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A B S T R A C T

The emerging coronavirus SARS-CoV-2 has caused a COVID-19 pandemic. SARS-CoV-2 causes a generally
mild, but sometimes severe and even life-threatening infection, known as COVID-19. Currently, there exist no
effective vaccines or drugs and, as such, global public authorities have so far relied upon non pharmaceutical
interventions (NPIs). Since COVID-19 symptoms are aspecific and may resemble a common cold, if it should
come back with a seasonal pattern and coincide with the influenza season, this would be particularly
challenging, overwhelming and straining the healthcare systems, particularly in resource-limited contexts, and
would increase the likelihood of nosocomial transmission. In the present study, we devised a mathematical
model focusing on the treatment of people complaining of influenza-like-illness (ILI) symptoms, potentially
at risk of contracting COVID-19 or other emerging/re-emerging respiratory infectious agents during their
admission at the health-care setting, who will occupy the detection kits causing a severe shortage of testing
resources. The model is used to assess the effect of mass influenza vaccination on the spread of COVID-19 and
other respiratory pathogens in the case of a coincidence of the outbreak with the influenza season. Here, we
show that increasing influenza vaccine uptake or enhancing the public health interventions would facilitate
the management of respiratory outbreaks coinciding with the peak flu season, especially, compensate the
shortage of the detection resources. However, how to increase influenza vaccination coverage rate remains
challenging. Public health decision- and policy-makers should adopt evidence-informed strategies to improve
influenza vaccine uptake.

1. Introduction

An emerging coronavirus, currently known as ‘‘Severe Acute Res-
piratory Syndrome coronavirus type 2’’ (SARS-CoV-2) and previously
termed as ‘‘2019 novel coronavirus’’ (2019-nCoV), has spread out from
its first reported epicenter and quickly become a pandemic [1,2].

SARS-CoV-2 causes a generally mild, but sometimes severe and even
life-threatening infection, known as ‘‘coronavirus disease’’ (COVID-19).
Currently, there exist no effective vaccines or drugs that can effectively
prevent or treat COVID-19 patients. As such, global public authorities
have so far relied upon behavioral, non pharmaceutical interventions
(NPIs), such as use of masks, social distancing, self-isolation, quarantine
and even lock-down of entire territories and communities, to contain
or, at least, mitigate the burden of the ongoing pandemic [3–5]. Despite
the unprecedented nature of some of these measures, western countries
have found it difficult to fully suppress/eradicate the outbreak and
have preferred to mitigate it, deciding to opt for a short-period of NPIs,
which will be followed by gradual reopening the economy and return
to a new normal. Resumption of daily working and social activities is
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expected to cause further outbreak waves, due to the re-increasing of
contact rates.

In [6], Sajadi et al. provided the evidence that COVID-19 could per-
haps prevail at low levels and begin to rise again in late fall and winter
in temperate regions in the upcoming year. Since COVID-19 symptoms
are aspecific and may resemble a common cold, if it should come back
with a seasonal pattern and coincide with the influenza season, this
would be particularly challenging. From a clinical standpoint, it would
be difficult to distinguish between the two infectious agents, with the
definition of COVID-19 cases rather problematic. Moreover, diagnostic
tests as well as human resources are limited. Furthermore, currently
commercially available rapid diagnostic tests are characterized by a
good specificity but have a limited sensitivity, as such not enabling a
quick and reliable diagnosis of COVID-19. Altogether, this would sig-
nificantly impact downstream public health efforts to properly identify
COVID-19 cases and contain the outbreak, overwhelming and straining
the healthcare systems, particularly in resource-limited contexts, and
would increase the likelihood of nosocomial transmission.
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When the ‘‘Severe Acute Respiratory Syndrome’’ (SARS) outbreak
caused by the coronavirus SARS-CoV-1 occurred in mainland China
in 2002, the World Health Organization (WHO) has recommended to
increase influenza vaccination, considering that the actual coverage
rate is still sub-optimal and below the threshold. In particular, the
WHO recommended a campaign targeting high-risk groups, such as
healthcare workers, the elderly and disabled people, to be able to
differentiate more quickly between the two infections and to be more
effective in counteracting the outbreak [7–9].

A similar strategy would be valuable also for COVID-19. To test
such a hypothesis, we devised a mathematical model incorporating the
treatment of people complaining of ILI symptoms, potentially at risk of
contracting COVID-19 or other emerging/re-emerging respiratory infec-
tious agents during their admission at the health-care setting, where the
competition of the detection resources between the COVID-19 infected
population and individuals with ILI symptoms is considered. The main
purpose of this study is using the model to assess the effect of mass
influenza vaccination and public health interventions on the spread
of COVID-19 in the case of a coincidence of the outbreak with the
influenza season.

2. Methodology

2.1. Data

We obtained the data of COVID-19 cases in China from January
23rd to March 29th 2020 from the National Health Commission of
the People’s Republic of China [10]. The data information includes the
cumulative number of confirmed cases, the cumulative number of death
cases, the cumulative number of cured cases, and the cumulative num-
ber of suspected cases, shown in Fig. 1. It should be mentioned that the
number of suspected cases includes the number of quarantined COVID-
19 exposed cases, the number of quarantined COVID-19 infected cases
but not confirmed yet, and the number of quarantined individuals with
clinical fever symptoms who are susceptible to COVID-19.

2.2. Model

Based on the epidemical progression of COVID-19 and the interven-
tion measures, we extended the classical SEIR model by including social
distancing measures and including ‘‘cross-infected’’ individuals, those
who are having clinical fever symptoms and are considered as COVID-
19 suspected (and thus quarantined) due to their exposure to COVID-19
infected individuals. The transmission diagram is shown in Fig. 2. In
the model, we divide the total population 𝑁 into ten compartments:
susceptible (𝑆), exposed (𝐸), symptomatic infected (𝐼), asymptomatic
infected (𝐴), quarantined susceptible (𝑆𝑞), quarantined susceptible with
fever symptoms (𝑆𝑓 ), quarantined exposed (𝐸𝑞), quarantined infected
(𝐼𝑞), confirmed and hospitalized (𝐻), and recovered (𝑅).

With the implementation of contact tracing, a proportion of 𝑞 of
individuals exposed to the virus is quarantined. Let the transmission
probability be 𝛽 and the contact rate be 𝑐, then the quarantined
individuals can move to compartment 𝐸𝑞 (or 𝑆𝑞) at a rate of 𝛽𝑐𝑞 (or
(1 − 𝛽)𝑐𝑞) if they are effectively infected (or not effectively infected).
While the other proportion, 1 − 𝑞, missed from the contact tracing,
will move to the exposed compartment 𝐸 at a rate of 𝛽𝑐(1 − 𝑞) once
effectively infected or stay in the susceptible compartment 𝑆 otherwise.

Note that, due to clinical fever or illness-like symptoms, susceptible
individuals may also be quarantined and move to the compartment 𝑆𝑓
at a transition rate of 𝑚, and they can be infected by the quarantined
infected individuals at a rate of 𝛽𝑓 𝑐𝑓 . Based on the above assumptions

and previous studies [5,11,12], the transmission dynamics is governed
by the following model:
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𝑆′ = − (𝛽𝑐(𝑡)+𝑐(𝑡)𝑞(𝑡)(1−𝛽))𝑆𝐼
𝑁 − 𝛽𝐴𝑐(𝑡)𝑆𝐴

𝑁 − 𝑚(𝑡)𝑆 + 𝜆𝑆𝑞 + 𝜆𝑓𝑆𝑓 ,
𝐸′ = 𝛽𝑐(𝑡)(1−𝑞(𝑡))𝑆𝐼

𝑁 + 𝛽𝐴𝑐(𝑡)𝑆𝐴
𝑁 − 𝜎𝐸,

𝐼 ′ = 𝜎𝜌𝐸 − 𝐹1
(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

− 𝛼(𝑡)𝐼,
𝐴′ = 𝜎(1 − 𝜌)𝐸 − 𝛾𝐴𝐴,
𝑆′
𝑞 = 𝑐(𝑡)𝑞(𝑡)(1−𝛽)𝑆𝐼

𝑁 − 𝜆𝑆𝑞 ,
𝑆′
𝑓 = 𝑚(𝑡)𝑆 − 𝛽𝑓 𝑐𝑓𝑆𝑓 𝐼𝑞 − 𝜆𝑓𝑆𝑓 ,

𝐸′
𝑞 = 𝛽𝑐(𝑡)𝑞(𝑡)𝑆𝐼

𝑁 + 𝛽𝑓 𝑐𝑓𝑆𝑓 𝐼𝑞 − 𝜎𝑞𝐸𝑞 ,
𝐼 ′𝑞 = 𝜎𝑞𝐸𝑞 − 𝐹2

(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

− 𝛼(𝑡)𝐼𝑞 ,
𝐻 ′ = 𝐹1

(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

+ 𝐹2
(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

− 𝛼(𝑡)𝐻 − 𝛾𝐻 (𝑡)𝐻,
𝑅′ = 𝛾𝐴𝐴 + 𝛾𝐻 (𝑡)𝐻.

(1)

The detailed definitions of all the parameters and variables are listed
in Table 1.

A significant difference between the COVID-19 transmission dynam-
ics model in our previous studies [11,12,14] and the current study is
the introduction of two saturated functions

𝐹1
(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

=
𝛿𝐼𝐼

1 + 𝜔(𝑡)
(

𝐼 + 𝐼𝑞 + 𝑆𝑓
)

and

𝐹2
(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

=
𝛿𝑞𝐼𝑞

1 + 𝜔(𝑡)
(

𝐼 + 𝐼𝑞 + 𝑆𝑓
) ,

to describe the impact of ‘‘cross-infection’’ on the diagnose rate of the
infected class (𝐼) and the detection rate of the quarantined infected
class (𝐼𝑞) with limited testing capacity, respectively. 𝛿𝐼 and 𝛿𝑞 are the
fastest diagnose rate of infected individuals and quarantined infected
individuals, respectively, that the medical resources permit, 1

𝜔(𝑡) is the
maximum number of individuals who can be tested per unit time (day)
(limited by the maximum testing kits and staff to administrate the
test) with lim𝐼→∞ 𝐹1

(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

= 𝛿𝐼
𝜔(𝑡) and lim𝐼𝑞→∞ 𝐹2

(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

= 𝛿𝑞
𝜔(𝑡) .

In other word, 1
𝜔(𝑡) measures the testing capacity per day. Here, we

set the daily capacity as an increasing function of time 𝑡 because of
the increasing production of detection kits and the improvement of
detection techniques. The function of 1

𝜔(𝑡) is of the following form:

1
𝜔(𝑡)

=
(

1
𝜔0

− 1
𝜔𝑏

)

𝑒−𝑟𝜔𝑡 + 1
𝜔𝑏

,

where 1
𝜔0

is the total number of available detection kits at the initial
time (i.e. January 23𝑟𝑑) with 𝜔(0) = 𝜔0,

1
𝜔𝑏

is the maximum number
of available tests permitted with lim𝑡→∞ 𝜔(𝑡) = 𝜔𝑏 > 𝜔0, and 𝑟𝜔 is the
exponential increasing rate.

The saturation functions 𝐹1
(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

and 𝐹2
(

𝐼, 𝐼𝑞 , 𝑆𝑓
)

are decreas-
ing functions with respect to 𝑆𝑓 . This is because the quarantined
COVID-19 susceptible individuals with fever symptoms belong to the
COVID-19 suspected population, and will be tested to confirm if they
are COVID-19 positive or not. These individuals will consume the
detection kits and require staff time, resulting in a slower detection rate
of the COVID-19 infected cases.

Similarly to the previous studies [12,14], as a result of the improve-
ment of medical treatment and the implementation of a series of strict
control interventions adopted by the Chinese government since January
23rd, we assume that the contact rate 𝑐, the quarantine rate 𝑞, the
quarantine rate of susceptible population with clinical fever symptoms
𝑚, disease-induced death rate 𝛼, and recovery rate of confirmed indi-
viduals 𝛾𝐻 are time-dependent functions. In more details, the contact
rate 𝑐(𝑡) is a decreasing function with respect to time 𝑡, which is given
by

𝑐(𝑡) =
(

𝑐0 − 𝑐𝑏
)

𝑒−𝑟𝑐 𝑡 + 𝑐𝑏,

where 𝑐0 is the contact rate at the initial time with 𝑐(0) = 𝑐0, 𝑐𝑏 is the
minimum contact rate under control measures and self-isolation with
lim𝑡→∞ 𝑐(𝑡) = 𝑐𝑏 < 𝑐0, and 𝑟𝑐 is the exponential decreasing rate.
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Fig. 1. The data of COVID-19 in China from January to March 2020. (A) The cumulative number of confirmed cases; (B) The cumulative number of death cases; (C) The cumulative
number of cured cases; (D) The cumulative number of suspected cases.

Fig. 2. Diagram of the model adopted in the study for illustrating the COVID-19 infection dynamics. Interventions including intensive contact tracing followed by quarantine and
isolation are indicated. The total suspected cases consisting of quarantined susceptible with clinical fever symptoms (𝑆𝑓 ), quarantined exposed (𝐸𝑞), and quarantined infected (𝐼𝑞).

The quarantined rate 𝑞 is an increasing function with respect to time
𝑡 due to the strengthened contact tracing, which takes the following
form

𝑞(𝑡) =
(

𝑞0 − 𝑞𝑏
)

𝑒−𝑟𝑞 𝑡 + 𝑞𝑏,

where 𝑞𝑏 is the quarantined rate at the initial time with 𝑞(0) = 𝑞0,
𝑞𝑏 is the maximum quarantined rate under control measures with
lim𝑡→∞ 𝑞(𝑡) = 𝑞𝑏 > 𝑞0, and 𝑟𝑞 is the exponential increasing rate.

The quarantined rate of susceptible population with clinical fever
symptoms 𝑚(𝑡) is a decreasing function with respect to time 𝑡, given by

𝑚(𝑡) =
(

𝑚0 − 𝑚𝑏
)

𝑒−𝑟𝑚𝑡 + 𝑚𝑏,

where 𝑚0 denotes the quarantined rate of susceptible population with
fever symptoms at the initial time with 𝑚(0) = 𝑚0, 𝑚𝑏 is the minimum
quarantined rate of susceptible population with fever symptoms with
lim𝑡→∞ 𝑚(𝑡) = 𝑚𝑏 < 𝑚0, and 𝑟𝑚 is the exponential decreasing rate.

Due to the improvements of medical treatments and the strength-
ening of the production and supply of prevention and control prod-
ucts [15], disease-induced death rate 𝛼(𝑡) decreases with respect to time

𝑡, and the recovery rate of confirmed individuals 𝛾𝐻 (𝑡) increases with
respect to time 𝑡. Thus 𝛼(𝑡) and 𝛾𝐻 (𝑡) take the following forms,

𝛼(𝑡) =
(

𝛼0 − 𝛼𝑏
)

𝑒−𝑟𝛼 𝑡 + 𝛼𝑏, and 𝛾𝐻 (𝑡) =
(

𝛾𝐻0 − 𝛾𝐻𝑏
)

𝑒−𝑟𝛾 𝑡 + 𝛾𝐻𝑏,

where 𝛼0 is the disease-induced death rate at the initial time with 𝛼(0) =
𝛼0, 𝛼𝑏 is the minimum disease-induced death rate with lim𝑡→∞ 𝛼(𝑡) =
𝛼𝑏 < 𝛼0, and 𝑟𝛼 is the exponential decreasing rate. 𝛾𝐻0 denotes the
recovery rate of confirmed individuals at the initial time with 𝛾𝐻 (0) =
𝛾𝐻0, 𝛾𝐻𝑏 denotes the maximum recovery rate of confirmed individuals
with lim𝑡→∞ 𝛾𝐻 (𝑡) = 𝛾𝐻𝑏 > 𝛾𝐻0, and 𝑟𝛾 denotes the exponential
increasing rate.

Using the next generation matrix, we can define and calculate the
effective reproduction number 𝑅𝑡 as follows:

𝑅𝑡 = 𝑚𝑎𝑥
{

𝑅1(𝑡), 𝑅2(𝑡)
}

,

where

𝑅1(𝑡) =
𝜌𝛽𝑐(𝑡)(1 − 𝑞(𝑡))𝑆𝑡

(

𝛼(𝑡) + 𝛿𝐼∕
(

1 + 𝜔(𝑡)𝑆𝑓𝑡
))

𝑁
+

(1 − 𝜌)𝛽𝐴𝑐(𝑡)𝑆𝑡
𝛾𝐴𝑁

,

3



Q. Li, B. Tang, N.L. Bragazzi et al. Mathematical Biosciences 325 (2020) 108378

Table 1
Parameter estimates for the COVID-19 epidemics in China.

Parameter Definition Value Source

𝑐(𝑡)
𝑐0 Contact rate at the initial time 14.781 [11]
𝑐𝑏 Minimum contact rate with control strategies 2.0 Estimated
𝑟𝑐 Exponential decreasing rate of contact rate 0.1 Estimated

𝛽 Transmission probability from 𝐼 to 𝑆 per contact 0.18 Estimated

𝑞(𝑡)
𝑞0 Quarantined rate at the initial time 1.0 × 10−4 [12]
𝑞𝑏 Maximum quarantined rate with control strategies 0.9 Estimated
𝑟𝑞 Exponential increasing rate of quarantined rate 0.1 Estimated

𝛽𝐴 Transmission probability from 𝐴 to 𝑆 per contact 0.01 Estimated

𝑚(𝑡)
𝑚0 Quarantined rate of susceptible population with fever

symptoms at the initial time
2.0848 × 10−4 Estimated

𝑚𝑏 Minimal quarantined rate of susceptibles with fever
symptoms

5.0001 × 10−7 Estimated

𝑟𝑚 Exponential decreasing rate of quarantined rate 0.0567 Estimated

𝜆 Releasing rate of quarantined susceptibles 1∕14 [11]
𝜆𝑓 Releasing rate of quarantined susceptibles with fever

symptoms
0.1 Estimated

𝜌 Ratio of symptomatic infection 0.5 Estimated
𝜎 Transition rate of exposed individuals to the infected class 1∕5 [13]
𝛿𝐼 Fast diagnose rate of infected individuals 0.5 Estimated

1∕𝜔(𝑡)
1∕𝜔0 Initial number of detection kits per day 2000 Estimated
1∕𝜔𝑏 Maximal number of detection kits per day 1.0 × 10−5 Estimated
𝑟𝜔 Exponential increasing rate of the number of detection kits 0.885 Estimated

𝛾𝐴 Recovery rate of asymptotic infected individuals 0.13978 [11]

𝛼(𝑡)
𝛼0 Disease-induced death rate at the initial time 0.012 Estimated
𝛼𝑏 Minimal disease-induced death rate with treatment 0.0012 Estimated
𝑟𝛼 Exponential increasing rate of disease-induced death rate 0.1129 Estimated

𝛽𝑓 Transmission rate from 𝐼𝑞 to 𝑆𝑓 3.0 × 10−6 Estimated
𝑐𝑓 Contact rate of suspected cases 2.0 Estimated
𝜎𝑞 Transition rate of quarantined exposed individuals to the

quarantined infected class
0.2 Estimated

𝛿𝑞 Fast diagnose rate of quarantined individuals 1.0 Estimated

𝛾𝐻 (𝑡)
𝛾𝐻0 Recovery rate of confirmed individuals at the initial time 0.001 Estimated
𝛾𝐻𝑏 Maximal recovery rate of confirmed individuals with

treatment
0.15 Estimated

𝑟𝛾 Exponential increasing rate of recovery rate 0.0123 Estimated

Variable Definition Initial value Source

𝑆 Susceptible population 1.5 × 107 Estimated
𝐸 Exposed population 8216 Estimated
𝐼 Infected symptomatic population 1000 Estimated
𝐴 Infected asymptomatic population 1000 Estimated
𝑆𝑞 Quarantined susceptible population 7347 Data
𝑆𝑓 Quarantined susceptible population with fever symptoms 499.9975 Estimated
𝐸𝑞 Quarantined exposed population 100.0003 Estimated
𝐼𝑞 Quarantined infected population 250.0005 Estimated
𝐻 Confirmed and hospitalized population 771 Data
𝑅 Recovered population 34 Data

and

𝑅2(𝑡) =
𝛽𝑓 𝑐𝑓𝑆𝑓𝑡

(

𝛼(𝑡) + 𝛿𝑞∕
(

1 + 𝜔(𝑡)𝑆𝑓𝑡
)) with 𝑆𝑡 = 𝑆(𝑡) and 𝑆𝑓𝑡 = 𝑆𝑓 (𝑡).

Note that 𝑅2(𝑡) represents the effective reproduction number of cross-
infected individuals.

3. Main results

3.1. Parameter estimation process

In order to fit the model to the data, we firstly fix some parameters
of our model from previous literature to reduce the complexity. In
particular, the contact rate and the quarantined rate at the initial time
are fixed as 𝑐0 = 14.781 [11] and 𝑞0 = 1.0× 10−4 [12], respectively. The
incubation period is fixed as 5 days [13], i.e. 𝜎 = 1∕5, the releasing
rate of quarantined susceptible individuals is fixed as 𝜆 = 1∕14 [11],
while the recovery rate of the asymptomatic infected individuals is
fixed as 𝛾𝐴 = 0.13978 [11]. In addition, we fix the initial quarantined
susceptible population, confirmed and hospitalized population, and

recovered population as 7374, 771 and 34 respectively according to the
data information.

By simultaneously fitting the proposed model to the cumulative
number of confirmed cases, cumulative number of death cases, cumula-
tive number of cured cases and cumulative number of suspected cases,
we first estimate the rest parameters and initial conditions using the
least square method. The best fitting curves are marked as red in Fig. 3
with the blue circles representing the data from January 23rd to March
29th 2020. The detailed estimated values of the parameters and initial
conditions are listed in Table 1.

It is worth mentioning that we use four time series of data to fit the
model, simultaneously, which can cross-validate the estimation results.
Furthermore, based on the available information, the least squares
method with a priori distribution for each parameter is used in this
study. In another word, we implicitly utilize a penalized least square
method to select reasonable parameter values falling in the ranges
which were estimated in other published studies. Particularly, our
estimated minimum contact rate with control strategies is 2.0 which
is consistent with contact surveys in study [16], and the transition rate

4
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Fig. 3. Best model fitting result. The red curves are the best fitting curves, and the blue circles denote the cumulatively confirmed cases, cumulatively death cases, cumulatively
cured cases and cumulatively suspected cases.

of quarantined exposed individuals to the quarantined infected class is
estimated as 𝜎𝑞 = 0.2 being in line with the incubation period [13].
It was illustrated in [17] that it takes about 2 days from the start of
sampling to the return of results, indicating that our estimation value
of fast diagnose rate of infected individuals 𝛿𝐼 = 0.5 is reasonable.
Furthermore, the estimated initial number of detection kits per day
1∕𝜔0 = 2000 is highly consistent with the news reported in the Beijing
News [17].

Furthermore, we use the coefficient of determination (𝑅2) to esti-
mate the goodness of fit for our model fitting results. Given a data set
with 𝑛 observed value 𝑦1,… , 𝑦𝑛. The corresponding estimated values
from the model are defined as 𝑓1,… , 𝑓𝑛 and 𝑦̄ = 1

𝑛
∑𝑛

𝑖=1 𝑦𝑖 is the average
observed value, then the coefficient of determination value (𝑅2) can be
defined as 𝑅2 = 1− 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
with 𝑆𝑆𝑟𝑒𝑠 =

∑𝑛
𝑖=1

(

𝑦𝑖 − 𝑓𝑖
)2 denoting the sum

of squares of residuals and 𝑆𝑆𝑡𝑜𝑡 =
∑𝑛

𝑖=1
(

𝑦𝑖 − 𝑦̄
)2 denoting the total

sum of squares. Therefore, we obtain the coefficients of determination
for the model fitting results in Fig. 3(A-D) being 0.9905, 0.988, 0.9884
and 0.9868, respectively. This indicates that the model fits the data
very well.

3.2. Impacts of limited detection kits

Detection kits for COVID-19 were firstly introduced and used on
January 16th 2020, but with very limited number. Since January 23rd
2020, detection kits were delivered to Hubei province from other
provinces in China. Since it took time to increase the production of kits
and improve the level of production technology, there was a serious
shortage of detection kits during the initial stage of the COVID-19
epidemics. To examine the impacts of the limited detection kits on the
COVID-19 epidemics in terms of the cumulative number of confirmed
cases, the cumulative number of cross-infected cases and the infected
population (𝐼(𝑡)), we vary the increasing rate of the available detection
kits 𝑟𝜔 in Fig. 4. It follows from Fig. 4 that reducing 𝑟𝜔 will signif-
icantly increase both the cumulative number of confirmed cases and

cross-infected cases, and the infected population of 𝐼(𝑡) and daily cross-
infected population at the peak time. Particularly, the cumulatively
confirmed cases and cumulatively cross-infected cases will increase
3.5 times (about 2.084 × 105 cases) and 4.7 times (about 1.483 × 104

cases), respectively, if the exponential increasing rate 𝑟𝜔 decreases by
80 percent. This means that deficiency and delay of detection cause
more serious outbreaks. In another word, speeding up the production
of detection kits and improve the detection capability play an important
role in reducing the final size of infections.

When faced with limited detection kits supply, we show the impacts
of public health interventions on the outbreak of COVID-19, as seen in
Table 2. In particular, increasing 𝑟𝑐 or 𝑟𝑞 remarkably reduces the cumu-
lative number of confirmed cases. Specifically, when 𝑟𝜔 is very small
(𝑟𝜔 = 0.1 × 𝑟0𝜔), i.e. the testing kits production increases very slowly,
then (1). If 𝑟𝑐 increases by 5 times, the cumulative number of confirmed
cases will decrease by 93.6%; (2). If 𝑟𝑞 increases by 5 times, the cumu-
lative number of confirmed cases will decrease by 78.7%. In addition,
comparing the results in Table 2, we find that the impact of increasing
𝑟𝑐 or 𝑟𝑞 on mitigating the epidemics weakens as 𝑟𝜔 increases. This im-
plies that rapid implementation of public health interventions, such as
reducing contact rate and enhancing quarantined rate, is a good way to
compensate the shortage of detection kits, and it is more indispensable
for countries with severe limited resource of detection kits.

It is also interesting to observe from Fig. 5(A) that the estimated
effective reproduction number (the blue curve) will first experience
a short-period increasing before it decreases below the threshold 1.
However, we further observe that if we increase the rate of 𝑟𝜔 by 5
times (the red curve in Fig. 5(A)), the effective reproduction number
will decrease below the threshold 1 directly. This indicates that due
to the limited resource of the testing kits, the fast-increased infected
population will result in more infections as they are not confirmed
and hospitalized. And the situation will become worse if 𝑟𝜔 is smaller,
shown in Fig. 5(A) as well. Furthermore, it follows from Fig. 5(B)
and (C) that increasing 𝑟𝑐 or 𝑟𝑞 can avoid the magnification of the
effective reproduction number and make the threshold value reduce to
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Fig. 4. The effects of varying the increasing rate of available detection kits 𝑟𝜔 on the COVID-19 epidemic in mainland China. 𝑟0𝜔 denotes the estimated value of 𝑟𝜔.

Table 2
The impacts of public health interventions on the cumulative number of confirmed cases when faced with limited detection kits supply.

Value of 𝑟𝜔 Cumulative number of confirmed cases with varying 𝑟𝑐 Cumulative number of confirmed cases with varying 𝑟𝑞
𝑟𝑐 = 𝑟0𝑐 𝑟𝑐 = 2 ∗ 𝑟0𝑐 𝑟𝑐 = 5 ∗ 𝑟0𝑐 𝑟𝑞 = 𝑟0𝑞 𝑟𝑞 = 2 ∗ 𝑟0𝑞 𝑟𝑞 = 5 ∗ 𝑟0𝑞

𝑟𝜔 = 0.1 ∗ 𝑟0𝜔 9.564 × 105
1.859 × 105 6.087 × 104

9.564 × 105
3.981 × 105 2.035 × 105

(−80.6%) (−93.6%) (−58.4%) (−78.7%)

𝑟𝜔 = 0.4 ∗ 𝑟0𝜔 1.357 × 105
5.910 × 104 2.649 × 104

1.357 × 105
1.045 × 105 7.759 × 104

(−56.4%) (−80.5%) (−23.0%) (−42.8%)

𝑟𝜔 = 0.7 ∗ 𝑟0𝜔 9.510 × 104
4.539 × 104 2.223 × 104

9.510 × 104
7.685 × 104 6.003 × 104

(−52.3%) (−76.6%) (−19.2%) (−36.9%)

𝑟𝜔 = 𝑟0𝜔 8.302 × 104
4.069 × 104 2.070 × 104

8.302 × 104
6.80 × 104 5.40 × 104

(−51.0%) (−75.1%) (−18.1%) (−35.0%)

Note that 𝑟0𝜔, 𝑟0𝑐 and 𝑟0𝑞 are the estimated value of 𝑟𝜔, 𝑟𝑐 and 𝑟𝑞 , respectively.

1 ahead of time, which implies that reducing the contact rate quickly
and increasing the quarantined rate can effectively avert the short-term
intensification of the outbreak caused by the limited detection kits.

3.3. Benefits of getting vaccinated against influenza

The COVID-19 outbreak in China coincided partially with flu sea-
son, and it was difficult to distinguish COVID-19 accurately and rapidly
from influenza-like-illnesses. As a result, individuals with clinical fever
symptoms required medical treatment in high risk settings of COVID-
19, and the risk of cross-infection increased. Here we seek to use
our transmission dynamics model to explore the impact of mass in-
fluenza vaccination prior to the onset of flu season on controlling the
transmission of COVID-19.

Note that, in our model, we assumed that due to the influenza-
like-illness (ILI), the susceptible individuals (𝑆) can be quarantined
at a rate of 𝑚 (move to 𝑆𝑓 ), which is proportion to the susceptible
population. Further, we assume that the susceptible population is vacci-
nated against influenza with an effective vaccination coverage rate 𝑉 𝑟.
Thus, the vaccinated population will not be quarantined because of the
clinical fever symptoms, consequently, the rate at which the susceptible

population is quarantined due to the ILI becomes (1−𝑉 𝑟) ∗ 𝑚 ∗ 𝑆. Based
on the above assumptions, we evaluate the impact of the mass influenza
vaccination on the transmission dynamics of COVID-19.

In Fig. 6, by changing the vaccination coverage rate of 𝑉 𝑟 and
fixing all the other parameters as the estimated baseline values, we
examine the impact of vaccination against influenza on the COVID-
19 epidemics in China in terms of the final size and the peak values.
It follows from Fig. 6 that increasing the vaccination coverage rate
against influenza can remarkably reduce the cumulative number of
COVID-19 confirmed cases and cross-infected cases, and also reduce the
peak number of 𝐼(𝑡) and daily cross-infected population. In more detail,
we find that by a vaccination coverage rate of 90%, the cumulative
number of confirmed cases can reduce by 23.0% (about 19062 total
cases), moreover, the cumulative number of cross-infected cases can
reduce by 92.9% (about 3700 cases). This implies that mass influenza
vaccination could contribute significantly to the control of the outbreak
of COVID-19 and significantly reduce the risk of cross-infection.

In addition, in Fig. 7 we illustrate the impact of getting vaccine
against influenza on the reduction of the cumulative number of con-
firmed cases and cross-infected cases incorporating the effect of limited
testing kits and public health interventions, that is, with different
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Fig. 5. (A) Estimated effective reproduction number (blue curve) and the variation of the effective reproduction number by varying 𝑟𝜔; (B) The variation of the effective reproduction
number by varying 𝑟𝑐 ; (C) The variation of the effective reproduction number by varying 𝑟𝑞 . Here 𝑟0𝜔 denotes the estimated value of the increasing rate of available detection kits
𝑟𝜔, 𝑟0𝑐 denotes the estimated value of the decreasing rate of contact rate 𝑟𝑐 , and 𝑟0𝑞 denotes the estimated value of the increasing rate of quarantined rate 𝑟𝑞 .

Fig. 6. The impacts of getting vaccinated against influenza on the COVID-19 epidemic in mainland China. Here ‘‘Vr’’ represents the vaccination coverage rate against influenza.

increasing rate of available detection kits 𝑟𝜔 or different decreasing rate
of contact rate 𝑟𝑐 . As shown in Fig. 6, vaccination against influenza
could reduce the cumulative numbers of confirmed cases and cumula-
tive cross-infected cases, hereafter referred as the reduced confirmed
cases and reduced cross-infected cases, respectively. It follows from
Fig. 7(𝐴1) and (𝐴2) that getting vaccinated against influenza could
significantly reduce the cumulative number of confirmed cases and
cross-infected cases with respect to 𝑟𝜔. We give the specific reduction
rate with respect to different 𝑟𝜔 and vaccination coverage rate in
Table 3. Specifically, when the vaccination coverage rate was 90%, the
cumulative number of confirmed cases and cross-infected cases could
reduce by 51.5% and 91.4% with 𝑟𝜔 = 0.1 × 𝑟0𝜔, respectively. We can

further observe that the effects of getting vaccinated against influenza
weakens as 𝑟𝜔 increases. It means that getting vaccinated against in-
fluenza could effectively control the outbreak of COVID-19. Moreover,
mass influenza vaccination is more necessary when detection kits are
severely limited and under seriously shortage of supply. In another
words, mass influenza vaccination can be a much more effective control
measure in mitigating the COVID-19 epidemics in the early stage with
a rapid growth and the countries or areas with limited testing kits.

Similarly, Fig. 7(𝐵1) and (𝐵2) illustrate the impact of getting vac-
cinated on reducing the cumulative number of confirmed cases and
cross-infected cases with respect to 𝑟𝑐 , and the detailed reduction rate
with respect to different 𝑟𝑐 and vaccination coverage rate is given
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Fig. 7. The total reduction number of cumulatively confirmed cases and the reduction of cumulatively cross-infected cases by different vaccination coverage rate against influenza
with respect to 𝑟𝜔 (A1 and A2) and 𝑟𝑐 (B1 and B2). Here ‘‘Vr’’ represents the vaccination coverage rate against influenza.

Table 3
The impacts of getting vaccinated against influenza on the cumulative number of confirmed cases and the cumulative number of cross-infected cases
with respect to 𝑟𝜔.

Vaccination
coverage rate

Cumulative number of confirmed cases Cumulative number of cross-infected cases

𝑟𝜔 = 0.1 ∗ 𝑟0𝜔 𝑟𝜔 = 0.4 ∗ 𝑟0𝜔 𝑟𝜔 = 0.7 ∗ 𝑟0𝜔 𝑟𝜔 = 0.1 ∗ 𝑟0𝜔 𝑟𝜔 = 0.4 ∗ 𝑟0𝜔 𝑟𝜔 = 0.7 ∗ 𝑟0𝜔
0 9.564 × 105 1.357 × 105 9.510 × 104 3.295 × 104 7.427 × 103 4.681 × 103

30%
8.273 × 105 1.189 × 105 8.616 × 104 2.245 × 104 4.380 × 103 2.844 × 103

(−13.5%) (−12.4%) (−9.4%) (−31.9%) (−41.0%) (−39.2%)

60%
6.684 × 105 1.017 × 105 7.735 × 104 1.226 × 104 2.035 × 103 1.395 × 103

(−30.1%) (−25.1%) (−18.7%) (−62.8%) (−72.6%) (−70.2%)

90%
4.635 × 105 8.386 × 104 6.860 × 104 2.830 × 103 410.8 309.2
(−51.5%) (−38.2%) (−27.9%) (−91.4%) (−94.5%) (−93.4%)

Here 𝑟0𝜔 is the estimated value of 𝑟𝜔.

Table 4
The impacts of getting vaccinated against influenza on the cumulative number of confirmed cases and the cumulative number of cross-infected cases
with respect to 𝑟𝑐 .

Vaccination
coverage rate

Cumulative number of confirmed cases Cumulative number of cross-infected cases

𝑟𝑐 = 0.1 ∗ 𝑟0𝑐 𝑟𝑐 = 0.5 ∗ 𝑟0𝑐 𝑟𝑐 = 𝑟0𝑐 𝑟𝑐 = 0.1 ∗ 𝑟0𝑐 𝑟𝑐 = 0.5 ∗ 𝑟0𝑐 𝑟𝑐 = 𝑟0𝑐
0 7.907 × 105 1.798 × 105 8.302 × 104 2.013 × 104 8.363 × 103 3.983 × 103

30%
7.062 × 105 1.632 × 105 7.644 × 104 1.314 × 104 5.222 × 103 2.460 × 103

(−10.7%) (−9.2%) (−7.9%) (−34.7%) (−37.6%) (−38.2%)

60%
6.249 × 105 1.472 × 105 7.010 × 104 6.927 × 103 2.641 × 103 1.235 × 103

(−21.0%) (−18.1%) (−15.6%) (−65.6%) (−68.4%) (−69.0%)

90%
5.468 × 105 1.317 × 105 6.393 × 104 1.616 × 103 601.2 283.0
(−30.8%) (−26.8%) (−23.0%) (−92.0%) (−92.8%) (−92.9%)

Here 𝑟0𝑐 is the estimated value of 𝑟𝑐 .

in Table 4. Specifically, for a 90% vaccination coverage rate, the
cumulative number of confirmed cases could reduce by 30.8%, and the
cumulative number of cross-infected cases could reduce by 92.0% with

𝑟𝑐 = 0.1 × 𝑟0𝑐 , showing that if the contact rate was not fast controlled
and reduced, mass vaccination could effectively aid the containment of
COVID-19 outbreak.
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4. Discussions and conclusions

In the present mathematical modeling study, we have tested the
hypothesis that a mass influenza vaccination campaign would have a
positive effect on the management of people with non-specific symp-
toms and complaining of ILIs, potentially at risk of developing the
COVID-19 (or other emerging respiratory infections) during their ad-
mission at the health-care setting. Our findings show that increasing
influenza vaccination coverage rate to an optimal threshold would
facilitate the efforts of containing the COVID-19 outbreak.

According to some researchers, the SARS-CoV-2 had already been
circulating much earlier than late December 2019 but its correct identi-
fication was hindered by a considerable amount of people complaining
of influenza-like-illness (ILI) symptoms. In the case of the implementa-
tion of a mass influenza vaccination campaign well before the onset of
the influenza season, the exposure of emerging/re-emerging respiratory
pathogens would be unmasked, facilitating their identification and
the design of ad hoc public health interventions. This would signif-
icantly alleviate the pressure on health-care facilities, reducing the
total number of people complaining of ILI symptoms, and decreasing
the transmission probability of COVID-19 or other emerging infec-
tious agents both among healthcare workers and, subsequently, among
people under investigation for their disease.

Influenza generates a relevant burden worldwide, both in terms of
healthcare resources consumption and socio-economic impact. Despite
the existence of effective vaccines and their importance as cost-effective
preventative tool, vaccination coverage rate still remains suboptimal.
With respect to the general population, healthcare workers are at a
higher risk of exposure to circulating respiratory pathogens, including
influenza, potentially threatening their own health and compromising
patients’ safety. Influenza vaccine uptake is suboptimal also among
other targeted categories, including the elderly and disabled people. An
inadequate disease risk perception, a low health literacy, perception of
the societal effects of vaccination and alleged side-effects are among
the drivers of vaccine hesitancy.

Influenza vaccination would enable to better control and contain
the spread of COVID-19 or other emerging/re-emerging pathogens, in
case of coincidence of the outbreak with the influenza season. Mass
influenza vaccination prior to the onset of the peak influenza season
would significantly decrease the number of ILIs among the general
population and specifically the elderly, with fewer persons with ILIs
seeking for medical advice, particularly those in high-risk settings,
with frailty, underlying co-morbidities or disabled. As such, this would
minimize the probability of not quickly and accurately identifying
circulating respiratory pathogens as well as the possibility of ongoing
nosocomial transmission.

However, how to increase influenza vaccination coverage rate re-
mains challenging. Mandatory policies for targeted categories are under
debate in several countries. Also, in this study, we did not consider
explicitly the efficacy of the influenza vaccine, and the vaccination
coverage should be an effective vaccination rate. However, we believe
that this study provided a fundamental framework for quantitatively
evaluating the impact of vaccination against influenza on mitigating the
COVID-19 epidemics. Public health decision- and policy-makers should
adopt evidence-informed strategies to improve influenza vaccine up-
take, given its impact on respiratory pandemic outbreaks coinciding
with the peak influenza season and the shortage of medical personnel
and equipment, including diagnostic tests.
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