanding numerous aspects of cellular diver-
sification and illustrate the risks of interpreting such variation in
a purely adaptive framework.
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The field of theoretical population genetics typically consid-
ers the evolutionary behavior of alleles in a generic way,

usually assigning general selection coefficients and mutation
rates to alternative alleles. This platform has been enormously
successful at elucidating the combined roles of selection, muta-
tion, and drift in the evolutionary dynamics of single loci
and quantitative traits (1, 2). Nonetheless, there remains a
disconnect between theory, the underlying biology of specific
traits, and the constraints on key population-genetic parame-
ters that exist in different molecular, cellular, or phylogenetic
contexts. Often, a continuous distribution of mutational effects
is assumed such that any phenotype is viewed as being acces-
sible, but with no explicit connections with actual biological
features.

The details appear to matter in a number of contexts. For
example, many aspects of cell biology are effectively manifest in a
digital rather than an analog manner. Transcription-factor bind-
ing sites (typically no more than 12 bp in length) can be defined
in terms of the number of matches to the preferred motifs of
their cognate transcription factors (3, 4). MicroRNA-binding
site interactions and protein–protein interfaces can be viewed
in a similar manner (5). Posttranslational modifications such as
phosphorylation and ubiquitinylation (involved in many signal-
transduction and protein-disposal pathways) can be described in
terms of a small number of modified sites per protein (6). The
numbers of carbon atoms and double bonds in the fatty-acid tails
of lipids (generally fewer than 20 and 6, respectively) influence
membrane width and fluidity (7), and some have argued that
specific amino acids or nucleotides may be selected for on the
basis of numbers of carbon, nitrogen, or sulfur atoms (8, 9). Many
other examples could be given.

The restriction of simple molecular traits to discontinuous val-
ues may have unique evolutionary consequences. For example,
the optimum energy of molecular binding or transfer for a partic-
ular trait may be unattainable unless it coincides with an integer
multiple of the underlying granularity. If this is not the case, two
allelic states straddling the optimum may have nearly the same
fitness, resulting in an essentially neutral process of molecular
evolution combined with a permanent state of suboptimal fitness.
In addition, if certain suboptimal allelic states are more accessi-
ble by mutation, this can compete with the ability of selection
to promote higher-fitness states. As is discussed below, this is
virtually always the case, even in the absence of mutation bias.

The theory developed below has two central goals. First, given
the common view that all phenotypic variation can be explained
in terms of adaptation, it is desirable to consider the degree to
which phylogenetic lineages are free to diverge under a regime
of invariant selection pressure. Here, results will be given on the
extent to which expected mean phenotypes are subject to scal-
ing relationships (e.g., with organism size and/or population size)
associated with the power of random genetic drift (the drift bar-
rier) and on the degree to which populations exposed to identical
forces of mutation, selection, and drift are free to wander across
mean-phenotype space. Second, because the primary forces of
evolution, most notably the mutation rate and random genetic
drift, are nonindependent across the tree of life (10), considera-
tion will be given to how such covariation influences patterns of
variation.

General Theory
We start with a simple model with L equivalent sites (factors),
each with two alternative allelic states, + and −, contributing
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positively and negatively to the trait (Fig. 1). Under this model,
for all but the two most extreme genotypes, a multiplicity of
functionally equivalent classes exists with respect to the num-
ber of positive alleles, m , defined by the binomial coefficients.
As an example, for the case of L=4, there are five genotypic
classes (m =0, 1, 2, 3, 4, and 5), with multiplicities 1, 4, 6,
4, and 1, respectively (Fig. 1). With equivalent fitness for all
members (haplotypes) within a particular class, this variation in
multiplicity of states plays an important role in determining the
long-term evolutionary distribution of alternative classes. The
site-specific per-generation mutation rates from the − to the +
state, and vice versa, are defined as u01 and u10, respectively.
Unless stated otherwise, a haploid, nonrecombining population
will be assumed. The absolute population size consists of N
individuals, so that a de novo mutation has initial frequency
1/N . However, the effective population size, Ne , which is gen-
erally no greater than N and often considerably smaller, governs
the magnitude of random genetic drift and as discussed below
is defined by the remaining features of the population-genetic
environment (including the mutation bias and the strength of
selection).

This type of biallelic model has been widely exploited in
theoretical studies of the genetic structure of quantitative (mul-
tilocus) traits (2), including cell-biological features (4, 5). Most
quantitative-genetic theory on such systems has focused on
the equilibrium within-population variation under selection–
mutation balance in infinite-sized populations. However, in finite
populations, the stochasticity of mutation and drift ensures
that genotype distributions are not fixed. Instead, the mean
genotype is expected to wander over time within limits dic-
tated by the strength of selection and the structure of the
underlying genetic system. The goal here is to determine the
long-term probability distribution of genotypic means defined
by the joint forces of selection, mutation, and random genetic
drift. Justification of this quasi–steady-state view derives from
the fact that many internal cellular traits have functions (and
cytoplasmic environments) that likely remain relatively stable
for millions of years (even in the face of a changing external
environment).

A Single Biallelic Locus. As a point of departure, the case of a sin-
gle locus with reversible mutation will highlight several key points
and provide a useful backdrop for the evaluation of more com-
plex traits. Allele A (denoted as state 1 below) is taken to have a
fractional selective advantage s over allele a (denoted as state 0).
For this limiting case, previous work provides an exact solution
for the equilibrium mean frequencies of alleles (SI Appendix).
However, because the final expression is a bit cumbersome math-
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Fig. 1. Schematic for the transition rates between adjacent classes under
the sequential-fixation model for the case of L = 4 sites. This schematic read-
ily generalizes to any value of L. u01 and u10 are the mutation rates from −
to + allelic states, and vice versa, and fij is the probability of fixation of
a newly arisen mutation to allele j from a background of i, defined as SI
Appendix, Eq. S5. The number of − alleles in a class is denoted by m, and
except for the two extreme classes (m = 0 and m = 4), there are multiple
equivalent genotypic states within each class of genotypic values.

ematically, it is common in population genetics to use one of two
alternative approximations.

One extreme view is that drift is weak enough relative to
mutation and selection that the population can be treated as
effectively infinite in size, yielding SI Appendix, Eqs. S3a and S3b.
A second approach assumes a situation in which, relative to the
power of drift, mutation rates are low enough and the strength
of selection high enough that polymorphisms are almost never
present, with fixation of alternative monomorphic states being
the norm, and the long-term mean frequency of the beneficial
allele being

p∗1 '
βeS

1+βeS
, [1]

where S =2Nes is the strength of selection scaled to drift, and
β= u01/u10 is the ratio of mutation rates. Under this weak-
mutation/strong-selection scenario, referred to below as the
sequential-fixation model, the equilibrium distribution depends
only on the product of the two ratios of rates, not on the
absolute values of their components. Although the concern
here is with the long-term probabilities of alternative states
at a particular locus, Eq. 1 was derived previously to describe
the genome-wide expected frequencies of codons for partic-
ular amino acids (11, 12). Note that under neutrality (s =
0), all three approaches yield identical results, with the mean
frequency of the A allele being the neutral expectation η=
u01/(u01 + u10).

Although the deterministic and sequential models have very
different implications for the standing levels of variation within
populations, often in comparative biology, just a single genome
will be sampled per taxon, rendering the matter of within-
population variation moot. Thus, it is desirable to know the
domains in which these two approximations (if either) provide
the most reasonable approximation of actual long-term mean
allele frequencies. Comparison with the general analytical solu-
tion, SI Appendix, Eq. S2, allows several general conclusions.
First, the sequential model begins to substantially overestimate
the frequency of the beneficial allele once Neu01 exceeds 0.01
(Fig. 2). These deviations are particularly large when outside
the realm of effective neutrality, i.e., for Nes > 0.1. Second,
for weak to moderately strong selection (0.1<Nes < 1.0), a
critical point near Neu01 =0.1 separates domains in which the
sequential vs. deterministic model fits the data more closely. At
this crossover point, both of the simple models overestimate
the actual mean frequency of the beneficial allele, often sub-
stantially so. Third, the predictions of the deterministic model
converge on the results of the general model once the num-
ber of beneficial mutations (Neu01) entering the population
exceeds 1.0 per generation. As the population-wide mutation
rates (Neu01 and Neu10) increase beyond this point, mutation
pressure begins to overwhelm both selection and drift, and the
asymptotic frequency of the beneficial allele converges on the
neutral expectation, η.

Two other points are illustrated in Fig. 2. First, in the pres-
ence of mutation bias, there can exist a wide range of population
sizes in which the most common allelic state does not match the
optimal state; e.g., p̃1< 0.5. Second, situations may be common
in which there is ample phylogenetic variation in allelic state
despite the constancy of selection. For example, in the domain
of the sequential model, when the directional forces of mutation
and selection balance such that βeS =1, the mean frequencies
of the alternative allelic states will be equal to 0.5. In the absence
of knowledge on mutation bias, such cases could easily be mis-
interpreted as implying neutral genotypes, when in fact the pop-
ulation is under persistent selection in the opposite direction of
mutation bias.
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Fig. 2. Average beneficial allele frequency (long-term average) for a single-
locus model, under the general model (SI Appendix, Eq. S2, solid lines), the
infinite population size model (SI Appendix, Eqs. S3a and S3b, short-dashed
lines), and the sequential-fixation model (Eq. 1, long-dashed lines). Results
from Wright–Fisher simulations are given as solid points for the case in
which the actual and effective population sizes are equal (Ne = N = 1,000).
The mutation rate of beneficial to deleterious alleles (u10) is three times
the reciprocal rate (as would be the approximate case for a single optimal
nucleotide at a site). The infinite population size results use the selection
coefficient inferred by the constant product Ns for each curve, so that s in
this case scales inversely with N.

Two Sites. Proceeding to more complex traits, it becomes nec-
essary to specify a function relating the genotypic states to
fitness. Although the concepts developed hereafter are general
with respect to the form of the fitness function, here we will
assume a Gaussian (bell-shaped) function such that individuals
in genotypic class m have fitness

Wm = e−(m−θ)2/(2ω2), [2]

where θ is the optimum phenotypic value, and ω is a measure
of the width of the fitness function (analogous to the SD of a
normal distribution). Selection is purely directional if θ=0 or L,
and neutrality is approached as ω→∞. Although m is confined
to integer values, θ need not be, and if θ is outside of the (0, 2)
range, the optimum is unattainable.

As a central goal is to determine the relationship between the
expected genotype distribution and the effective population size
(Ne), it is desirable to perform analyses with realistic parameter
values for Ne and the mutation rate. Across the tree of life, Ne

generally falls in the range of 104 to 109, and the mutation rate
per nucleotide site scales negatively with the ∼0.76 power of Ne

(10, 13). Thus, the following analyses were performed under the
assumption of a deleterious-mutation rate per site (which might
be a cluster of adjacent nucleotides) of 10−7 at Ne =104, such
that u10 =0.00011N−0.76

e , which is approximately 10 times the
known rate per nucleotide site. As implied above and shown fur-
ther below, provided the mutation rates are sufficiently low, it
turns out that this scaling has no effect on the equilibrium dis-
tribution, which depends only on the ratio β= u01/u10. Unless
stated otherwise, the beneficial rate (u01) is set to 10% of the
former one.

With two sites, there are three possible genotypic classes,
m =0, 1, 2, with the phenotypically equivalent +− and−+ states
being lumped into the m =1 class. For reasons described in Mod-
erately Complex Traits, the long-term equilibrium frequencies are
given by

p̃m =C ·

(
L

m

)
βme2Nesm , [3]

where the normalization constant C is equal to the recipro-
cal of the sum of the terms to the right of C for m =0 to 2,
and the binomial term takes on values of 1, 2, 1 for m =0, 1, 2.
The indexed selection coefficients, sm , are measures of the class-
specific deviations of fitness from some reference genotype (e.g.,
the class with the highest fitness, in which case sm =1−Wm , or
class 0); the specific reference does not matter, as it cancels out
through the normalization constant. The mean phenotype

µm =

2∑
m=0

m · p̃m [4]

reduces to 2η in the case of neutrality. (Throughout, p̃ is used
to indicate an equilibrium frequency and µ to denote a mean, in
this case of m , the number of + alleles.)

This expansion to a second site introduces complexities not
encountered with the one-site model, all of which can be under-
stood by reference to Eq. 3. First, for the case of θ=1.5,
where the optimum is straddled by the class 1 and 2 geno-
types, the genotypic mean (µm) never reaches the optimum, even
at very large Ne , and instead remains much closer to µm =1
(Fig. 3). This bias results because although the class 1 and 2
genotypes have equivalent fitness, mutation pressure toward −
alleles weights the frequency of class 1 by a factor of 2β (the
2 being the multiplicity of this class), but class 2 by the smaller
factor of β2.

Second, for the case in which θ=2 (pure directional selec-
tion), there is a progressive succession of the prevailing geno-
type classes with increasing Ne . When Ne is sufficiently low to
impose effective neutrality, class 0 predominates owing to the
mutation bias toward − alleles. With increasing Ne , selection
becomes more effective at promoting class 1, but there remains
effective mutation pressure against class 2. Finally, with very
large Ne , selection becomes efficient enough to drive class 2
to near fixation, thereby decreasing the incidence of class 1.
These results show that, in the face of a constant pattern and
strength of selection, the genotypic mean can exhibit a con-
siderable gradient with Ne owing entirely to changes in the
power of drift and also that appreciable incidences of all three
genotypic classes can be expected over time in lineages with
intermediate Ne .

Moderately Complex Traits. We now turn to the general case of
arbitrary L, starting with the sequential-fixation view that muta-
tions are rare enough that evolution proceeds in an essentially
stepwise manner, with incremental changes being restricted to
adjacent states. The absolute flux rates between adjacent geno-
typic classes are then equal to the products of the expressions
on the arrows in Fig. 1, where the numerical coefficients depend
on the numbers of − and + sites within each class. Because the
absolute population size N influences all mutational flux rates in
the same way, it is omitted as a prefactor, but both N and Ne

influence the equilibrium solution via the fixation probabilities,
defined as SI Appendix, Eq. S5.

This linear sequential model has a relatively simple solution.
Provided there are nonzero connections between all adjacent
states, the steady-state frequencies are proportional to the prod-
ucts of all of the coefficients pointing upwardly and downwardly
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Fig. 3. The response of the long-term mean genotypic state (number
of + alleles, Upper) and the underlying mean class frequencies (Lower) over
a gradient of effective population sizes for a two-locus, two-allele model.
The mutation rate to beneficial alleles is 10% of that to deleterious alle-
les. Results are given for three phenotypic optima, with the width of the
fitness function ω= 5,000. In Lower panel, for each color-coded optimum,
the mean frequencies of the three genotypic classes (0, 1, 2) are given as
solid, dotted, and dashed lines, and for each Ne sum to 1.0. Data points
in Upper panel were obtained by computer simulations of a Wright–Fisher
model, showing the near perfect agreement with the sequential-model
approximation.

toward the state of interest. Prior results (4) lead to Eq. 3,
which shows that the equilibrium frequencies of the alterna-
tive genotypes are functions of three factors: 1) the multiplic-
ity of configurations, as defined by the binomial coefficients;
2) the ratio of mutation rates; and 3) the strength of selec-
tion scaled by the power of random genetic drift. All other
things being equal, the within-class multiplicity magnifies the
likelihood of residing in such a state. However, for β 6=1,
the net effect of the multiplicity is further modified by the
mutation bias term, βm .

Under neutrality (denoted by n), sm =0 for all m , and Eq. 3
simplifies to a binomial distribution

p̃n,m =

(
L

m

)
ηm(1− η)L−m [5]

with η= u01/(u01 + u10) being the expected frequency of + alle-
les at each site. In this case, the long-term mean and variance
of the trait are µN =Lη and σ2

N =Lη(1− η), respectively. Com-
parison of Eqs. 3 and 5 shows that the steady-state probabilities

of genotypes under selection are simple transformations of the
neutral expectations, with each class being weighted by the expo-
nential function of the scaled strength of selection eSm , with
Sm =2Nesm ,

p̃m =C · p̃n,m · eSm . [6]

Provided η is not overly close to 0.0 or 1.0, the neutral distri-
bution is approximately normal, and if 0� θ�L, the steady-
state distribution of mean phenotypes with selection will also
approach normality, with mean

µm '
(θ/σ2

S )+ (Lη/σ2
N )

(1/σ2
S )+ (1/σ2

N )
[7a]

and variance

σ2
m '

1

(1/σ2
S )+ (1/σ2

N )
, [7b]

where σ2
S =ω2/(2Ne) (14). Under these conditions, the grand

mean is the average of the expectations under mutation and
selection alone, with each component weighted by the inverse
of the variance under the relevant conditions.

As σ2
S→∞, which implies a flatter fitness function, the mean

and variance converge on the expectations for a purely neutral
process, Lη and σ2

N . As σ2
N →∞, which implies a flattened dis-

tribution under mutation and drift alone, the mean and variance
converge on the expectations for a purely selection-driven pro-
cess, θ and σ2

S . The pivot point separating these two domains
is Ne =ω2/[2Lη(1− η)], showing that an x -fold increase in the
width of the fitness function shifts the critical point to an x2-fold
larger Ne .

Eq. 6 predicts the steady-state distribution of the most recently
fixed state, and one must acknowledge that some small amount of
polymorphism exists in the time intervals between fixation. Thus,
it is desirable to know how closely the preceding expressions
represent the true sampling probabilities when polymorphism
is allowed for. To evaluate this issue, extensive Wright–Fisher
simulations were carried out, with recursive episodes of selec-
tion, mutation, and drift, for long enough periods to achieve
highly precise estimates of the distributions of means to compare
with the analytical expectations for p̃m (SI Appendix). Because
violations of the sequential model will be a function of the
absolute number of mutations entering the population per gen-
eration, it is essential to perform such evaluations with realistic
parameter estimates for Ne and the mutation rate, and the
scaling relationship between the mutation rate and Ne noted
above was adhered to. The consistency of the simulation results
with the analytical approximations, even with L as high as 50
(Fig. 4, Left), justifies the use of Eq. 6 up to this level of
granularity.

This expansion to larger numbers of sites again shows signifi-
cant scaling of mean genotypic values with Ne for a wide range
of conditions, upholding the conclusion that situations exist in
which the optimal phenotype is rarely achieved even in very
large populations (Fig. 4, Left). Moreover, for fixed selection
and mutation functions, the direction of scaling of the mean
genotype with Ne depends on the complexity of the underlying
trait (L). If the genotypic mean in the absence of selection (Lη)
exceeds the genotypic optimum, there will be negative scaling
of µm with Ne , regardless of the direction of mutation bias. In
addition, there will always be an intermediate level of L, such
that the mean under neutrality fortuitously equals the selective
optimum, i.e., Lη= θ, at which point there is no response of the
mean phenotype to Ne . Finally, for particular population-genetic
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ω= 5,000, and the ratio of mutation rates is u01/u10 = 0.1. (Upper Left) The effects of increasing the optimum phenotype (θ), for the case in which there
are L = 5 sites. (Lower Left) The effects of increasing the number of sites from L = 2 to 50, for the case in which the optimum phenotype is θ= 2. In both
panels, the color-coded plotted points were obtained by computer simulations of a Wright–Fisher model, showing the near perfect agreement with the
sequential-model approximation. (Right) Equilibrium genotype distributions (number of + alleles) for situations in which L = 10 (Top), 20 (Middle), and 50
(Bottom), with optimum genotypic value θ= 7.0 and width of the fitness function ω= 5,000. Results from Eq. 6 are given for four effective population sizes.

environments, multiple genotypic classes often have appreciable
expected frequencies, and depending on the direction of muta-
tion bias, these can be both above and below the optimum (Fig. 4,
Right).

Large Numbers of Loci. When large numbers of loci contribute to
a trait, the total number of mutations entering the population
per generation will often exceed 0.01, violating the conditions
necessary for the sequential model to closely approximate the
steady-state distribution. One such example is the cellular growth
rate, which likely depends on essentially every nucleotide in the
genome in some way, e.g., the simple bioenergetic cost of a
nucleotide pair (15). As a first-order generalization, one expects
natural selection to relentlessly promote an organism’s ability
to convert energy and other limiting resources into biomass,
and persistent directional selection may apply to many other
traits such as catalytic rates and error minimization. To analyze
the evolution of traits under such selective conditions, an expo-
nential fitness function with independent mutational effects was
evaluated,

Wm =(1− s)(L−m), [8]

where m is the number of beneficial alleles in the genome.
For random genetic drift to impose a significant barrier to

the evolution of such a trait, there must be a substantial pool
of deleterious mutations with small enough effects that they
can drift to fixation in species with small Ne , and this process
will be further facilitated if mutations are biased in the nega-
tive direction. Numerous lines of evidence are consistent with
both conditions. First, studies of serially bottlenecked mutation-
accumulation (MA) lines across diverse species consistently
reveal a slow per-generation decline in growth rate and other fit-
ness traits, in accordance with a strong bias of mutations toward
deleterious effects (16, 17). Statistical inferences based on the

distribution of MA-line performance imply highly skewed distri-
butions of fitness effects, with the modes for both deleterious
and beneficial mutations indistinguishable from zero and the
bulk of the distributions having absolute effects <1% (18–20).
Second, indirect inferences derived from studies on the site-
frequency spectra of segregating alleles commonly suggest that
10 to 40% of mutations in diverse organisms have deleterious
effects smaller than 10−5, with the mode of this pool again
being near (if not at) 0.0 (21–25). There are theoretical rea-
sons for expecting this to be the case (26), and as many of
these studies focus only on the nonsynonymous sites in protein-
coding genes, the true distribution of effects can be expected to
be even more skewed toward near-zero values. Third, bioener-
getic considerations of the costs of small nucleotide insertions,
which typically comprise∼10% of de novo mutations (27), imply
fractional reductions in fitness typically far below 10−4 (15).
Thus, the existence of large pools of mutations with deleteri-
ous effects small enough to allow fixation in some lineages but
large enough to ensure removal by selection in others is not
in doubt.

These observations allow some simple qualitative statements
about the limits to selection. Sites with effects (s) smaller than
1/Ne will be highly susceptible to the vagaries of genetic drift and
have expected deleterious-allele frequencies near u10/(u10 +
u01). This quantity depends only on the mutation-rate ratio (β=
u01/u10), not on the absolute mutation rate. In contrast, when
Ne� (1/s), selection overwhelms drift, and the expected fre-
quency of deleterious alleles is approximately u10/(u10 + u01 +
s), which is near zero when the strength of selection greatly
exceeds that of mutation. The central issue is then the degree
to which specific classes of deleterious alleles move from the
domain of accumulation by mutation pressure to the domain of
effective purging by selection as the population size increases. A
complication that emerges with large L is that the effective pop-
ulation size (Ne) is often orders of magnitude below the actual
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population size (N ) owing to selective interference between
simultaneously segregating mutations, which greatly elevates the
level of N required for the effective purging of mildly deleterious
alleles.

Although the ultimate goal is to derive analytical expressions
for the distribution of mean phenotypes in this large-L domain,
the system is sufficiently complex that it is necessary to perform
Wright–Fisher simulations to determine the degree of validity
of any equations that emerge. For these analyses, for each L, it
was assumed initially that s =1/L, which is roughly consistent
with the empirical observation that the frequency of mutation
types is a decreasing function of the selective effects. Each set of
simulations involved a single fixed value of L: L=104, s =10−4;
L=105, s =10−5; and L=106, s =10−6. Example outcomes of
the grand means are given in Fig. 5, along with the limiting expec-
tations for single sites (from SI Appendix, Eq. S2, which assumes
no background interference from linkage disequilibrium). These
results highlight the expectations noted above—at sufficiently
small N , the mean frequency of + alleles converges on the neu-
tral expectation, whereas at large N , it converges on frequencies
close to 1.0. Notably, however, the gradient in the mean fre-
quency of + alleles is much shallower in the case of multiple
linked loci than in the ideal single-locus case, particularly when s
is small.

The key remaining challenge is to obtain an approximate ana-
lytical expression for the equilibrium behavior in Fig. 5. As
outlined in SI Appendix, despite some intriguing relationships,
a solution from first principles has not been obtained. Nonethe-
less, the general scaling behavior in Fig. 5 suggests a formula of
the form

µ̃m '
u01L

u01 + u10f (s,N )
, [9]

where f (s,N ) is a function of s and N . For Eq. 9 to yield appro-
priate behavior, f (s,N ) must asymptotically approach 0 and 1 in
the limits of large and small N . A simple expression that allows
for such behavior, f (s,N )= e−2Ns , is attractive because this
yields the known result for the sequential model in which selec-
tion operates on a set of single sites without selective interference
(Eq. 1), and Charlesworth (ref. 28, equation A13) suggested this
as a solution. However, whereas Eq. 1 yields correct results in the
limits of sN � 1 and� 1, the predictions are too high at inter-
mediate sN . The likely reason for the poor fit in this region of
parameter space is that the genetic effective population size (Ne)
can be substantially lower than N , owing to parallel selection
operating on multiple polymorphic sites.

To gain insight into this matter, Eq. 1 can be rearranged to
yield the effective population size necessary to yield the mean
frequency of + alleles, p̃1 = µ̃m/L, observed with computer
simulations,

Ne =(1/2s) ln

(
p̃1

β(1− p̃1)

)
. [10]

As can be seen in Fig. 6, there appear to be three central
determinants of Ne using this formulation. First, provided the
strength of selection is at least 0.1/N , Ne/N scales negatively
with the ∼3/4 power of Ns , reflecting the increased involve-
ment of selective interference. Second, Ne/N increases weakly
as the incidence of beneficial mutations declines, scaling neg-
atively with the ∼1/4 power of β, presumably reflecting the
reduced competition among simultaneously segregating bene-
ficial mutations. Third, there is a further depression in Ne/N
with increasing L, presumably reflecting more background varia-
tion in fitness resulting from elevated numbers of simultaneously
segregating polymorphisms.
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Fig. 5. The equilibrium mean frequency of + alleles (i.e., µ̃m relative to
the maximum possible value, L) as a function of the absolute population
size. Results are given for three different levels of mutation bias for three
numbers of loci (L) with equivalent additive effects on the growth rate
and multiplicative effects on fitness. Absolute mutation rates are defined
by the empirical scaling relationship noted in the text. Analytical results
(solid lines) are given for the case of free recombination, and simulation
results (dashed lines and data points) for the case of complete linkage.
Throughout, s = 1/L, the inverse of the number of factors contributing to
the trait.
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Fig. 6. Depression in the effective population size as a function of Ns, β,
and L = 1/s. Points are estimates from the average behavior in simulations,
whereas the solid lines map the expected behavior based on Eq. 11. As noted
in the text, β is varied by keeping the deleterious mutation rate u10 constant
(although varying at each population size) and modifying u01.

Regrettably, it has not been possible to derive an analyti-
cal expression encapsulating these three scaling relationships.
However, by inspection, all three can be included in a single
expression,

Ne '
N

1+ [2.5log10(L)−1− lnβ] ·β1/4 · (Ns)3/4
, [11]

which is consistent with observations for the full range of param-
eter space (Fig. 6), except for Ns > 100 and s > 10−5, in which
case the population behaves nearly deterministically and Ne/N
is of minor significance. The key scaled selection parameter in
Eq. 1, S =2Nes , can then be approximated by multiplying Eq.
11 by 2s , and provided Ns > 1, this reduces further to

S ' 5(Ns/β)1/4

2.5log10(L)− 2.5 lnβ
. [12]

Together, Eqs. 11 and 12 show that provided Ns is not too small,
then S scales only slowly with Ns and the mutation bias β, with
the key parameter being (Ns/β)1/4. The effect of increasing the
number of sites L is also nonlinear, with a 100-fold increase in L
decreasing S only by a factor of '6. Finally, decreasing β by a
factor of 100 increases S by a factor'3, showing that the bulk of
the interference in promoting beneficial genotypes derives from
simultaneously segregating beneficial alleles.

With Eq. 11 in hand, it then becomes possible to express the
equilibrium expectation for the mean fraction of sites occupied
by favorable alleles by substituting for Ne in Eq. 1. This yields
predictions that are generally within 10% of simulated values
for the full range of parameter space and that are particularly
accurate with large numbers of loci with small individual selec-
tive effects (SI Appendix, Fig. S2). Thus, although there must be
additional second-order terms involved, Eq. 11 appears to cap-
ture the collective effects of selective interference, at least in the
context of mutations with equal effects.

Notably, although the preceding analyses relied on a particu-
lar scaling of the mutation rate with N , the evolved genotypic
mean appears to depend only on the mutational bias β. In addi-
tion, results for a wide range of L indicate that the approximate
scalings indicated in Eqs. 11 and 12 are not a peculiarity of the
use of s =1/L in the preceding analyses (SI Appendix, Fig. S3).
Finally, although the exact scaling relationships are different,
a similarly derived expression for the case of a half-Gaussian
fitness function is given in SI Appendix.

These results also provide an interesting contrast to the
“infinitesimal” model widely used in quantitative genetics (2,
29). Under this model, the genotypic values of traits are
assumed to be influenced by alleles with infinitesimally small
effects distributed over an infinite number of loci, such that
the mean phenotypes of traits evolve with effectively no change
in allele frequencies at individual loci. Despite its mathemat-
ical elegance, this model is inconsistent with the fact that all
traits are encoded by finite numbers of genetic loci (bounded
by the size of the genome) and more notably has the puz-
zling feature that directional selection is possible despite all
allelic effects being miniscule. In contrast, the results in Fig. 5
show that with finite numbers of loci, subdivision of total fit-
ness into increasingly fine contributions progressively diminishes
the ability of directional selection to advance a mean pheno-
type, as expected under the principles of effective neutrality,
illustrating the limitations of the mathematically convenient
infinitesimal model.

Effects of Recombination. To this point, the chromosomal seg-
ments being modeled have been assumed to be nonrecombin-
ing. Given the population sizes employed here, the introduc-
tion of recombination into the simulations would be extremely
demanding computationally, but an argument introduced by
Good et al. (30) provides a simple way to address the mat-
ter qualitatively. They demonstrated that the overall behav-
ior of a recombining system with multiple sites simultaneously
segregating can be treated by subdividing the genome into
blocks that are effectively nonrecombining on the timescale of
the coalescent.

From a prior survey (31), we know that the average recombi-
nation rate between adjacent bases (c0) is in the range of 10−7

to 10−5 for unicellular eukaryotes and 10−9 to 10−7 for multicel-
lular species. The exact numbers depend on the overall genome
size and numbers of chromosomes, as there is generally on the
order of one crossover per chromosome arm. The mean time
to coalescence of alleles within a population is on the order of
2Ne (haploids) to 4Ne (diploids) generations, so over this dura-
tion the expected number of recombination events within a span
of length Lb is 2coLbNe to 4coLbNe . Thus, because Ne is com-
monly in the range of 107 to 108 for unicellular eukaryotes (10,
13), a span as small as 2 bp will have a high probability of experi-
encing at least one recombination event in the coalescence time
for individual alleles, suggesting that Eq. 1 might serve as a rea-
sonable description of the expected allele frequency in many
obligately sexual unicellular populations. However, most uni-
cellular species primarily reproduce asexually, and allowing for
recombination every x generations would expand the average
linkage-block length by a factor of x . With Ne in multicellular
species generally falling in the range of 104 to 106, nonrecom-
bining block lengths may commonly fall in the range of 104 to
105 bp in such organisms.

Following these rough guidelines, results of simulations with a
range of segment lengths (L) are given in Fig. 7. For the muta-
tion rates employed herein, and the exponential fitness model,
mean + allele frequencies are very close to those for the single-
site expectations (Eq. 1) when L≤ 10, and those for L=100
are only moderately smaller. With increasing block lengths, how-
ever, the effects of linkage become increasingly substantial. With
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Fig. 7. Expected frequencies of beneficial alleles as a function of Ne and length of the chromosomal segment (in number of sites), for the case in which
s = 10−5. Dots are results from computer simulations, whereas the dashed line is the single-site expectation given by SI Appendix, Eq. S2.

L=1, a transition from the neutral expectation to near fixation
occurs over a 10-fold range of N , whereas with L=105 this tran-
sition unfolds over a four orders-of-magnitude range of Ne . This
is consistent with the gradual three orders-of-magnitude reduc-
tion in Ne/N with increasing N noted in Fig. 6. The key point
here is that because linkage-block lengths are expected to decline
with increasing Ne , in actual comparative analyses of different
species, the scaling of the drift barrier with Ne is expected to be
a hybrid of the kinds of functions shown in Fig. 7.

Discussion
Although much of population genetics is focused on standing lev-
els of genetic variation and the impact on short-term responses
to selection (2), comparative biology is generally concerned with
the divergence of mean phenotypes among phylogenetic lin-
eages. There is, therefore, a need for theory focused more on
such long timescales (32, 33). The approach taken here starts
with the assumption that the forces of mutation, drift, and selec-
tion remain relatively constant over long periods of time (tens to
hundreds of millions of years), a feasible scenario for many intra-
cellular traits. Even if the steady-state assumption is not fulfilled
in every respect, the results still provide insight into the rela-
tive likelihoods of lineages wandering into alternative phenotypic
states under a given set of population-genetic conditions (34),
and the suggested approach can be readily modified to allow
for additional factors such as fluctuating selection or alternative
mutation functions. This framework of jointly accounting for the
forces of selection, mutation, and drift is similar in spirit to the
steady-state distributions of allele frequencies at single diallelic
loci developed by Wright (35) and provides a conceptual contrast
to the common approach among empiricists of simply assuming

that the strength of selection is so overwhelming that observed
mean phenotypes must precisely reflect optima dictated by the
forces of natural selection.

The results here illustrate the riskiness of such an optimization
approach. Mutation can cause mean phenotypes to deviate from
the optimum in substantial and often unexpected ways that are
not simply a function of the magnitude of mutation bias. Rather,
when alternative, functionally equivalent underlying genotypes
exist for a trait, the multiplicity of certain intermediate combi-
nations can result in a mutational pull of the mean phenotype
away from the optimum. This effect becomes especially signif-
icant when the phenotypic optimum is far from the expected
mean under mutation alone and even more so if the level
of multiplicity for the optimum is relatively small relative to
other phenotypic states. Such effects can extend to populations
with the largest known effective sizes, and, as noted previously
(14), cases may even exist in which the selection gradient is
sufficiently strong that the equilibrium mean-phenotype distri-
bution can have two peaks, one driven by selection and the
other by mutation.

With an increased understanding of the rates and molecular
spectra of mutation, the approximate bounds on Ne , and the
relationships between these two (10, 13), for cell biological fea-
tures with well-understood genetic bases, this framework now
provides a foundation for exploring the consequences of alter-
native selection functions for the scaling and diversification of
cellular features with lineage-specific estimates of Ne . The chal-
lenge for future empirical work will be to obtain estimates of the
key functional parameters, which minimally reduce to: 1) L, the
number of sites (loci) encoding the trait; 2) the ratio of forward to
reverse mutations rates, u01/u10; 3) Ne , the effective population
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size; and 4) the mapping of genotypic values to a fitness function.
With a focus on Gaussian stabilizing selection, there are just two
fitness-function parameters: 1) θ, the phenotypic optimum, and
2) ω, the width of the fitness function; and with an exponential
fitness function, there is just one parameter.

Notably, the direction and magnitude by which genotypic
means scale with Ne are not simply functions of the pattern of
selection and mutation bias, but are also influenced by the gran-
ularity of the system (i.e., the number of loci). The latter dictates
the null distribution of genotypes in the absence of selection,
with the selection function (scaled by the power of drift) then
transforming the baseline distribution in a multiplicative man-
ner. Expected gradients of genotypic means with respect to Ne

can be positive or negative, depending on whether there is an
excess or a deficit of mutational accessibility relative to the opti-
mum state. One of the most striking examples consistent with
this drift-barrier hypothesis is the negative scaling of the muta-
tion rate per nucleotide site with Ne observed across the tree of
life (10). Although the exact results will vary depending on the
distribution of fitness effects associated with mutations for par-
ticular traits, the kinds of results illustrated in Fig. 6 suggest that
for traits under persistent directional selection (such as growth
rate), power-law scalings with exponents at least as extreme as
0.20 can be expected in large comparative studies. This raises
challenges for fields such as evolutionary and physiological ecol-
ogy that simply assume that such relationships are consequences
of biophysical constraints.

Finally, it is worth noting that because of the degrees of free-
dom in systems like those illustrated above, isolated species
can diverge to nonoverlapping underlying genetic constitutions
despite residing in the same functional class. Consider, for exam-
ple, a four-factor trait with initial state ++−−. If each of two
descendant species experiences a +→− transition, there is a
50% chance that this will involve different factors, leading to
+−−− and−+−− configurations. Single independent reverse
mutations in both lineages have a 2/9 joint probability of con-
verting these two states back to the class containing two + sites
but with nonoverlapping states +−−+ and −++−, implying
a 1/9 chance of complete divergence. As L becomes larger, the
probability of divergent states (in the face of constant selection)
increases rapidly owing to the increased degrees of freedom in
the overall system.

As one example of such a scenario, consider the phospho-
rylation of particular amino acid residues on proteins, which
commonly plays a role in modifying activity level. Phosphory-
lation sites are typically clustered on the surface of a protein
or in disordered regions, and the critical feature may simply
be the acquisition of an adequate local charge. Comparative
studies in yeasts and mammals indicate that many phosphory-
lated serines and threonines are under purifying selection to
retain their phosphosite status (6, 36–38). Nonetheless, a large
fraction of phosphosites appears free to vary among species in

terms of status and location (39–42). For example, only ∼5%
of all Saccharomyces cerevisiae phosphorylation sites appear to
have been conserved across the entire yeast lineage (dating
back ∼700 million y), and even when the same phosphory-
latable residue is present in two moderately related species,
their phosphorylation status may differ. In addition, Asp and
Glu residues, which are naturally charged negatively, serve as
potential replacements for their phosphorylatable counterparts;
i.e., phosphosites often evolve from phosphomimetic Asp and
Glu sites and vice versa (43–45). Taken together, these obser-
vations suggest a scenario whereby the degree of a protein’s
phosphorylation is under stabilizing selection for an appropri-
ate charge, with the specific locations of many of the affected
residues free to wander in an effectively neutral fashion (6,
46). That is, the number of phosphorylated residues on individ-
ual proteins appears to operate as a sort of quantitative trait
under stabilizing selection, but with enough degrees of free-
dom that there can be considerable turnover of the specific
phosphosites.

Aside from the need for a formal derivation of the expected
distributions of mean phenotypes that fully account for the dis-
tinction between Ne and N for the case of large L, several things
remain to be done to achieve a fuller understanding of the ways
in which the drift barrier scales with population size and direc-
tional mutation bias. First, although the preceding expressions
focus on the expected value of the mean phenotype, there can
be considerable drift around the grand mean, so formal expres-
sions for the temporal variance (or among-population variance)
of the mean are desirable. This is a potentially significant issue
for comparative studies based on small numbers of taxa, as the
stochastic variance of means among taxa might be inappropri-
ately assumed to reflect underlying adaptive differences. Second,
there is a need to generalize the theory to allow for a dis-
tribution of mutational effects, in contrast to the fixed-effects
approach taken herein. On the one hand, increasing the vari-
ance of mutational effects, while keeping the mean constant,
should prolong the gradient of the response of the mean phe-
notype to population-size change as the fractions of mutations
in the smallest populations that are subject to selection and in
the largest populations that are subject to drift increase. On the
other hand, greater variance in the fitness effects of alleles may
increase the efficiency of selective discrimination among simulta-
neously segregating mutations, thereby reducing the depression
of Ne relative to N . Finally, as noted above, there is a need
for a more direct analysis of the role of recombination than
that provided herein, particularly in combination with variable
mutational effects.
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