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ABSTRACT

The increasing use of CRISPR–Cas9 in medicine,
agriculture, and synthetic biology has accelerated
the drive to discover new CRISPR–Cas inhibitors
as potential mechanisms of control for gene editing
applications. Many anti-CRISPRs have been found
that inhibit the CRISPR–Cas adaptive immune sys-
tem. However, comparing all currently known anti-
CRISPRs does not reveal a shared set of proper-
ties for facile bioinformatic identification of new anti-
CRISPR families. Here, we describe AcRanker, a ma-
chine learning based method to aid direct identi-
fication of new potential anti-CRISPRs using only
protein sequence information. Using a training set
of known anti-CRISPRs, we built a model based
on XGBoost ranking. We then applied AcRanker
to predict candidate anti-CRISPRs from predicted
prophage regions within self-targeting bacterial
genomes and discovered two previously unknown
anti-CRISPRs: AcrllA20 (ML1) and AcrIIA21 (ML8).
We show that AcrIIA20 strongly inhibits Streptococ-
cus iniae Cas9 (SinCas9) and weakly inhibits Strep-
tococcus pyogenes Cas9 (SpyCas9). We also show
that AcrIIA21 inhibits SpyCas9, Streptococcus au-
reus Cas9 (SauCas9) and SinCas9 with low potency.
The addition of AcRanker to the anti-CRISPR discov-
ery toolkit allows researchers to directly rank po-
tential anti-CRISPR candidate genes for increased
speed in testing and validation of new anti-CRISPRs.

A web server implementation for AcRanker is avail-
able online at http://acranker.pythonanywhere.com/.

INTRODUCTION

CRISPR–Cas systems use a combination of genetic mem-
ory and highly specific nucleases to form a powerful adap-
tive defense mechanism in bacteria and archaea (1–4). Due
to their high degree of sequence specificity, CRISPR–Cas
systems have been adapted for use as programmable DNA
or RNA editing tools with novel applications in biotech-
nology, diagnostics, medicine, agriculture, and more (5–9).
In 2013, the first anti-CRISPR proteins (Acrs) were discov-
ered in Pseudomonas aeruginosa phages able to inhibit the
CRISPR–Cas system (10). Since then, Acrs able to inhibit a
wide variety of different CRISPR subtypes have been found
(10–28).

Multiple methods for identifying Acrs include screening
for phages that escape CRISPR targeting (10,19–23), guilt-
by-association studies (12,17,24,25,28), identification and
screening of genomes containing self-targeting CRISPR ar-
rays (11–13,24), and metagenome DNA screening for inhi-
bition activity (26,27). Of these approaches, the ‘guilt-by-
association’ search strategy is one of the most effective and
direct, but it requires a known Acr to serve as a seed for
the search. Thus, the discovery of one new validated Acr
can lead to bioinformatic identification of others, as many
Acrs have been discovered to be encoded in close physical
proximity to each other, typically co-occurring in the same
transcript with other Acrs or anti-CRISPR associated (aca)
genes (12,17,28). Screening approaches are particularly use-
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ful in this regard, as they can potentially identify new Acr
families.

Identification of self-targeting CRISPR arrays can also
help in predicting new Acr families. Typically, a CRISPR ar-
ray with a spacer targeting the host genome (self-targeting)
is lethal to the cell (29). However, if a mobile genetic el-
ement (MGE) present in the cell carries acr genes, the
CRISPR–Cas system could be inhibited, and this may al-
low a cell with a self-targeting array to survive. To find new
Acrs, genomes containing self-targeting arrays are identi-
fied through bioinformatic methods, and the MGEs within
are screened for anti-CRISPR activity, eventually narrow-
ing down to individual proteins (11–13,24). Screens based
on self-targeting also benefit from the knowledge of the ex-
act CRISPR system that an inhibitor potentially exists for,
as opposed to broad (meta-)genomic screens where a spe-
cific Cas protein has to be selected to screen against. Both
types of screening additionally benefit from not requiring
the prediction of a transcriptome or proteome that bioin-
formatic methods depend on, where incorrect annotations
could lead to missed acr genes (24).

However, a weakness of all of these methods is that they
are unable to predict a priori whether a gene may be an Acr,
largely because Acr proteins do not share high sequence
similarity or mechanisms of action (14,16,30–36). One the-
ory to explain the high diversity of Acrs is the rapid muta-
tion rate of the mobile genetic elements they are found in
and the need to evolve with the co-evolving CRISPR–Cas
systems trying to evade anti-CRISPR activity. Due to the
relatively small size of most Acrs and their broad sequence
diversity, simple sequence comparison methods for search-
ing anti-CRISPR proteins are not expected to be effective.
In this work, we report the development of AcRanker, a
machine learning based method for direct identification of
anti-CRISPR proteins. Using only amino acid composi-
tion features, AcRanker ranks a set of candidate proteins
on their likelihood of being an anti-CRISPR protein. A
rigorous cross-validation of the proposed scheme shows
known Acrs are highly ranked out of proteomes. We then
use AcRanker to predict 10 new candidate Acrs from pro-
teomes of bacteria with self-targeting CRISPR arrays and
biochemically validate three of them. Our machine learn-
ing approach presents a new tool to directly identify poten-
tial Acrs for biochemical validation using protein sequence
alone.

MATERIALS AND METHODS

Data collection and preprocessing

To model the task of anti-CRISPR protein identifica-
tion as a machine learning problem, a dataset consist-
ing of examples from both positive (anti-CRISPR) and
negative (non-anti-CRISPR) classes was needed. We col-
lected anti-CRISPR information for proteins from the
Anti-CRISPRdb (37). At the time the work was initiated,
the database contained information for 432 anti-CRISPR
proteins. In order to ensure that the machine learning model
generalizes well to protein sequences that do not share high
sequence similarity to known anti-CRISPR proteins, a 40%
sequence identity threshold is used (38). The use of a 40%
identity threshold represents a boundary where proteins

above this threshold are likely to share the same struc-
ture and possibly function (39), thus providing a compro-
mise between ensuring non-redundancy of the train and
test datasets while retaining enough training examples for
cross-validation. We used CD-HIT (40) to identify a non-
redundant set (at the 40% sequence similarity threshold) of
20 experimentally verified Acrs (Supplementary Table S1).
These proteins belong to different Acr classes: 12 of the pro-
teins are active against subtype I-F CRISPR Cas systems,
four against I-E, and four against II-A (10,13,17,20,22).
This set constitutes the positive class of our dataset. We
downloaded the complete proteomes of source species to
which each of these proteins belong. Within these pro-
teomes, any protein with 40% or higher sequence similar-
ity with any protein in the set of known anti-CRISPR pro-
teins was removed, and the remaining proteins were used to
construct the negative dataset. For independent testing of
the method, a dataset comprising 20 known Acrs separate
from the training set (11–13,21,24,26,28,41) was used (Sup-
plementary Table S2). The Acrs belonging to the test set
were chosen to cover the wide variety of known Acr mech-
anisms and sequences (42), while mainly consisting of the
three subtypes the model was trained on. Source proteomes
for all these proteins were downloaded, based on open read-
ing frame predictions on the NCBI database.

Feature extraction

In line with existing machine learning based protein func-
tion prediction techniques, we used sequence features (43)
based on amino acid composition and grouped dimer and
trimer frequency counts (44). For this purpose, amino acids
are first grouped into seven classes based on their physico-
chemical properties (44) (Supplementary Table S3) and the
frequency counts of all possible groups labeled as dimers
and trimers in a given protein sequence are used in con-
junction with amino acid composition. All three types of
features (amino acid composition, di- and tri-meric fre-
quency counts) are normalized to unit norm resulting in a
20 + 72 + 73 = 412-dimensional feature vector representa-
tion for a given protein sequence (45,46).

Machine learning model

The underlying machine learning model for AcRanker has
been built using EXtreme Gradient Boosting (XGBoost)
(47). In machine learning, boosting is a technique in which
multiple weak classifiers are combined to produce a strong
classifier. XGBoost is a tree-based method (47) that uses
boosting in an end-to-end fashion, i.e., every next tree tries
to minimize the error produced by its predecessor. XGBoost
has been shown to be a fast and scalable learning algorithm
and has been widely used in many machine learning appli-
cations (47).

In this work, we have used XGBoost as a pairwise rank-
ing model to rank constituent proteins in a given proteome
in descending order of their expected Acr behavior. The
XGBoost model is trained in a proteome-specific manner
to produce higher scores for known anti-CRISPR proteins
as compared to non-anti-CRISPR proteins in a given pro-
teome. In comparison to conventional XGBoost classifica-
tion, the pairwise ranking model performed better in terms
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of correctly identifying known anti-CRISPR proteins in test
proteomes in cross-validation (Supplementary Table S4).
Specifically, given a set of training proteomes S each with
one or more known anti-CRISPR proteins, our objective
is to obtain an XGBoost predictor f (x; θ ) with learnable
parameters θ that generates a prediction score for a given
protein sequence represented in terms of its feature vector
x. In proteome-specific training, we require the model to
learn optimal parameters θ∗ such that the score f ( p; θ∗) for
a positive example p (known anti-CRISPR protein) should
be higher than f (n; θ∗) for all negative examples n (non-
Anti-CRISPR proteins) within the same proteome. The hy-
perparameters of the learning model are selected through
cross-validation and optimal results are obtained with the
number of estimators set at 120, a learning rate of 0.1, a
subsampling of 0.6 and a maximum tree depth of 3.

Performance evaluation

To evaluate the performance of the machine learning model,
we have performed leave-one-out cross-validation as well as
validation over an independent test set. In a single fold of
leave-one-out cross-validation, we set aside the source pro-
teome of a given anti-CRISPR protein for testing and train
on all other proteomes. To ensure an unbiased evaluation,
all sequences in the training set with a sequence identity of
40% or higher with any test protein or among themselves are
removed from the training set. Furthermore, all proteins in
the test set with >40% sequence identity with known anti-
CRISPR proteins in the training set are also removed. This
ensures that there is only one known anti-CRISPR protein
in the test set in a single fold. The XGBoost ranking model
is then trained and the prediction scores for all proteins in
the test set are computed. Ideally, the known anti-CRISPR
protein in the proteome should score the highest across all
proteins in the given test proteome. This process is then re-
peated for all proteomes in our dataset. The rank of the
known anti-CRISPR protein in its source proteome is used
as a performance metric.

In bacteria, Acrs are usually located within prophage
regions (13,48). Based on this premise, in another exper-
iment for model evaluation, we passed only the proteins
found within prophage regions to the model. To identify the
prophage regions for a given bacterial proteome we used
PHASTER (PHAge Search Tool Enhanced Release) web
server (49) which accepts a bacterial genome and annotates
prophage regions in it. The decision scores are computed
for all phage proteins identified by PHASTER in the test
proteome.

To help assess AcRanker’s performance during leave-
one-out cross-validation, BLAST (Basic Local Alignment
Search Tool) (50) similarity was used to set a minimum per-
formance expectation. For each protein in a given test pro-
teome, we compute blastp scores (with default parameters)
with the set of known Acrs (excluding the tested protein)
and rank proteins in the increasing order of the respective
e-values.

For independent validation, the ranking based XGBoost
model trained over sequence features for all 20 source pro-
teomes (Supplementary Table S1) has been tested for re-
cently discovered Acrs (Supplementary Table S2) that are

not part of our training set. The rank of a known Acr in
its corresponding proteome was computed. Here again, we
evaluated the model for both the complete proteome of
the organism and the respective MGE subset identified by
PHASTER.

AcRanker webserver

A webserver implementation of AcRanker is publicly avail-
able at http://acranker.pythonanywhere.com/. The web-
server accepts a proteome file in FASTA format and re-
turns a ranked list of proteins. The Python code for the
webserver implementation is available at the URL: https:
//github.com/amina01/AcRanker.

Acr candidate selection

Self-Targeting Spacer Searcher (STSS; https://github.com/
kew222/Self-Targeting-Spacer-Searcher) (11) was run with
default parameters using ‘Streptococcus’ as a search term
for the NCBI genomes database, which returned a list of
all self-targets found in those genomes. Whether known acr
genes were present in each of the self-targeting genomes
was checked using a simple blastp search using default pa-
rameters with the Acr proteins stored within STSS. Twenty
self-targeting genomes that contained at least one self-target
with a 3′-NRG PAM were chosen for further analysis with
AcRanker. Prophage regions with each genome were pre-
dicted using PHASTER (49). Then proteins found across
all of the prophage regions predicted in a given genome were
ranked with AcRanker.

To select individual gene candidates for synthesis and bio-
chemical validation, the 10 highest ranked proteins from
each genome were examined by visual inspection for a
strong promoter, a strong ribosome binding site, and an in-
trinsic terminator. Promoters were searched for manually by
looking for sequences closely matching the strong consen-
sus promoter sequence TTGACA-17(±1)N-TATAAT up-
stream of the acr candidate gene, or any genes immediately
preceding it. The presence of a strong ribosome binding site
(resembling AGGAGG) near the start codon was similarly
searched for and was required to be upstream of a gene can-
didate for selection. Last, given the nature of Acrs to be
clustered together, genes neighboring the best candidates
were also selected for further testing/validation and com-
prise part of the 10-member candidate test set.

Protein expression and purification

Each of the Acr candidates (Supplementary Table S5) were
cloned into a custom vector (pET-based expression vec-
tor) such that each protein was N-terminally tagged with
a 10xHis sequence, superfolder GFP, and a tobacco etch
virus (TEV) protease cleavage site, available on Addgene
(#140995–141004). Each Cas effector (Supplementary Ta-
ble S6): Acidaminococcus sp. Cas12a (AsCas12a), Strep-
tococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus
Cas9 (SauCas9) and Streptococcus iniae Cas9 (SinCas9,
Addgene #141076), were expressed as N-terminal MBP fu-
sions. Proteins were produced and purified as previously de-
scribed (33). Briefly, Escherichia coli Rosetta2 (DE3) con-
taining Acr or Cas9 expression plasmids were grown in
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Terrific Broth (100 �g/ml ampicillin) to an OD600 of 0.6–
0.8, cooled on ice, induced with 0.5 mM isopropyl-b-D-
thiogalactoside and incubated with shaking at 16◦C for 16
h. Cells were harvested by centrifugation, resuspended in
wash buffer (20 mM Tris–Cl (pH 7.5), 500 mM NaCl, 1
mM tris(2-carboxyethyl)phosphine (TCEP), 5% (v/v) glyc-
erol) supplemented with 0.5 mM phenylmethanesulfonyl
fluoride and cOmplete protease inhibitor (Roche), lysed by
sonication, clarified by centrifugation and purified over Ni-
NTA Superflow resin (Qiagen) in wash buffer supplemented
with 10 mM (wash) or 300 mM imidazole (elution). Elu-
tion fractions were pooled and digested overnight with re-
combinantly expressed TEV protease while dialyzed against
dialysis buffer (20 mM Tris–Cl (pH 7.5), 125 mM NaCl, 1
mM TCEP, 5% (v/v) glycerol) at 4◦C. The cleaved proteins
were loaded onto an MBP-Trap (GE Healthcare) upstream
of a Heparin Hi-Trap (GE Healthcare) in the case of Spy-
Cas9, SauCas9 and SinCas9. Depending on the pI, TEV
digested Acrs were loaded onto a Q (ML1, ML2, ML3,
ML6, ML8, and ML10), heparin (ML4 and ML5), or SP
(ML7 and ML9) Hi-Trap column. Proteins were eluted over
a salt gradient (20 mM Tris–Cl (pH 7.5), 1 mM TCEP, 5%
(v/v) glycerol, 125 mM–1 M KCl). The eluted proteins were
concentrated and loaded onto a Superdex S200 Increase
10/300 (GE Healthcare) for SpyCas9, SauCas9, SinCas9
or Superdex S75 Increase 10/300 (GE Healthcare) for all
the Acr candidates and developed in gel filtration buffer
(20 mM HEPES-K (pH 7.5), 200 mM KCl, 1 mM TCEP
and 5% (v/v) glycerol). The absorbance at 280 nm was mea-
sured by Nanodrop and the concentration was determined
using an extinction coefficient estimated based on the pri-
mary amino acid sequence of each protein. Purified pro-
teins were concentrated to approximately 50 �M for Cas9
effectors and 100 �M for Acr candidates. Proteins were then
snap-frozen in liquid nitrogen for storage at –80◦C. Purity
and integrity of proteins was assessed by 4–20% gradient
SDS-PAGE (Coomassie blue staining, Supplementary Fig-
ure S2A) and LC–MS (Supplementary Figure S2B).

RNA preparation

All RNAs (Supplementary Table S7) were transcribed in
vitro using recombinant T7 RNA polymerase and purified
by gel extraction as described previously (51). Briefly, 100
�g/ml T7 polymerase, 1 �g/ml pyrophosphatase (Roche),
800 units RNase inhibitor, 5 mM ATP, 5 mM CTP, 5 mM
GTP, 5 mM UTP, 10 mM DTT, were incubated with DNA
target in transcription buffer (30 mM Tris–Cl pH 8.1, 25
mM MgCl2, 0.01% Triton X-100, 2 mM spermidine) and
incubated overnight at 37◦C. The reaction was quenched
by adding 5 units RNase-free DNase (Promega). Transcrip-
tion reactions were purified by 12.5% (v/v) urea-denaturing
PAGE (0.5× Tris–borate–EDTA (TBE)) and ethanol pre-
cipitation.

In vitro cleavage assay

In vitro cleavage assays were performed at 37◦C in 1× cleav-
age buffer (20 mM Tris–HCl pH 7.5, 100 mM KCl, 5 mM
MgCl2, 1 mM DTT and 5% glycerol (v/v)) targeting a
PCR amplified fragment of double-stranded DNA (Supple-
mentary Table S8). For all cleavage reactions, the sgRNA

was first incubated at 95◦C for 5 min and cooled down to
room temperature. The Cas effectors (SpyCas9, SauCas9,
AsCas12a at 100 nM and SinCas9 at 200 nM respectively)
were incubated with each candidate Acr protein at 37◦C for
10 min before the addition of sgRNA (SpyCas9, SauCas9,
AsCas12a sgRNA at 160 nM and SinCas9 sgRNA at 320
nM respectively) to form the RNP at 37◦C for 10 min. The
DNA cleavage reaction was then initiated with the addition
of DNA target and reactions incubated for 30 min at 37◦C
before quenching in 1× quench buffer (5% glycerol, 0.2%
SDS, 50 mM EDTA). Samples were then directly loaded
to a 1% (w/v) agarose gel stained with SYBRGold (Ther-
moFisher) and imaged with a BioRad ChemiDoc.

Competition binding experiment

The reconstitution of the SinCas9–sgRNA–ML1 and
SinCas9–sgRNA–AcrIIA2 complex was carried out as pre-
viously described (52). Briefly, purified SinCas9 and in vitro
transcribed sgRNA were incubated in a 1:1.6 molar ratio at
37◦C for 10 min to form the RNP. To form the inhibitor
bound complexes, a 10-fold molar excess of AcrIIA20
(ML1) or AcrIIA2 were added and incubated with the RNP
complex at 37◦C for 10 min. For the competition binding
experiment, a 10-fold molar excess of AcrIIA20 was first in-
cubated with the RNP complex at 37◦C before incubation
with a 10-fold molar excess of AcrIIA2 at 37◦C for 10 min.
Each complex was then purified by analytical size-exclusion
chromatography (Superdex S200 Increase 10/300 GL col-
umn, GE Healthcare) pre-equilibrated with the gel filtra-
tion buffer (20 mM HEPES-K (pH 7.5), 200 mM KCl, 1
mM TCEP and 5% (v/v) glycerol) containing 1 mM MgCl2.
The peak fractions were concentrated by spin concentra-
tion (3-kDa cutoff, Merck Millipore), quenched in 1X SDS-
Loading dye (2% w/v SDS, 0.1% w/v bromophenol blue
and 10% v/v glycerol) and boiled down to 20 �l before load-
ing onto a 4–20% gradient SDS-PAGE.

Mass spectrometry

Protein samples were analyzed using a Synapt mass spec-
trometer as described elsewhere (53).

RESULTS

A machine learning model for anti-CRISPR prediction

A major challenge in the discovery of new anti-CRISPR
proteins is the diversity of amino acid sequences that have
been discovered so far, and the lack of predictable struc-
tural features between them (54,55). While some Acrs
and aca genes are predicted to contain an HTH fold
(13,24,54,56,57), there is no broadly unifying structural mo-
tif, making traditional searching methods (such as BLAST
similarity searching (50) poorly equipped to identify new
Acr families. To address this challenge, we have developed
AcRanker, a machine learning model that accepts a pro-
teome as input and ranks its constituent proteins in decreas-
ing order of their expected Acr character.

To build the model, we used EXtreme Gradient Boost-
ing (XGBoost) based ranking (47) with 1-, 2- and 3-mer
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amino acid composition as input features (43). Other fea-
tures were considered, but did not improve model perfor-
mance, or were impractical to include (e.g. requiring ex-
perimental data to determine transcription or translation
rates). Additionally, the use of sequence features alone can
indirectly capture information about the structure of the
protein and other properties, such as the isoelectric point
and physiochemical properties, while being minimally re-
strictive. The utility of sequence features has been demon-
strated previously (58), including work to predict binding
sites within calmodulin (59), where the target proteins se-
quences are diverse.

To train the model we created a dataset comprising 20 ex-
perimentally verified Acrs taken from the anti-CRISPRdb
(37) (Supplementary Table S1) and their source proteomes.
Testing was performed on an additional set of 20 known
Acrs, with different predicted mechanisms, sequence com-
position, and source organisms (Supplementary Table S2).

Cross-validation by single proteome omission

To evaluate the performance of AcRanker, we performed
leave-one-out cross-validation using the training dataset.
Out of the 20 known Acr proteomes tested individually, we
observed that the ranking-based model ranked seven Acrs
higher than other proteins in their respective proteomes (Ta-
ble 1). In total, 14 out of the 20 known Acrs are ranked
within the top 5% in their respective proteomes (Table 1).

Generally, we observe that the machine learning rankings
for Acrs contained in phage proteomes are much better than
those contained in bacterial proteomes, likely due to their
smaller size (Table 1). To test if the relative rankings of the
known Acrs found within bacterial proteomes would im-
prove in the context of only prophage-derived proteins, we
identified which proteins in the bacterial proteomes were
found within prophages using PHASTER (49) and used
only that subset to test both models. With the prophage sub-
sets we did observe a higher ranking for the known Acrs due
to the removal of higher-ranking proteins not found in the
predicted prophages (Table 1).

As a baseline, we also compared the rankings obtained
from the machine learning model to a blastp (50) rank-
ing (Table 1). For each excluded Acr in the leave-one-out
train/test cycles, the excluded Acrs proteome was used as
a query set to BLAST against the 19 other Acrs used for
training and the resulting e-values ranked from lowest to
highest. These blastp scores represent a naı̈ve search strat-
egy that AcRanker seeks to improve upon. The BLAST
search method, however, only returned the highest rank for
the AcrIF6 family because three distant homologs (using
the <40% identity threshold) were included in the train-
ing dataset. Interestingly, we also observed that the BLAST
method gave higher ranks than AcRanker for AcrIF9,
AcrIIA5 and AcrIIA1 (13,17,20). However, with the excep-
tion of AcrIF6, the BLAST rankings of all the Acrs fell
outside of the top 5%, demonstrating the diversity of Acr
families, the difficulty of predicting new Acrs de novo, and
improvement gained using AcRanker.

We next asked which of the features used in AcRanker
had the biggest impact on Acr ranking to determine if any
biological insight could be gained. Performing a SHAP

(SHapley Additive exPlanations) (60) analysis on the con-
structed model (Supplementary Figure S1) revealed that the
three highest impact features were the presence or absence
of three single amino acids: proline, glutamine, and leucine.
However, the ‘blackbox’ nature of machine learning mod-
els, the relative continuity of the top 20 impact values, and
the lack of a clear relationship between them prevent any
clear conclusions from being drawn.

Independent set validation

To validate AcRanker, we used an independent testing
dataset of 20 recently discovered Acrs not part of the train-
ing dataset (Supplementary Table S2). Of these 20 Acrs,
three are found in phage (AcrIF14, AcrIIA6, and AcrI-
IIB1) and 10 (AcrIE4-F7, AcrIF11, AcrIF11.1, AcrIF11.2,
AcrIC1, AcrIIA3, AcrIIA13, AcrIIC5, AcrVA1 and
AcrVA4) were predicted to be in a prophage region using
PHASTER. For the proteins predicted to be in a prophage
both the complete bacterial and phage proteome were
ranked with AcRanker, otherwise only the complete pro-
teome was ranked (Supplementary Table S9). The results
from the complete bacterial proteomes did generally not
perform well (Supplementary Table S9), with only four
(AcrIE5, AcrIC1, AcrIIA3 and AcrIIC5) out of 16 receiv-
ing ranks within the top 10. However, of the 13 proteins
found within a phage/prophage, AcRanker ranked eight
within the top 10, including two with the highest rank
(Table 2).

Within the 20 Acr independent test set, AcRanker returns
a higher rank for the majority of (pro-)phage proteomes
compared to blastp searching (Table 2). Of the six cases
where blastp ranked the known Acr higher than AcRanker,
three (AcrIIA6, AcrIIIB1, AcrVA4) were ranked outside of
the top 40% by both blastp and AcRanker, and would be
unlikely to be discovered using either method. In two of
the remaining three cases where blastp returned the higher
rank (AcrIE4-F7 and AcrIF11), AcRanker was able to rank
at least one member of the family within the top 10 of its
respective predicted prophage proteome. AcrIF14 was the
only case where blastp was able to rank the known Acr in
the top 10 and AcRanker was not (Table 2). Generally, we
observe better performance of AcRanker relative to blastp
to identify Acrs, although the appearance of highly rank-
ing known Acrs using blastp suggests a possibility that di-
rect BLAST searching, as opposed to guilt-by-association
searching, may be beneficial to locating certain undiscov-
ered Acrs, for which there is some related precedent where
three Acr families shared a homologous N-terminus (24).

anti-CRISPR candidate selection

Encouraged by the number of highly ranked Acrs from the
test dataset, we proceeded to apply AcRanker to predict
novel anti-CRISPRs from self-targeting genomes. Given
the ubiquity of Streptococcus pyogenes Cas9 (SpyCas9) in
gene editing and our inclusion of known SpyCas9 Acrs in
the machine learning training dataset (AcrIIA1, AcrIIA2,
AcrIIA4, AcrIIA5), we chose to focus specifically on Strep-
tococcus species containing Cas9 proteins homologous to
SpyCas9.
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Table 1. Results for leave-one-out cross-validation

Complete proteome Prophage subset

Accession No.
Anti-CRISPR

family
Proteome

size
BLAST

rank
AcRanker

rank
Proteome

Size
BLAST

rank
AcRanker

rank

YP 007392738.1 AcrIE1 57 33 1 - - -
YP 007392439.1 AcrIE2 54 18 2 - - -
YP 950454.1 AcrIE3 52 17 1 - - -
NP 938238.1 AcrIE4 54 11 1 - - -
YP 007392342.1 AcrIF1 56 21 11 - - -
YP 002332454.1 AcrIF2 51 34 1 - - -
YP 007392440.1 AcrIF3 54 5 1 - - -
YP 007392799.1 AcrIF4 57 36 3 - - -
YP 007392740.1 AcrIF5 57 26 19 - - -
WP 043884810.1 AcrIF6 6095 1 80 361 1 15
WP 019933870.1 AcrIF6 3045 1 13 72 1 1
WP 014702809.1 AcrIF6 2689 1 130 57 - -
ACD38920.1 AcrIF7 57 20 1 - - -
AFC22483.1 AcrIF8 68 30 1 - - -
WP 031500045.1 AcrIF9 4928 198 333 37 - -
KEK29119.1 AcrIF10 3552 189 17 70 23 2
AEO04364.1 AcrIIA1 2951 183 770 146 60 87
AEO04363.1 AcrIIA2 2951 210 16 146 34 3
AEO04689.1 AcrIIA4 2951 59 21 146 9 4
ASD50988.1 AcrIIA5 54 5 8 - - -

Each row of the table indicates which Acr was excluded from the training dataset and used as a test dataset, and each number displayed is the ranking of
the known Acr received from the indicated test proteome using either the blastp search against all other known Acrs (BLAST) or AcRanker. The Acrs from
bacterial proteomes––AcrIF6, AcrIF9, AcrIF10, AcrIIA1, AcrIIA2 and AcrIIA4––were also ranked using only the subset of proteins predicted to reside
within prophages as predicted by PHASTER (49). Two Acrs from bacterial proteomes did not occur in the predicted prophages (WP 014702809.1 and
WP 031500045.1) and are indicated by dash placeholders. All three prophage proteome subset fields have been left empty for Acrs from phage proteomes.

Table 2. Independent testing set validation results

Prophage subset

Accession no.
Anti-CRISPR

family
Proteome

size
BLAST

rank
AcRanker

rank

WP 064584002.1 AcrIE4-F7 111 1 4
WP 038819808.1 AcrIF11 64 38 3
WP 033936089.1 AcrIF11.1 92 38 1
EGE18857.1 AcrIF11.2 59 1 30
AKI27193.1 AcrIF14 68 5 14
WP 046701304.1 AcrIC1 72 15 1
WP 014930691.1 AcrIIA3 74 10 2
WP 149028791.1 AcrIIA6 40 21 23
AKS70260.1 AcrIIA13 145 29 3
WP 002642161.1 AcrIIC5 367 237 6
NP 666582.1 AcrIIIB3 54 25 44
WP 046701302.1 AcrVA1 72 18 10
WP 046699156.1 AcrVA4 293 181 220

Thirteen proteomes containing non-redundant (<40% sequence identity)
Acrs from phage or bacterial prophage (as predicted by PHASTER) were
ranked with either AcRanker or a blastp search against the training set of
Acrs.

We began by generating a list of Streptococcus genomes
containing at least one self-targeting type II-A CRISPR
system using Self-Target Spacer Searcher, which has been
previously described (11). We found 385 instances of self-
targeting from type II-A CRISPR arrays occurring within
241 Streptococcus genome assemblies, six of which con-
tained known Acrs. Of these 241 self-targeting arrays, we
looked for instances where the target sequence was flanked
by the 3′ NRG protospacer adjacent motif (PAM) charac-
teristic of SpyCas9 and observed that it was present in 20
genomes. These 20 self-targeting arrays would be expected

to be lethal for close homologs of SpyCas9, suggesting that
other factors, such as the presence of Acrs (11), are prevent-
ing CRISPR self-targeting and cell death (Supplementary
Table S10). During our original search of these 20 genomes,
S. iniae strain UEL-Si1 was the only one that contained a
previously discovered Acr, AcrIIA3 (13), providing a large
proteome space to search for novel acr genes.

To identify new acr gene candidates, we first used
PHASTER (49) to predict all of the prophages residing
within the 20 self-targeting Streptococcus genomes as well
as an additional Listeria monocytogenes genome (strain R2-
502) containing a type II-A self-targeting CRISPR system
(with six self-targets) and three well-known AcrIIA genes
(13). We included the Listeria strain to determine if the
known Acrs within it were returned as the top ranked genes,
and if not, test the higher-ranking genes as potential ad-
ditional Acrs within a known Acr-harboring strain. We
created lists of the annotated proteins found within each
genome’s set of prophages. These protein lists were then
ranked with AcRanker to predict the 10 highest ranked
genes most likely to be an acr (Supplementary Table S11).
Of the ∼200 genes returned, a subset was selected for fur-
ther biochemical testing. The selection was based on previ-
ous observations that many Acrs are typically short genes
with transcripts driven by strong promoters and ribosome
binding sites that frequently end with intrinsic terminator
sequences (11,13,24) (Figure 1). We also looked for pro-
teins encoded in operons with other acr or aca genes, al-
though this was rare, highlighting a challenge of guilt-by-
association approaches.

As with the previous testing dataset, we observed that the
known acr genes were highly ranked within the test pro-
teomes. Interestingly, a few proteins contained in the same,
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Figure 1. Acr candidates selected for biochemical testing. Ten Acr candidates were selected from manual inspection for further biochemical testing (blue
fill). Each candidate is shown in its genomic context with its assigned rank from AcRanker noted in red. Homologous proteins share the same color border
(green, blue). Homologs of AcrIIA3 (orange border) and AcrIIA1 (red border) are indicated. While testing the ML candidates, ML3 (yellow fill) was
identified as a specific inhibitor of LmoCas9 (25).

or overlapping, transcripts as the known Acrs ranked higher
with AcRanker (ML1 and ML2). We took these candidates
as well as eight others (ML3–ML10) containing the features
described above (Figure 1).

Biochemical validation of novel Acrs identified by AcRanker

To determine if the identified proteins were inhibitors of
SpyCas9, we purified each candidate and tested their ability
to directly inhibit DNA targeting in vitro. Of the ten candi-
date inhibitors, nine were successfully cloned, expressed and
purified (Supplementary Figures S2A and B). To assess in-
hibition of DNA targeting in vitro, we first assayed the abil-
ity of SpyCas9 to cleave double stranded DNA (dsDNA)
when incubated in the presence of a 50-fold excess of each
candidate Acr (Figure 2A). While SpyCas9 was capable
of complete DNA target cleavage, the generation of DNA
cleavage products was attenuated in the presence of the pos-
itive control inhibitor AcrIIA4 and the candidates ML1 or
ML8. To determine the potency of inhibition, we tested the
ability of SpyCas9 to cleave the DNA target in the presence
of a dilution series of ML1 or ML8 (Figure 2B). In contrast
to AcrIIA4, an established potent inhibitor of SpyCas9
(13), both ML1 and ML8 inhibited SpyCas9 with around a
10-fold lower potency. We wondered if the high concentra-
tion of ML1 or ML8 required to completely inhibit Cas9
might represent an in vitro concentration-dependent arti-
fact. To explore this, we assayed SpyCas9 DNA cleavage
against a titration series of either non-target DNA competi-
tor, BSA, ML2 or ML3 and observed no significant inhibi-
tion of SpyCas9, even with a 100-fold excess (Supplemen-
tary Figure S3B–D). Taken together, these data indicated
that both ML1 and ML8 weakly inhibit SpyCas9 DNA
cleavage in vitro.

We next tested the ability of the AcRanker-generated can-
didates to inhibit Staphylococcus aureus (SauCas9), another
Cas9 commonly used for gene editing (61,62) to determine
whether any of the candidates identified from self-targeting

Streptococcus genomes had broader Cas9 inhibition activ-
ity. At a 25-fold excess relative to the SauCas9 RNP com-
plex, ML3 and ML8 were able to inhibit SauCas9 dsDNA
cleavage (Figure 2C). To determine potency, we incubated
a dilution series of either ML3 or ML8 with SauCas9 be-
fore the addition of the DNA target. However, in compari-
son to AcrIIA5, an established strong inhibitor of SauCas9
(20,24,63), both Acr candidates inhibited SauCas9 with ap-
proximately 50-fold lower potency (Figure 2D, Supplemen-
tary Figure S4A and S4B), an activity we confirmed was
not due to a false positive from the high concentration of
protein in the assay (Supplementary Figure S4A).

Given the relatively weak inhibition of both SpyCas9 and
SauCas9, we next tested the specificity of ML1, ML3 and
ML8 by assaying their ability to block DNA targeting by
either AsCas12a or the restriction enzyme AlwNI. Neither
AcrIIA4, ML1, ML3 nor ML8 were able to inhibit DNA
targeting by AlwNI, suggesting that they all are specific in-
hibitors of CRISPR effectors (Supplementary Figures S5A
and B). Consistent with this, inhibition of AsCas12a was
only observed with ML1 and ML8 at a 100-fold excess (Sup-
plementary Figure S5C). Taken together, our data show
that ML1, ML3 and ML8 are low potency inhibitors of
SpyCas9 (ML1 and ML8) or SauCas9 (ML3 and ML8).
While testing ML1–ML10 for Acr activity, Osuna, et al. de-
scribed AcrIIA12, a specific inhibitor of LmoCas9 in plaque
assays, which shares the same sequence as ML3 (25).

ML1: a potent inhibitor of SinCas9

ML1 was identified in the Streptococcus iniae (Sin) genome.
Previous studies have reported anti-CRISPRs can exhibit
either selective or broad-spectrum inhibition of divergent
Cas effectors (14,33). Given that SinCas9 is ∼70% identical
to SpyCas9 and only ∼26% identical to SauCas9 we won-
dered whether ML1 is a more potent inhibitor of SinCas9.
To explore this, we cloned, expressed, and purified SinCas9
protein for use in in vitro DNA targeting assays. Like Spy-
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Figure 2. Inhibition of SpyCas9 and SauCas9 by newly discovered Acr candidates. (A) In vitro cleavage of dsDNA by SpyCas9 in the absence or presence of a
50-fold excess of AcrIIA4 (positive control) and each Acr candidate. (B) In vitro cleavage of dsDNA by SpyCas9 in the presence of increasing concentrations
of (left to right) BSA (negative control), AcrIIA4 (positive control), ML1 and ML8 (Acr:RNP 0.1-, 1-, 2-,10-, 50- and 100-fold excess from left to right).
(C) In vitro cleavage of dsDNA by SauCas9 in the absence or presence of a 25-fold excess of each Acr candidate. (D) In vitro cleavage of dsDNA by SauCas9
in the presence of increasing concentrations of (left to right) BSA (negative control), AcrllA5 (positive control, Acr:RNP 0.1-, 1-, 2-, 4-, 8- and 10-fold
excess from left to right), ML3 and ML8 (Acr:RNP 0.1-, 1-, 2-,10-, 50- and 100-fold excess from left to right). Uncropped gel images for panels B and D
are shown in Supplementary Figures S3 and S4.
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Figure 3. ML1 and ML8 inhibit SinCas9 with ML1 showing high potency.
(A) In vitro cleavage of dsDNA by SinCas9 in the absence or presence of a
50-fold excess of each Acr candidate. (B) In vitro cleavage of dsDNA by Sin-
Cas9 in the presence of increasing concentrations of ML1. The uncropped
gel image for panel B is shown in Supplementary Figure S6.

Cas9, SinCas9 was capable of cleaving dsDNA targets prox-
imal to an NGG PAM using a sgRNA derived from a fu-
sion of the tracrRNA and crRNA (Figure 3A, Supplemen-
tary Figures S6 and S7). Similar to SpyCas9, both ML1 and
ML8 inhibited DNA cleavage by SinCas9 (Figure 3A). Us-
ing a titration of ML1 and ML8, we again assayed the po-
tency of SinCas9 inhibition (Figure 3B, Supplementary Fig-
ure S6B). Strikingly, in contrast to the weak inhibition of
SpyCas9, ML1 was able to potently inhibit DNA cleavage
by SinCas9 (Figure 3B). To investigate at which step ML1
inactivates SinCas9 function, we carried out in vitro cleav-
age assays where ML1 was incubated with SinCas9 before
and after the addition of sgRNA (Supplementary Figure
S6C). In both cases the DNA cleavage activity of SinCas9
was potently inhibited, suggesting that ML1 inhibits activ-
ity after sgRNA binding to Cas9.

A number of reported type-IIA Acrs inhibit their cog-
nate Cas9 by competing with target DNA through PAM
mimicry (52,64). We noted that SinCas9 was susceptible to
inhibition by AcrIIA4 at 100-fold excess (Figure 3A) and
AcrIIA2 at 10-fold excess (Supplementary Figure S6D),
both PAM mimics that inhibit PAM recognition by Spy-
Cas9 (15,52). Like these established PAM mimics, ML1 is
a small protein with a predicted negatively charged sur-
face potential (isoelectric point of 4.3), suggesting that it
too might compete with target DNA. To explore this idea,
we developed a competition binding experiment to assay
if the association of ML1 with SinCas9 might prevent the
binding of AcrIIA2 (Figure 4A). First, we incubated ei-
ther AcrIIA2 or ML1 with the SinCas9–sgRNA complex
and observed a stable SinCas9–sgRNA–Acr complex on
a gel filtration column (Figure 4B, Supplementary Figure
S8A) with the complex components all resolvable on a pro-
tein gel (Figure 4C, Supplementary Figure S8B). To deter-
mine if ML1 binding to the SinCas9 RNP could prevent
AcrIIA2 binding, we first formed the SinCas9–sgRNA–
ML1 complex and then incubated with AcrIIA2 before re-
solving over a column. Incubating ML1 with the SinCas9
RNP before adding AcrIIA2 abolished AcrIIA2 co-elution
with SinCas9–sgRNA (Figure 4C, Supplementary Figure
S8B), suggesting that ML1 might occupy the same site on
SinCas9. Collectively, these data are consistent with a model
where ML1 directly binds to the SinCas9–sgRNA complex
to form a complex that is incompatible with AcrIIA2’s abil-
ity to bind to the PAM interacting domain (52).

DISCUSSION

With the growth of the anti-CRISPR field, there has been
a need for improved tools to search the extensive proteomic
space to find new anti-CRISPRs more efficiently. In this
work we developed a machine learning method, AcRanker,
as a first step toward the direct prediction of acr genes
de novo with minimal knowledge a priori. We show that
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Figure 4. ML1 competes with AcrIIA2 to bind to the SinCas9–sgRNA complex. (A) Flowchart for the competition binding experiment between ML1 and
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with only protein sequence features, AcRanker is able to
highly rank Acrs from within prophage proteomes. Using
a combination of AcRanker and self-targeting information
from STSS (11), we were able to quickly reduce to a few
top acr gene candidates for direct synthesis and testing of
anti-CRISPR properties. From these candidates, we identi-
fied two novel Acrs: here named AcrIIA20 and AcrIIA21.
AcrIIA20 (ML1) inhibits Streptococcus iniae Cas9 (Sin-
Cas9) with high potency and S. pyogenes Cas9 (SpyCas9)
with low potency. With only 64 amino acids and a molec-
ular weight of 7.3 kDa, to our knowledge it is the small-
est type II Acr found to date. Based on the negative charge
of AcrIIA20 and its competitive binding with AcrIIA2,
we speculate that AcrIIA20 inhibits Cas9 dsDNA cleavage
via a similar mechanism of PAM mimicry. In addition, we
found AcrIIA21 (ML8), a broadly acting type II-A Acr,
which is able to inhibit SpyCas9, SauCas9 as well as Sin-
Cas9, although with low potency.

The narrow and broader inhibition range of AcrIIA20
and AcrIIA21, respectively, is mirrored in their distribution
in other genomes. Within the NCBI protein database, only
a handful of homologs can be found for AcrIIA20 in closely
related Streptococcus species (namely iniae, uberis and dys-
galactiae). In contrast, sequences sharing homology with
AcrIIA21 are found broadly in Lactobacillales and beyond,
owing at least in part to its shared identity with replication
initiator protein A, a single stranded DNA binding protein,
suggesting nucleic acid binding as one potential mechanism
of inhibition for AcrIIA21.

We also observe weak inhibition of SauCas9 with ML3
(AcrIIA12), which was shown to be a specific inhibitor of
Listeria monocytogenes Cas9 (LmoCas9) while this study
was being conducted (25). Because we were unable to test
LmoCas9 (due to the difficulty of purifying it intact and ac-
tive), we were unable to observe strong inhibition activity
specific to its host Cas9. Similarly, we were unable to satis-

factorily purify S. agalactiae Cas9 (SagCas9) to test ML4-
ML10 against the Cas9 found in the same genomes in which
they were found, leaving the door open for the possibility
that they are specific against SagCas9.

AcRanker adds yet another tool to the anti-CRISPR
hunter’s toolbox by providing an alternative to BLAST
and guilt-by-association searching to find new Acr fami-
lies. In fact, we find that of the three candidates that we
or others validated (ML1, ML3 and ML8), all had signif-
icantly higher rankings with AcRanker over BLAST (Sup-
plementary Table S12). However, we do see some cases
where BLAST ranks known Acrs higher than AcRanker
(Tables 1 and 2), providing a potential complementary ap-
proach, although one we believe is less likely to lead to
new Acrs.

The ability to identify potential new Acr candidates di-
rectly from protein sequence with AcRanker opens the door
for testing many new proteins without the need for la-
borious screening efforts. Searching within prophages of
genomes containing self-targeting CRISPR arrays promises
to be particularly effective, as the potential inhibitors for a
specific CRISPR system can be quickly ranked to make a
short list of candidates to test. We expect that direct Acr
prediction methods like AcRanker will continue to reveal
many more Acrs distributed across many bacterial species,
finding new Acrs with unique properties for yet unforeseen
future biotechnology applications.

DATA AVAILABILITY

A webserver implementation of AcRanker is pub-
licly available at http://acranker.pythonanywhere.com/.
The Python code for the webserver implementa-
tion is available in the GitHub repository (https:
//github.com/amina01/AcRanker).

http://acranker.pythonanywhere.com/
https://github.com/amina01/AcRanker
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