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Abstract

Ontogeny describes the emergence of complex multicellular organisms from single totipotent 

cells. In mammals, this field is particularly challenging due to the indeterminate relationship 

between self-renewal and differentiation, variation of progenitor field sizes, and internal gestation. 

Here, we present a flexible, high information, multi-channel molecular recorder with a single cell 

(sc) readout and apply it as an evolving lineage tracer to define a mouse cell fate map from 

fertilization through gastrulation. By combining lineage information with scRNA-seq profiles, we 

recapitulate canonical developmental relationships between different tissue types and reveal the 

nearly complete transcriptional convergence of endodermal cells from extra-embryonic and 

embryonic origins. Finally, we apply our cell fate map to estimate the number of embryonic 

progenitor cells and their degree of asymmetric partitioning during specification. Our approach 

enables massively parallel, high-resolution recording of lineage and other information in 

mammalian systems to facilitate a quantitative framework for understanding developmental 

processes.

Development of a multicellular organism from a single cell is an astonishing process. 

Classic lineage tracing experiments using C. elegans revealed surprising outcomes, including 

deviations between lineage and functional phenotype, but nonetheless benefited from the 

highly deterministic nature of this organism’s development1. Alternatively, more complex 

species generate larger, more elaborate structures that progress through multiple transitions, 

raising questions regarding the coordination between specification and commitment to 

ensure faithful recapitulation of an exact body plan2,3. Single cell RNA-sequencing (scRNA-

seq) has permitted unprecedented explorations into cell type heterogeneity, producing 

profiles of developing flatworms4,5, frogs6, zebrafish7,8, and mice9,10. More recently, 

CRISPR-Cas9-based technologies have been applied to record cell lineage11–13, and 

combined with scRNA-seq to generate fate maps in zebrafish14–16. However, these 

technologies include only one or two bursts of barcode diversity generation, which may be 

limiting for other applications or organisms.

An ideal molecular recorder for these questions would possess the following characteristics: 

1) minimal impact on cellular phenotype; 2) high information content to account for 

hundreds of thousands of cells; 3) a single cell readout for simultaneous profiling of 

functional state14–16; 4) flexible recording rates that can be tuned to a broad temporal range; 

and 5) continuous generation of diversity throughout the experiment. The last point is 

especially relevant for mammalian development, where spatial plans are gradually and 

continuously specified and may originate from small, transient progenitor fields. Moreover, 

scRNA-seq has revealed populations of cells with a continuous spectrum of phenotypes, 

implying that differentiation does not occur instantaneously, further motivating the need for 

an evolving recorder17.
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Here, we generated and validated a method for simultaneously reporting cellular state and 

lineage history in mice. Our CRISPR-Cas9-based recorder is capable of high information 

content and multi-channel recording with readily tunable mutation rates. We employ the 

recorder as a continuously evolving lineage tracer to observe the fate map underlying 

embryogenesis through gastrulation, recapitulating canonical paradigms and illustrating how 

lineage information may facilitate the identification of novel cell types.

Results

A transcribed and evolving recorder

To achieve our goal of a tunable, high information content molecular recorder, we utilized 

Cas9 to generate insertions or deletions (indels) upon repair of double-stranded breaks, 

which are inherited in the next generation of cells11–16. We record within a 205 base pair, 

synthetic DNA “target site” containing three “cut sites” and a static 8 base pair “integration 

barcode” (intBC), which are delivered in multiple copies via piggyBac transposition (Fig. 

1a, b). We embedded this sequence into the 3’UTR of a constitutively transcribed 

fluorescent protein to enable profiling from the transcriptome. A second cassette encodes 

three independently transcribed and complementary guide RNAs to permit recording of 

multiple, distinct signals (Fig. 1a, b)18.

Our system is capable of high information storage due to the diversity of heritable repair 

outcomes, and the large number of targeted sites, which can be distinguished by the intBC 

(Fig. 1c). DNA repair generates hundreds of unique indels, and the distribution for each cut 

site is different and nonuniform: some produce highly biased outcomes while others create a 

diverse series (Fig. 1c, Extended Data Fig. 1)19–21. To identify sequences that can tune the 

mutation rate of our recorder for timescales that are not pre-defined, and may extend from 

days to months, we screened several guide RNA series containing mismatches to their 

targets22 by monitoring their activity on a GFP reporter over a 20-day timecourse and 

selected those that demonstrated a broad dynamic range (Fig. 1d). Slower cutting rates may 

improve viability in vivo, as frequent Cas9-mediated double-strand breaks can cause cellular 

toxicity23,24. To demonstrate information recovery from single cell transcriptomes, we stably 

transduced K562 cells with our technology and generated a primary, cell-barcoded cDNA 

pool via the 10x Genomics platform, allowing us to assess global transcriptomes and 

specifically amplify mutated target sites (Extended Data Fig. 1c).

Tracing cell lineages during development

We next applied our technology to map cell fates during mouse early development from 

totipotency onwards. We integrated multiple target sites into the genome, delivered 

constitutive Cas9-GFP encoding sperm into oocytes to initiate cutting, and isolated embryos 

for analysis at ~embryonic day (E)8.5 or E9.5 (Fig. 2a, Methods). To confirm our lineage 

tracing capability, we amplified the target site from bulk placenta, yolk sac, and three 

embryonic fractions from an E9.5 embryo and recapitulated their expected relationships 

using the similarity of their indel proportions (Fig. 2b, Extended Data Figure 2).
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Following this in vivo proof of principle, we generated single cell data from additional 

embryos (Extended Data Figure 3). We collected scRNA-seq data for 7,364 – 12,990 cells 

from 7 embryos (~15.8% – 61.4% of the total cell count) and recovered 167 – 2,461 unique 

lineage identities (≥1 target site recovered for 15% – 75% of cells from 3 to 15 intBCs, Fig. 

2c, Extended Data Figure 4). Many target sites are either lowly or heterogeneously 

represented, which we improved by changing the promoter from a truncated form of Ef1α to 

an intron-containing version (see embryo 7, Extended Data Figure 4)25.

We estimated the indel likelihood distribution by combining data from all seven embryos. 

Many indels are shared with K562 cells, though their likelihoods differ, suggesting that cell 

type or developmental status may influence repair outcomes (Fig. 2d, Extended Data Figure 

1, 4f)19. Our ability to independently measure and control the rate of cutting across the target 

site is preserved in vivo, with minimal interference between cut sites except when using 

combinations of the fastest guides that may lead to end-joining between simultaneous 

double strand breaks (Fig. 2e). The fastest cutters result in higher proportions of cells with 

identical indels, indicating earlier mutations in development, which correspondingly reduce 

indel diversity (Fig. 2f, g). Importantly, the lineage tracer retains additional recording 

capacity beyond the temporal interval studied here, as most embryos still have unmodified 

cut sites (Fig. 2f).

Simultaneous scRNA-seq to assign state

Next, to ascertain cell function, we utilized annotations from a compendium of wild-type 

mouse gastrulation (E6.5 – E8.5). We assigned cells from lineage-traced embryos by their 

proximity to each cell state expression signature and aged each embryo by their tissue 

proportions compared to each stage (Fig. 3a-c)26. We proceeded with six of our seven 

embryos, as they appeared to be morphologically normal and included every expected tissue 

type: two mapped most closely to E8.5, and the remaining four mapped to E8.0 (Extended 

Data Fig. 5). Placenta was not specifically isolated, but is present in four of six embryos, 

serving as a valuable outgroup to establish our ability to track transitions to the earliest 

bifurcation.

We also developed breeder mice that would enable facile exploration of all stages of 

development by injecting target sites into Cas9 negative backgrounds. This approach 

substantially increases the number of stably integrated target sites (~20). Resulting mice can 

be crossed with Cas9 expressing strains to yield viable Cas9+ F1 litters that maintain 

continuous, stochastic indel generation into adulthood, demonstrating that cutting does not 

noticeably interfere with normal animal development (Extended Data Fig 6).

Single cell lineage reconstruction

We developed phylogenetic reconstruction strategies to specifically exploit the 

characteristics of our lineage tracer, namely categorical indels, irreversibility of mutations, 

and presence of missing values (Extended Data Figure 7, Methods). We determined the best 

reconstruction by summing the log-likelihoods for all indels that appear in the tree using 

likelihoods estimated from embryo data (Extended Data Figures 4 and 7). When cell type 

identity from scRNA-seq is overlaid onto the tree, we observe functional restriction during 
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development, with fewer cell types represented as we move from root to leaves (Fig. 4a, b, 

Extended Data Figure 8).

scRNA-seq-based strategies for ordering cells, such as trajectory inference, typically assume 

that functional similarity reflects close lineage17. To investigate this question directly, we 

used a modified Hamming distance to measure pairwise lineage distance and compared them 

to RNA-seq correlation. Generally, cells separated by a smaller lineage distance have more 

similar transcriptional profiles, though this relationship is clearer for some embryos than 

others (Fig. 4c, Extended Data Figure 9). This result is consistent with the notion of 

continuous restriction of potency as cells differentiate into progressively differentiated types.

We also developed a shared progenitor score that estimates the degree of common ancestry 

between different tissues by evaluating the number and specificity of shared nodes in the tree 

(Methods). Despite the stochastic timing of indel formation, this approach can reproducibly 

recover emergent tissue relationships, such as possible shared origins between anterior 

somites and paraxial mesoderm or neuromesodermal progenitors and the future spinal cord 

(Fig. 4d). The full map of shared progenitor scores can be clustered to create a 

comprehensive picture of tissue relationships during development (Extended Data Fig. 8d).

State and lineage do not always conform

While our reconstructed tissue relationships generally recapitulate canonical knowledge, 

extra-embryonic and embryonic endoderm display consistent and unexpectedly close 

ancestry despite their independent origins from the hypoblast and embryo-restricted epiblast 

(Fig. 5a, Extended Data Figure 9). Manual inspection of the trees revealed a subpopulation 

of cells that appear transcriptionally as embryonic endoderm but that lineage analysis places 

within extra-embryonic branches (Fig 4c, blue). Consistent with this finding, an earlier, 

targeted study using marker-directed lineage tracing identified latent extra-embryonic 

contribution to the developing hindgut during gastrulation, although it was not possible to 

broadly evaluate their transcriptomes27.

Here, scRNA-seq profiles collected in tandem with the lineage readout allow us to assess the 

degree of convergence towards a functional endoderm signature and identify distinguishing 

genes. Endoderm-classified cells derived from extra-embryonic origin are most similar to the 

endoderm cell type, but do share slightly higher similarity with yolk sac that is not apparent 

within the t-sne projection of the full embryo (Fig. 5b, Extended Data Figure 10). Given 

these independent origins, we might expect a subtle, but persistent, transcriptional signature 

reflecting their developmental history. Strikingly, when we separate endoderm cells 

according to their lineage, we identify two X-linked genes, Trap1a and Rhox5, general 

markers for extra-embryonic tissue28,29 that are consistently upregulated in the extra-

embryonic origin endoderm across embryos (K–S test, Bonferroni corrected P-value <0.05, 

Fig. 5d, e). Notably, in other RNA-seq studies, these relationships are not captured by whole 

embryo clustering, and are only found by specific examination of the hindgut (Extended 

Data Figure 10) 9,30. These observations confirm that our lineage tracer can successfully 

pinpoint instances of convergent transcriptional regulation.
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Towards a quantitative fate map

Simultaneous single cell lineage tracing with phenotype provides the unique opportunity to 

infer the cellular potency and specification biases of ancestral cells as reconstructed by our 

fate map31,32. Each node within the tree represents a unique lineage identity stemming from 

a single reconstructed progenitor cell, allowing us to estimate lower boundaries of their field 

size (Methods). We investigated the founding number of progenitors during the earliest 

transitions in cellular potential. We defined totipotency as a node that gives rise to both 

embryonic and extra-embryonic ectodermal/placental cell types and tiered pluripotency into 

“early” and “late” according to the presence of extra-embryonic endoderm (Fig. 6a)33. The 

contributions of these founders to extant lineages are asymmetric, suggesting that even 

though a progenitor may be biased towards a specific fate, it retains the ability to generate 

other cell types. Lower bound estimates from our data suggest a range of 1–6 totipotent 

cells, 10–20 early, and 18–51 late pluripotent progenitors (Fig. 6b). The variable number of 

multipotent cells at these stages may reflect an encoded robustness that ensures successful 

assembly of the functioning organism, particularly given that a single pluripotent cell can 

generate all somatic lineages in an embryo34. Future studies using more replicates generated 

by breeding may enable statistical approaches to evaluate these organism-scale 

developmental considerations.

Discussion

In this study, we present cell fate maps underlying mammalian gastrulation using a 

technology for high information and continuous recording. Several key ideas have emerged, 

including the transformative nature of CRISPR-Cas9-directed mutation with a single cell 

RNA-seq readout14–16, how information about a cell’s history recorded by this technology 

can complement RNA-seq profiles to characterize cell type, and an early framework for 

quantitatively understanding stochastic transitions during mammalian development.

The modularity of our recorder allows for substitutions that will increase its breadth of 

applications. Here, we use three constitutively expressed guide RNAs to record continuously 

over time, but future modifications could employ environmentally-responsive promoters that 

sense stress, neuronal action potentials, or cell-to-cell contacts35, or combine these 

approaches for multifactorial recording. Similarly, Cas9-derived base editors36, including 

those that create diverse mutations37 could allow for content-recording in cells that are 

particularly sensitive to nuclease-directed DNA double strand breaks23,24.

Our cell fate map identifies phenotypic convergence of independent cell lineages, 

showcasing the power of unbiased organism-wide lineage tracing to separate populations 

that appear similar in scRNA-seq alone. Specifically, we substantiate the extra-embryonic 

origin of a subset of cells that resemble embryonic endoderm. While the initial specification 

of these lineages are known to rely on redundant regulatory programs, they are temporally 

separated by several days, emerge from transcriptionally and epigenetically distinct 

progenitors, and form terminal cell types with highly divergent functions. The identification 

of highly predictive markers that segregate by origin, such as Trap1a, provides a clear 

outline for further exploration through spatial transcriptomics38,39,40. More generally, our 

approach can be used to investigate other convergent processes or to discriminate 
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heterogeneous cell states that represent persistent signatures of a cell’s past, which will be 

critical for the assembly of a comprehensive cell atlas41. The scope of transdifferentiation 

within mammalian ontogenesis remains largely unexplored, but can be practically 

inventoried using our system.

Ultimately, our technology is designed to quantitatively address previously opaque questions 

in ontogenesis. Higher order issues of organismal regulation, such as the location, timing, 

and stringency of developmental bottlenecks, as well as the corresponding likelihoods of 

state transitions to different cellular phenotypes, can be modeled from the assembly of 

historical relationships. Our hope is that characterization of these attributes will lead to new 

insights that connect large-scale developmental phenomena to the molecular regulation of 

cell fate decision-making.

Extended Data
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Extended Data Figure 1: Target site indel likelihoods from in vitro experiments
a. Histograms for the relative indel frequency for protospacer sites 1, 2, and 2b within the 

target region. In this experiment, single guide RNA expressing vectors respective to each 

position were delivered into K562 cells. Repair outcomes and frequencies are different for 

each site, but every site produces hundreds of discrete outcomes. The top 20 most frequent 

indels for each site are shown. The indel code along the x-axis is as follows: “Alignment 

Coordinate: Indel Size Indel type (Insertion or Deletion).” Site 3 was not profiled in this 

experiment.

b. Histograms representing the likelihood that any specific base in the target site is deleted 

(blue) or has an insertion (red) which begins at that position, for sites 1 and 2, respectively. 
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The position of the integration barcode (intBC) and protospacer sequences (sites) within the 

target site is represented as a schematic along the bottom, with the PAM for each site 

proximal to the intBC. Indels, specifically insertions, start at the double strand break point 3-

bases upstream of the PAM sequence.

c. Simultaneous and continuous molecular recording of multiple clonal populations in K562 

cells. We transduced K563 cells with a high complexity library of unique intBCs, sorted 

them into wells of 10 cells each and propagated them for 18 days. At the end of the 

experiment, we detected two populations by their intBCs, implying that only two clonal 

lineages expanded from the initial population of 10, and confirmed generation of target site 

mutations. (Left) Strategy for partitioning a multi-clonal population into their clonal 

populations. Target sites are amplified from a single cell barcoded cDNA library and the 

intBCs in each cell is identified as present or absent. (Middle) Heatmap of the percent 

overlap of intBCs between all cells. The cells segregate into two populations representing 

the descendants of two progenitor cells from the beginning of the experiment. (Right) Table 

summarizing results of the experiment, including the generation of indels over the 

experiment duration. These data additionally showcase our ability to combine dynamic 

recording with tracing based on traditional static barcodes.
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Extended Data Figure 2: Capturing early differentiation by pooled sequencing of indels 
generated within an E9.5 embryo
Scatterplots of indel proportions from dissected, bulk tissue of an E9.5 embryo. Placenta is 

the most distantly related from embryonic tissues, followed by the yolk sac, with the three 

embryonic compartments sharing the highest similarity.
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Extended Data Figure 3: Experimental overview
a. Schematic of platform used for generation of single cell RNA-seq libraries and 

corresponding target site amplicon libraries, adapted from Adamson et al., 2016 (Ref 18). 

The barcoded and amplified cDNA library is split into two fractions prior to shearing: one 

fraction is used to generate a global transcription profile and the other is used to specifically 

amplify the target site.

b. Summary table of lineage traced embryos detailing the type of guides used, the sampling 

proportion, and sequencing results. Embryo 4 was omitted from further analysis due to the 

absence of cells identified as primitive heart tube.
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Extended Data Figure 4: Target site capture in mouse embryos
a. Percentage of cells with at least one target site captured.

b. Scatterplot showing the relationship between the mean number of unique molecular 

identifiers (UMIs, a proxy for expression level) sequenced per target site and the percentage 

of cells in which the target site is detected, which we refer to as “target site capture.” 

Generally, as the mean number of UMIs increases, the percentage of cells also increases. 

Using a fullx length, intron-containing Ef1a promoter in mouse embryos leads to a higher 

number of UMIs, which generally results in better target site capture.
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c. Percent of cells for which a given integration barcode (intBC) is detected across all seven 

embryos profiled in this study.

d. Target site capture and expression level across tissues for Embryo 5, which utilizes a 

truncated Ef1a promoter to direct transcription of the target site. Each row corresponds to a 

different intBC, indicated in the top left of the histogram. (Left) The percentage of cells in 

each tissue for which the target site is captured. (Right) Violin plots represented the 

distribution of UMIs for the target site in each tissue. Dashed line refers to a 10 UMI 

threshold. The target site may be expressed at different levels in a tissue-specific manner, 

leading to higher likelihoods of capture in certain tissues. Examples such as the target 

sequences carrying the intBCs AGGACAAA and ATTGCTTG may also be explained by 

mosaic integration after the first cell cycle, as these follow a developmental logic and are 

preferentially expressed in extraembryonic tissues. White dot indicates the median UMI 

count for cells from a given germ layer, edges the interquartile range, and whiskers the full 

range of the data.

e. Target site capture and expression level across tissues for embryo 7, which drives the 

target site expression from a full length Ef1a promoter. Each row corresponds to a different 

intBC, indicated in the top left of the histogram. (Left) The percentage of cells in each tissue 

for which the target site is captured. (Right) Violin plots represented the distribution of 

UMIs for the target site in each tissue as in d. Dashed line is a visual threshold for 10 UMIs. 

While tissue specific expression may explain some discrepancy in target site capture, high 

expression (as estimated from number of UMIs) may still correspond to low capture rates, as 

observed for the intBC TGGCGGGG. One possibility is that certain indels may destabilize 

the transcript and lead to either poor expression or capture.

f. Scatterplots showing the relationship between estimated relative indel frequency and the 

median number of cells that carry the indel. Since the indel frequency within a mouse is 

dependent on the timing of the mutation, we cannot calculate the underlying indel frequency 

distribution using the fraction of cells within embryos that carry a given indel. Instead, we 

estimate this frequency by the presence or absence of an indel using all of the target site 

integrations across mice, which reduces biases from cellular expansion but still assumes that 

any given indel occurs only once in the history of each intBC. Since the number of 

integrations is small (<50), we might expect our estimates to be poor. Here we see that the 

number of cells marked with an indel increases with indel frequency, suggesting that our 

frequency estimates are under-estimated for particularly frequent indels. This is likely due to 

the fact that we cannot distinguish between identical indels in the same target site that may 

have resulted from multiple repair outcomes (convergent indels). The most frequent 

insertions are of a single base and tend to be highly biased towards a single nucleotide (eg. 

92:1I is uniformly an “A” in 5 out of 7 embryos and never < 88%).
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Extended Data Figure 5: single cell RNA-seq tissue assignment and wild type comparison
a. Boxplots representing tissue proportions from E8.0 (top) and E8.5 (bottom) wild type 

embryos (n = 10 each) with lineage-traced embryos mapping to each state overlaid as dots. 

Wild type embryos display large variance in the proportions of certain tissues and our 

lineage-traced embryos generally fall within the range of those recovered from wild type. 

Large circles indicate embryos that were scored as either E8.0 or E8.5, respectively, and the 

bold red overlay highlights embryo 2, which is used throughout the text. Note that many 

processes are continuous or ongoing between E8.0 to E8.5, such as somitogenesis and neural 

Chan et al. Page 14

Nature. Author manuscript; available in PMC 2020 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development. For example, from E8.0 to E8.5, the embryonic proportions of anterior neural 

ectoderm and fore/midbrain are inversely correlated as one cell type presumably matures 

into the other. Many of our embryos scored as E8.0 exhibit intermediate proportions for both 

tissue types, supporting the possibility that these embryos are somewhat less developed than 

E8.5 but more developed than E8.0. For boxplots, center line indicates the median, edges the 

interquartile range, whiskers the Tukey Fences, and crosses the outliers.

b. Plots (t-sne) of single cell RNA-seq with corresponding tissue annotations for the six 

lineage traced embryos used in this study. (Inset) Pie chart of the relative proportions for 

different germ layers. Mesoderm is further separated to include blood (red). While 36 

different states are observed during this developmental interval, only broad classifications of 

certain groups (eg. “neural ectoderm” or “lateral plate mesoderm”) are overlaid to provide a 

frame of reference. In general, the relative spacing and coherence of different cell states are 

consistent across different embryos.

c. Boxplots of the Euclidean distance between single cell transcriptomes and the average 

transcriptional profile of their assigned cluster (cluster center) in comparison to their 

distance from the average of the next closest possible assignment. Comparison is to the same 

712 informative marker genes used to assign cells to states and includes all cells used in this 

study. Middle bar highlights the median, edges the interquartile range, whiskers the Tukey 

Fences, and grey dots the outliers. N’s refer to the cumulative number of cells assigned to 

each state across all 7 embryos for which single cell data was collected, including for 

embryo 4.
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Extended Data Figure 6: Continuous indel generation by breeding
a. Strategy for generating lineage traced mice through breeding. The target site and guide 

array cassette are integrated into mouse zygotes as in Figure 2a using C57Bl/6J sperm to 

generate P0 breeder mice, which are capable of transmitting high copy genomic integrations 

of the technology. Then, P0 animals are crossed with homozygous, constitutively expressing 

Cas9 transgenic animals to enable continuous cutting from fertilization onwards in F1 

progeny. Shown is Sibling 2 of a cross between a P0 male and a Cas9:EGFP female.

b. Bar charts showing the degree of mutation (% cut, red) for a P0 male (top row) and 4 F1 

offspring generated by breeding with a Cas9:EGFP female prior to weaning (21 days post 

partum). Each row represents a mouse and each column represents a target site. Each sibling 

inherits its own subset of the 23 parental target site integrations, and demonstrates different 

levels of mutation throughout gestation and maturation.

c. Indel frequencies for the 10 most frequent indels from 3 siblings in a common target site 

integration (column 1 in b). Each mouse shows a large diversity of indels and the different 

frequencies observed in each animal demonstrates an independent mutational path.
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Extended Data Figure 7: Performance of tree building algorithms used on embryonic data
a. Table summarizing contemporary Cas9-based lineage tracers that have been applied to 

vertebrate development highlighting attributes that differ between the studies. Refer to 

Methods for a more detailed overview of key characteristics of our technology. * Study 

reports the average fraction recovered by tissue for integrations that cannot be distinguished, 

such that percentages reported here are effectively equivalent to our “≥1 intBC” metric. ** 

Reports a plate-based DNA-sequencing approach that can be applied to all methods to 

improve target site recovery. *** Range of cells where at least one intBC is confidently 

detected and scored. **** Presents a tree reconstruction method, but results predominantly 

on clonal analysis.

b. Table of allele complexity, number of nodes, and log-likelihood scores for embryos. Tree 

likelihoods are calculated using indel frequencies estimated from all embryo data (see 

Extended Data Figure 5 and Methods). Bold scores indicate the reconstruction algorithm 

selected for each embryo (see Figure 4, and Extended Data Figures 8 and 9).

c. Log likelihood of trees generated using either the greedy or biased sampling approach as a 

function of complexity, which is measured as the number of unique alleles. There is near 

equivalent performance of the two algorithms for low complexity embryos, but the greedy 

Chan et al. Page 17

Nature. Author manuscript; available in PMC 2020 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



algorithm produces higher likelihood trees for embryos with larger numbers of unique 

alleles.
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Extended Data Figure 8: Single cell lineage reconstruction of early mouse development for 
embryo 6
a. Reconstructed lineage tree comprised of 2,690 nodes generated from our most 

information-dense embryo (embryo 6), which we used to compare shared progenitor scores 

with embryo 2 in Figure 4d. Each branch represents an independent indel generation event, 

and each node contains a pie chart of the germ layer proportions for the cells contained 

within it (colors are as in Figure 3b).

b. Example paths from root to leaf from the selected tree (highlighted by color). Cells for 

each node in the path are overlaid onto the t-sne representation in Extended Data Figure 5, 
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with the tissue proportion at each node in the tree included as a pie chart. In the top most 

path (pink), the lineage bifurcates into two independently fated progenitors that either 

generate mesoderm (secondary heart field/splanchnic plate mesoderm and primitive heart 

tube) or neural ectoderm (anterior neural ectoderm and neural crest). Note that the middle 

path (green) also represents an earlier bifurcation from the same tree and eventually 

produces neural ectoderm (neural crest and future spinal cord). These paths begin with a 

pluripotent node that can generate visceral endoderm but subsequently lose this potential. 

Alternatively, the bottom path (dark blue) begins in an equivalently pluripotent state but 

becomes restricted towards the extraembryonic visceral endoderm fate.

c. Violin plots representing the relationship between lineage and expression for individual 

pairs of cells as calculated for embryo 2 in Figure 4c. Expression Pearson correlation 

decreases with increasing lineage distance, showing that closely related cells are more likely 

to share function. Red dot highlights the median, edges the interquartile range, and whiskers 

the full range.

d. Comprehensive clustering of shared progenitor scores for Embryo 6, which has the 

greatest number of unique alleles and samples multiple extraembryonic tissues. Shared 

progenitor score is calculated as the sum of shared nodes between cells from two tissues 

normalized by the number of additional tissues that are also produced (a shared progenitor 

score is calculated as 2−(n−1) where n is the number of clusters present within that node). In 

general, extraembryonic tissues that are specified before implantation, such as 

extraembryonic endoderm or ectoderm, co-cluster away from embryonic tissues and within 

their own groups, while the amnion and allantois of the extraembryonic mesoderm cluster 

with other mesodermal products of the posterior primitive streak. The co-clustering of 

anterior paraxial mesoderm and somites may reflect the continuous nature of somitogenesis 

from presomitic mesoderm during this period, with production of only the most anterior 

somites by E8.5. Note that the gut endoderm cluster has been further portioned according to 

embryonic or extra embryonic lineage (see Figure 5).
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Extended Data Figure 9: Summary of results from additional mouse embryos
Representative highest likelihood tree analyses for additional embryos, including:

a. Reconstructed trees as shown in Figure 4a.

b. Shared progenitor score heatmaps as shown in Figure 5a, normalized to the highest score 

for each embryo to account for differences in total node numbers. Here, the shared 

progenitor score is calculated as the number of nodes that are shared between tissues scaled 

by the number of number of tissues within each node (a shared score is calculated as 2−(n−1) 

where n is the number of clusters present within that node). In general, clustering of shared 
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progenitors is recapitulated across embryos, with mesoderm and ectoderm sharing the 

highest relationship and either extra-embryonic ectoderm or extra-embryonic endoderm 

representing the most deeply rooted and distinct outgroup, though these scores are sensitive 

to the number of target sites and the rate of cutting. By shared progenitor, PGCs are also 

frequently distant from other embryonic tissues, but this often reflects the rarity of these 

cells, which restricts them to only a few branches of the tree in comparison to more 

represented germ layers. The number of heterogeneous nodes from which scores are derived 

is included for each heatmap.

c. Violin plots representing the pairwise relationship between lineage distance and 

transcriptional profile as shown for embryo 2 in Figure 4c. Lineage distance is calculated 

using a modified Hamming distance and transcriptional similarity by Pearson correlation. 

The exact dynamic range for lineage distance depends on the number of intBCs included and 

the cutting rate of the three guide array. Here, distances are binned into perfect (0), close (0 

> x >0.5), intermediate ( 0.5 ≤ x < 1), and distant (x ≥ 1) relationships for all cells containing 

either 3 or 6 cut sites, depending on the embryo. As lineage distance increases, 

transcriptional similarity decreases, consistent with functional restriction over development. 

Red dot highlights the median, edges the interquartile range, and whiskers the full range.
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Extended Data Figure 10: Expression characteristics of extra-embryonic and embryonic 
endoderm
a. Violin plots representing the pairwise scRNA-seq Pearson correlation coefficients for 

within or across group comparisons according to lineage (X, extra-embryonic; E, 

embryonic) and cluster assignment (light blue, gut endoderm; dark blue, visceral endoderm). 

Within group comparisons for cells with the same lineage and transcriptional cluster identity 

are shown on the left, while across group comparisons are presented on the right. Notably, 

extraembryonic cells with gut endoderm identities show higher pairwise correlations to 

embryonic cells with gut endoderm identities (column 4) than they do to visceral endoderm 

cells, with which they share a closer lineage relationship (column 5). Red dot highlights the 

median, edges the interquartile range, and whiskers the full range.

b. Plots (t-sne) of scRNA-seq data for embryo 2, with gut endoderm cells highlighted. 

Endoderm cells segregate from the rest of the embryo, and cannot be distinguished by 

embryonic (light blue) or extraembryonic (dark blue) origin.

c. Expression boxplots for the extra-embryonic markers Trap1a and Rhox5 from an 

independent single cell RNA-seq survey of E8.25 embryos (Ibarra-Soria et al., 2018, Ref 9). 

Both genes are heterogeneously present in cells identified as mid/hindgut but uniformly 

present in canonical extra-embryonic tissues, consistent with a subpopulation of cells of 

extra-embryonic origin residing within this otherwise embryonic cluster. Red lines 

highlights the median, edges the interquartile range, and whiskers the Tukey Fence. Outliers 

were removed for clarity.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Optimization of a multi-purpose molecular recorder
a. Target site (top) and three guide (bottom) cassettes. The target site consists of an 

integration barcode (intBC) and three cut sites for Cas9-based recording. Three different 

single guide RNAs (sgRNAs) are each controlled by independent promoters (in this study, 

mU6, hU6, and bU6).

b. Molecular recording principle. Each cell contains multiple genomic, intBC-

distinguishable target site integrations. sgRNAs direct Cas9 to cognate cut sites to generate 

insertion (red) or deletion mutations. Here, Cas9 is either ectopically delivered or induced by 

doxycycline.

c. Percentage of uniquely marked reads recovered after recording within a K562 line with 10 

intBCs for 6 days using the following information: site 1 only with intBCs masked, sites 1–3 

(All) with intBCs masked, and sites 1–3 (All) with intBCs considered. Information content 

scales with number of sites and presence of the intBC.

d. sgRNA mismatches alter mutation rate. Seven protospacers were integrated into the 

coding sequence of a GFP reporter to infer mutation rate by the fraction of positive cells 

over a 20 day time course. Single or dual mismatches were made in guides according to 

proximity to the PAM: region 1 (proximal), region 2, and region 3 (distal). Guides against 

Gal4–4 and the GFP coding sequence act as negative and positive controls. Bold sequences 

were incorporated into the target site.
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Figure 2: Lineage tracing in mouse from fertilization through gastrulation
a. Lineage tracing in mouse experiments. The target site (within mCherry’s 3’UTR) and the 

three guide cassettes are encoded into a single piggyBac transposon vector (ITRs, inverted 

terminal repeats). The vector, transposase mRNA, and Rosa26::Cas9:EGFP sperm are 

injected into oocytes to ensure early integration and tracing in all subsequent cells after 

zygotic genome activation. Transferred embryos are then recovered after gastrulation.

b. Pearson correlation coefficient heatmap of indel proportions recovered from bulk tissue of 

an E9.5 embryo (see also Extended Data Figure 2).

c. Indel frequency distribution estimated from 40 independent target sites from all embryos. 

Each site produces hundreds of outcomes for high information encoding. See Extended Data 

Figure 4 and Methods for frequency calculation. The indel code along the x-axis is as 

follows: “Alignment Coordinate: Indel Size Indel type (Insertion or Deletion).”

d. Proportion of indels that span one, two, or three sites, shown per site. Each dot denotes 

one of 40 independent intBCs and sums to one across site-spanning indels. Colors indicate 

the guide array: P = no mismatches; 1 = mismatch in region 1; 2 = mismatch in region 2.

e. Percentage of cells with mutations according to guide complementarity. Indel proportions 

within one mouse depend on timing: mutations that happen earlier in development are 

propagated to more cells. Dots represent site 1 measurements from independent intBCs; N = 

4, 24, and 18 for P, 2, and 1 region mismatches.

f. Indel diversity is inversely related to cutting efficiency for site 1 as in e. Early mutations 

due to fast cutting are propagated to more cells, leading to smaller numbers of unique indels.
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Figure 3: Assigning cellular phenotype by scRNA-seq
a. Images of a lineage-traced E8.5 embryo (embryo 2 of 7 for which single cell data was 

collected, see Extended Data Figure 3), including for Cas9:EGFP and the mCherry:target 

site.

b. t-sne plot of scRNA-seq from embryo in a. Only large or spatially distinct clusters are 

labeled. (Inset) Pie chart of germ layers. Lighter and darker shades represent embryonic and 

extra-embryonic components, respectively. Mesoderm is further separated to include blood 

(red). See Extended Data Figure 5b for additional embryos.

c. Dot plot of canonical tissue-specific markers. Grouping clusters of diverse tissue types 

into germ layers reduces the fraction of marker positive cells, but the specificity to their 

respective states remains high, especially when considered combinatorially. Size: fraction of 

marker-positive cells, color intensity: normalized expression (cluster mean). XEcto, extra-

embryonic ectoderm/placenta; XEndo, extra-embryonic endoderm/yolk sac; PGC, 

primordial germ cell; Endo, embryonic endoderm; Ecto, embryonic ectoderm; Meso, 

embryonic mesoderm; XMeso, extra-embryonic mesoderm.
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Figure 4: Single cell lineage reconstruction of mouse embryogenesis
a. Reconstructed lineage tree comprised of 1,732 nodes for embryo 2 with three lineages 

highlighted. Each branch represents an indel generation event.

b. Example paths from tree in a highlighted by color. Cells for each node in the path are 

overlaid onto the plot from Figure 3b, with tissue proportions as a pie chart. Tissue 

representation decreases with increased tree depth, indicating functional restriction. 

Bifurcating sublineages are included for the top and bottom paths. In the top (red) path, this 

bifurcation occurs within the final branch after primitive blood specification. In the bottom 

(blue) path, bifurcation happens early within bipotent cells that become either gut or visceral 

endoderm.

c. Violin plots of the pairwise relationship between lineage and expression for single cells. 

Lineage distance uses a modified Hamming distance normalized to the number of shared cut 

sites. Pearson correlation decreases with increasing lineage distance, showing that closely 

related cells are more likely to share function. Red dot highlights the median, edges the 

interquartile range, and whiskers the full range.

d. Comparison of shared progenitor scores (log2-transformed) between our two most 

information-dense embryos (Embryo 2, n = 1,400 alleles; Embryo 6, n = 2,461 alleles). 

Cells from closely related transcriptional clusters (ex. primitive blood or visceral endoderm, 

which have early and late states) derive from common progenitors and score as highly 

related in both embryos. We also observe a close link between mesoderm and ectoderm that 
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may reflect shared heritage between neuromesodermal progenitors (NMPs) and more 

posterior neural ectodermal tissues, such as the future spinal cord42.
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Figure 5: Disparities between transcriptional identity and lineage history within the extra-
embryonic endoderm
a. Shared progenitor score heatmap for embryo 2 reconstructs expected relationships. The 

number of nodes that include cells from different lineages is highlighted (Heterogeneous 

nodes). See Extended Data Figure 9 for additional embryos.

b. For cells from embryo 2, the relative distance from the mean expression profile of either 

the endoderm or the extra-embryonic endoderm cluster according to origin (Endo or 

XEndo).

c. Endoderm cell lineage tree from embryo 2 with expression heatmap for two extra-

embryonic marker genes. Middle bar indicates lineage: dark blue, extra-embryonic; light 

blue, embryonic; grey, ambiguous.

d. Expression boxplots for Trap1a and Rhox5 confirms consistent differential expression 

across lineage-traced embryos according to their embryonic or extra-embryonic ancestry. 

Red line highlights median, edges the interquartile range, whiskers the Tukey Fence, and 

crosses outliers. N’s, the number of recovered XEndo origin cells of either embryonic (E) or 

Extraembryonic (X) function per embryo.
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Figure 6: Lineage bias and estimated size of progenitor pools
a. Relative tissue distribution of cells descended from reconstructed or profiled pluripotent 

progenitor cells for embryo 2. “Profiled” is a unique lineage identity of multiple cells 

directly observed in the data. Pluripotent cells form all germ layers, but show asymmetric 

propensities towards different cell fates, possibly reflecting positional biases. Nodes 

highlighted in grey with asterisk overlasy give rise to primordial germ cells (lineages 1, 4, 

and 5 include 9, 1, and 1 PGCs each). Color assignments as in Figures 3.

b. Estimated progenitor field sizes for three types of early developmental potency. Totipotent 

cells give rise to all cells of the developing embryo, including trophectodermal (TE) 

lineages. Pluripotent progenitors are partitioned into early and late by generation of extra-

embryonic endoderm (XEndo) in addition to epiblast (Epi). Dots represent single embryos; 

solid grey line connects estimates from the same embryo.
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