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Abstract

The objective of this commentary was to analyze the causes and outcomes of gut microbiome 

dysbiosis in preterm infants who are born at very-low-birth-weight (VLBW). The intrauterine 

development of VLBW infants is interrupted abruptly with preterm birth and followed by 

extrauterine, health-threatening conditions and sequelae. These infants develop intestinal microbial 

dysbiosis characterized by low diversity, overall reduction in beneficial and/or commensal 

bacteria, and enrichment of opportunistic pathogens of the Gammaproteobacteria class. The origin 

of VLBW infant dysbiosis is not well understood and is likely the result of a combination of 

immaturity and medical care. We propose that these factors interact to produce inflammation in the 

gut, which further perpetuates dysbiosis. Understanding the sources of dysbiosis could result in 
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interventions to reduce gut inflammation, decrease enteric pathology, and improve health 

outcomes for these vulnerable infants.

Precis

The authors describe gut microbiome dysbiosis in preterm infants, related influencing factors, and 

potential for inflammatory outcomes.
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Very-low-birth-weight (VLBW) infants weigh less than 1500 gm, and most of these infants 

will also be very low gestational age (preterm). These infants are physiologically immature 

and susceptible to infections and side effects from medical interventions. The births of 

VLBW preterm infants frequently occur after their mothers are hospitalized for treatments 

of pregnancy-related conditions, illnesses, or early onset of labor (Backhed et al., 2015; 

Jiang, Mishu, Lu, & Yin, 2018). They are vulnerable to maternal illnesses, medications, and 

physiological factors that may lead to adverse pre and postnatal consequences.

At birth, VLBW infants are immediately separated from their parents for stabilization and 

are placed into incubators to regulate their body temperatures. These infants often require 

invasive, life-sustaining medical interventions such as intubation for mechanical ventilation, 

central and peripheral line placements for intravenous fluids and parenteral nutrition, blood 

transfusions, needle sticks for blood samples, and surgeries. In addition to these invasive 

procedures, many infants are exposed to antibiotics and other medications. These infants are 

cared for in the NICU environment for months and are at risk for acute and chronic illnesses 

such as respiratory distress, sepsis, and chronic lung disease. The cumulative and prolonged 

exposures to illnesses, surgeries, pain, stress, and separation from their parents during early 

life in the NICU may result in toxic stress phenomena, defined as strong and prolonged 

stress without the buffer of a supportive and protective adult relationship (Shonkoff & 

Garner, 2012). These circumstances, along with the developmental immaturity of the gut and 

immune system, contribute to the onset of microbial dysbiosis that includes overgrowth of 

pathogenic bacteria concurrent with the suppressed growth of beneficial and/or commensal 

bacteria in the intestines (Groer, Duffy, et al., 2014; Groer, Gregory, Louis-Jacques, Thibeau, 

& Walker, 2015).

In this commentary, we explore the major known factors that affect the developing 

microbiome in preterm neonates. The purpose is to describe characteristics of the VLBW 

microbiome and review factors that most likely contribute to VLBW dysbiosis, including 

prenatal influences, infant feeding, the NICU environment, immaturity, antibiotics, iron, and 

stress. We also propose a potential model of bacteria-host interactions to explain these 

interrelationships.

Groer et al. Page 2

J Obstet Gynecol Neonatal Nurs. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The VLBW Microbiome

Bacterial genetic material is often found in the umbilical cord, placenta, and meconium of 

healthy term infants, which implies that microbial exposure within the uterine environment 

is possible (Guzzardi et al., 2019; Tapiainen et al., 2018). However, in the absence of 

infection, evidence of live bacterial translocation is lacking (Perez-Munoz, Arrieta, Ramer-

Tait, & Walter, 2017). Findings from other studies and the ability to rear germ free animals 

argue against intrauterine translocation (Aagaard et al., 2014; Blaser & Dominguez-Bello, 

2016; Lauder et al., 2016; Leiby et al., 2018; Moles et al., 2013; Perez-Munoz et al., 2017; 

Walker, Clemente, Peter, & Loos, 2017). Microbial products alone or through their influence 

on the maternal immune system might influence fetal development (Guzzardi et al., 2019). It 

is clear that the human intestinal tract undergoes significant bacterial colonization during 

and after birth from exposures to maternal vaginal and enteric organisms (the bacterial 

baptism; Backhed et al., 2015).

Distinct patterns of succession become apparent soon after birth (Lan, Kriete, & Rosen, 

2013). For example, the term infant’s colon is first colonized by facultative anaerobes and 

then replaced by obligate anaerobes (Weng & Walker, 2013). The first meconium stools 

contain bacteria that may play an early role in priming the immature neonatal immune 

system and are dominated by Firmicutes, Proteobacteria (especially Escherichia and 

Klebsiella), and Bacteroidetes (Chu et al., 2017; Tapiainen et al., 2018). Specifically, the 

early gut of the vaginally born, term infant is dominated by vertically transmitted 

Lactobacilli, followed by facultative anaerobes such as those from genera Enterococcus, 

Enterobacteria, Streptococcus, and Staphylococcus. Within days to weeks these are replaced 

by anaerobes, commonly Bifidobacterium, Bacteroides, and the Clostridia (Dogra et al., 

2015). These succession patterns are influenced by many factors, including mode of birth, 

amount of human milk consumed by the infant, gestational age, antibiotic therapy and other 

medications, and exposure to bacteria from caregivers and surfaces in the environment 

(Groer et al., 2015). Microbial succession patterns in the gut of term infants is well 

understood, but less is known about these ecological changes in preterm infants. Studies 

suggest that these changes are delayed in the preterm infant gut, which results in extended 

periods where Proteobacteria dominate in the first months after birth (Hill et al., 2017; La 

Rosa et al., 2014; Moles et al., 2015; Underwood & Sohn, 2017; Valentine, Chu, Stewart, & 

Aagaard, 2018; Yee et al., 2019).

The term dysbiosis is often used to describe any type of microbial anomaly associated with a 

disease state. In the absence of a better mechanistic understanding of dysbiosis (Byndloss, 

Pernitzsch, & Baumler, 2018), the term is most often used to describe abnormal abundances 

of distinct bacteria and low overall diversity. Among VLBW preterm infants, dysbiosis 

during the NICU stay is characterized by lower alpha diversity (bacterial diversity within a 

sample) and a greater proportion of Gammaproteobacteria compared to healthy term infants. 

Gammaproteobacteria (Phylum Proteobacteria) are a diverse class of facultative anaerobes 

with potentially pathogenic members, some of which cause health care associated infections 

such as Escherichia coli, Klebsiella spp., Serratia spp., Enterobacter spp. and others. Many 

of these are related to common NICU morbidities (Patel et al., 2016). An elevated proportion 

of Gammaproteobacteria in the gut is often associated with delayed colonization of the anti-

Groer et al. Page 3

J Obstet Gynecol Neonatal Nurs. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammatory commensal bacteria Lactobacillus and Bifidobacterium; colonization of the 

gut by these organisms may protect against the growth of potential pathogens (Hakansson & 

Molin, 2011).

Perinatal Influences on Dysbiosis

The incidence of preterm birth in the United States is high compared to the incidence in 

other industrialized counties and even compared to some developing countries. The 2018 

U.S. preterm birth rate was estimated to be 10.02%; the greatest incidence (14.13%) 

occurred in non-Hispanic Black women (Martin, Hamilton, & Osterman, 2019). Known 

reasons for preterm birth include preeclampsia and intrauterine growth restriction, short 

cervix, periodontal disease, infections (bacterial and viral), vascular disease, Black race, and 

extreme thinness (Frey & Klebanoff, 2016).

About 37% of pregnant women receive antibiotics during pregnancy, and 33% receive 

antibiotics in the intrapartum period for conditions such as Group B Streptococcus 

colonization, urinary tract infections, premature rupture of the membranes, or cesarean birth 

(Stokholm et al., 2013). These conditions shape the infant gut microbiome (Stearns et al., 

2017). When faced with the potential for a preterm birth, mothers are often given antenatal 

steroids to mature the infant respiratory function (Sackey & Tagoe, 2018). In comparison to 

healthy term infants, VLBW infants have greater exposure to altered maternal health, 

immune perturbations related to genetic factors, or an inflammatory intrauterine 

environment (Zijlmans, Korpela, Riksen-Walraven, de Vos, & de Weerth, 2015). Early or 

prolonged ruptured membranes, frequent cervical examinations, and procedures such as 

cerclage may influence early labor and affect preterm infants. Maternal pregnancy stress has 

been associated with specific Proteobacteria genera (Escherichia, Enterobacter, Serratia) in 

the infant gut, which suggests possible early developmental and intergenerational effects on 

the microbiome (Zijlmans et al., 2015)

In addition, 44% to 64% of preterm infants (Stoll et al., 2015) are born by cesarean 

compared to 32% of term infants (Martin et al., 2019). Cesarean birth results in an early 

abnormal colonization of the gut by skin-associated microorganisms, such as Staphylococci 
(Dominguez-Bello et al., 2010). The developing gut microbiome of healthy term neonates 

begins to resemble the mother’s microbiome within 6 weeks (Chu et al., 2017). However, 

the preterm infant gut microbiome appears less resistant to external perturbations.

Enteral Feeding Practices

The lack of microbial maturity and dysbiosis in preterm infants is likely multifactorial but is 

almost certainly influenced by the introduction of enteral feeding. Nasogastric tubes are used 

to initiate feeding, and this continues for weeks or months until the infant is able to feed by 

mouth. With enteral feeding, small volumes are advanced slowly to reach nutritional goals 

over the first week or two. Therefore, until full enteral nutrition is achieved, VLBW infants 

also depend on parenteral nutrition. Interruptions of this feeding advancement due to 

intolerance or illnesses often prolongs the time until these infants reach full enteral feeds, 

which can affect the development of their gut microbiome (Salas et al., 2017).
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Preterm infants who are VLBW are fed initially with their mother’s own milk (MOM), 

pasteurized donor human milk, or with preterm formula when human milk is not available. 

To ensure adequate nutrition for growth, human milk is fortified with bovine-based or 

human milk-based fortifiers (HMF). The cost of human milk-based fortifier remains high, so 

many NICUs in the United States still rely heavily on bovine-based fortifiers. When MOM 

is unavailable, infants are transitioned to preterm formula by 34 to 36 weeks corrected 

gestational age. The microbiomes of term infants fed formula are significantly different than 

those fed with MOM (Poroyko et al., 2011). Thus, it is not surprising if early exposure to 

bovine products in VLBW infants affects the successional development of the gut 

microbiome.

The amount of human milk an infant receives is potentially one of the most significant and 

modifiable factors that affects the microbiome. Human milk is a source of live bacteria as 

well as oligosaccharides that provide metabolic substrates to commensal bacteria such as 

Bifidobacterium and Lactobacillus (Sela & Mills, 2010). Infants require commensal 

microbes and bioactive components in breast milk for optimal nutritional, developmental, 

defensive, and physiologic processes that can affect the gut bacterial flora (Neu, 2007).

The most frequently cultured bacteria in human milk include Staphylococcus, 

Streptococcus, Lactotoccus, Weissella, Enterococcus, Propionibacterium, Lactobacillus, and 

Bifidobacterium. Human milk is also a source of Gammaproteobacteria, which can represent 

about 30% of the milk microbiome (Togo et al., 2019). The composition of these bacteria 

can vary greatly among mothers and is affected by factors such as diet and body mass index 

(Williams et al., 2017). However, less is known about the milk microbiome of mothers of 

preterm infants. In a study of 39 Canadian women, Murphy et al. (2017) reported that the 

dominant phyla in human milk regardless of gestational age were Proteobacteria and 

Firmicutes; Actinobacteria and Bacteroidetes were present at lower levels with no distinct 

clustering of microbiota related to prematurity.

The origin of milk-associated bacteria is likely the gastrointestinal tract, as studies have 

demonstrated that oral administration of live bacteria (i.e., probiotics) to a lactating woman 

results in the appearance of those microbes in her milk (Arroyo et al., 2010). In addition, it is 

known that while not all gut microbes are found in the milk, nearly all milk microbes are 

found in the maternal gut (Pannaraj et al., 2017). How these bacteria translocate from the gut 

to the milk ducts remains unclear, as are the selective processes involved. Viable gut bacteria 

may translocate to the breasts (i.e., enteromammary pathway) via the lymphatic system 

(McGuire & McGuire, 2017). Another important source of milk microbes is contamination 

with environmental microbes by handling the breasts during nursing and in the pumping 

process; additional studies are required to evaluate the effects of these microbes on dysbiosis 

in the infant gut.

There is also a substantial prebiotic component to human milk, and more than 100 human 

milk oligosaccharides (HMOs) are known to supply essential carbon for commensal 

microbes (Chen, 2015). The HMO composition of milk from mothers who give birth 

preterm is not well characterized and how these HMOs affect the composition of the preterm 

gut microbiome is not yet known. However, among term infants, changes in HMOs over 
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time correlate to changes in the gut microbiome (Moossavi et al., 2019). A greater variation 

in HMOs has been reported in milk from women who give birth preterm (De Leoz et al., 

2012). Understanding the type and variation of HMOs in the breastmilk of term and preterm 

infants’ mothers is warranted since these glycans play essential roles in shaping and 

protecting the newborn’s developing microbiome.

As discussed above, VLBW infants are often fed MOM, pasteurized donor milk, and 

preterm infant formula in varying proportions. Formula is prepared to be nutritionally 

complete for the infant but lacks the beneficial microbes and the prebiotic HMOs. The effect 

of Holder pasteurization on HMO composition remains unclear (Daniels et al., 2017), 

although some HMOs are likely lost (Peila et al., 2016). Donor milk in the NICU is usually 

pooled milk from mothers of term infants, which can be nutritionally and immunologically 

different from the MOM of women who give birth preterm (Gidrewicz & Fenton, 2014). The 

milk of mothers who give birth at term gestation has less protein and less concentration of 

critical cytokines and secretory immunoglobulin A (sIgA) than the breastmilk of women 

who give birth preterm (Groer, Luciano, et al., 2014). sIgA can shape colonization of the 

infant gut by facilitating commensals while decreasing the relative abundance of virulent 

bacteria (Gregory & Walker, 2013). After about 30 weeks gestation, the breastmilk of 

women who give birth preterm has higher sIgA than milk of those who give birth at term or 

pooled, pasteurized donor milk (Demers-Mathieu et al., 2019)

The influence of MOM on preterm infant gut dysbiosis remains unclear. Our group found 

that the percent of MOM feeding volume had a small but significant effect on microbial 

compositional dynamics, with greater diversity and dynamics correlated with a higher 

percent of human milk (Yee et al., 2019). In another cohort of preterm infants, exclusive 

human milk feeding did not demonstrate the expected enrichment of Bifidobacteria as 

observed in term infants. This was possibly due to the altered nutritional and immune 

composition of preterm human milk (Butcher et al., 2018) and the prolonged dominance of 

Proteobacteria in the preterm infant’s gut. A final consideration is that preterm MOM most 

often requires fortifiers (HMF) and bovine-based versions are most commonly used. 

Because these fortifiers may affect oxidative changes in the gut, which in turn can shape 

inflammatory and dysbiotic processes, it is essential that the risk and benefits of fortifiers be 

more thoroughly investigated (Cai et al., 2019; Friel et al., 2011; Reuter, Gupta, Chaturvedi, 

& Aggarwal, 2010)

Immaturity

Prematurity on its own is an important factor that shapes gut microbiomes independent of 

commonly ascribed factors such as breastfeeding and antibiotics; thus, the observed 

dysbiosis may be in part developmentally programmed. Dahl et al (2018) observed that 

preterm infants (N=160) had significantly reduced alpha diversity than term infants, and the 

major factors accounting for this variance included gestational age and number of postnatal 

NICU days. Preterm infants born vaginally and breast-fed with no exposure to antibiotics 

(i.e., limited disruption to the predicted microbial succession) had fewer Firmicutes and 

more Proteobacteria than term infants. This suggests that biological immaturity alone may 

disrupt microbial colonization and succession.
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The onset of necrotizing enterocolitis (NEC) is another example of the importance of gut 

developmental maturation. Necrotizing enterocolitis is a catastrophic necrosis of the bowel 

that occurs at a higher rate in VLBW infants, often requires resection of the bowel, and has a 

high mortality rate among preterm infants. Regardless of their gestational age at birth, 

preterm infants are most susceptible to developing NEC at around 31 weeks corrected 

gestational age (Neu & Pammi, 2017). Human milk is known to protect infants from 

developing NEC (Cacho, Parker, & Neu, 2017). Before the onset of NEC, the gut 

microbiome reveals less diversity, a greater proportion of Gammaproteobacteria, and a lower 

proportion of other species (Wang et al., 2009), which suggests that dysbiosis precedes the 

development of NEC (Neu & Pammi, 2017).

In addition to developmental or anatomical immaturity, immaturity of immune function in 

VLBW infants may disrupt the ability of the gut to distinguish between pathogenic and 

commensal bacteria and contribute to dysbiosis. The intestinal epithelium in VLBW infants 

produces less viscous mucus and is a weaker barrier to microbial penetration (McElroy & 

Weitkamp, 2011). The sIgA repertoire is less mature and less able to react with and coat 

virulent microbes (Rogosch et al., 2012). Peristalsis is also less effective in the premature 

gastrointestinal tract, and this too can affect the onset and/or development of a dysbiotic 

state (Quigley, 2011). An increased proportion of microorganisms that promote 

inflammation and decreased commensal growth, combined with impaired and immature 

innate immune functions, likely contributes to dysbiosis, inflammation, and increased 

permeability in the gut (Hackam, Good, & Sodhi, 2013; Hunter & De Plaen, 2014).

NICU Environment

The physical environment of the NICU has diverse microbes that may influence the onset or 

development of dysbiosis and occasionally pathogenic infection (Hartz, Bradshaw, & 

Brandon, 2015). Despite rigorous cleaning practices in the NICU, the hospital environment 

contains a diverse microbiota shaped by its human occupants (Gilbert & Stephens, 2018; 

Lax et al., 2017). NICU rooms are populated by a distinct microbiota compared to other 

hospital units, and most surfaces are colonized with microbes derived from the human gut; 

most originate from the infants, and many harbor antibiotic resistance genes (Brooks et al., 

2014; Brooks et al., 2018). Thus, preterm infants with microbial dysbiosis may be 

transferring some of these microbes to the environment, creating a self-inoculation cycle. 

Differences among term infant gut microbiomes depend upon the hospital of delivery and 

the year of measurement (Taft et al., 2014) with dominant components of the fecal 

microbiota changing from year to year. To date, there is no solid correlation between 

environmental microbes of the NICU and their effects on infant microbiomes or NICU-

associated co-morbidities.

Antibiotics

The use of broad-spectrum antibiotics is a common NICU practice. Eighty-five percent of 

extremely low birth weight infants (<1,000 g) receive at least one course, and often many 

more courses of antibiotics (Ting et al., 2016). Sepsis can be difficult to diagnose in VLBW 

infants and it is a major cause of mortality. Antibiotics are given empirically before 72 hours 
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after birth for suspected early onset sepsis while waiting for confirmatory blood cultures, 

and 60% of these neonates receive antibiotics for 48–72 hours (Zea-Vera & Ochoa, 2015). 

The effects of antibiotics on the adult gut microbiome are well known and include both 

transient and long-term consequences and may select for antibiotic resistance. Intestinal 

inflammation and treatment with antibiotics increase epithelial oxygenation in the colon 

(Litvak, Byndloss, & Bäumler, 2018), disrupting anaerobic conditions. These dysbiotic 

changes then favor an overgrowth of facultative anaerobes, such as Gammaproteobacteria 

(Litvak, Byndloss, Tsolis, & Baumler, 2017).

The use of prophylactic probiotics in the NICU remains controversial but most evidence 

maintains that probiotic supplementation is safe and may reduce NICU length of stay (Hu, 

Zhang, Zhang, Shakya, & Li, 2017). Colonization by the opportunistic yeast, Candida sp., 

may also be reduced by probiotics (Hu et al., 2017). Authors of a Cochrane review 

concluded that probiotic administration can prevent severe NEC and all-cause mortality in 

preterm infants in the NICU (Samuels, van de Graaf, de Jonge, Reiss, & Vermeulen, 2017).

Enteral Iron

A routine NICU practice is the administration of enteral iron supplementation (EIS). All 

VLBW infants are born with low iron stores and are at increased risk for iron deficiency 

anemia, due to inadequate maternal iron transfer, high iron demand from rapid body growth 

and erythropoiesis, and multiple blood draws. With a consistently low enteral absorption rate 

in preterm infants, 60% to 75% of iron from EIS is not absorbed and therefore is available to 

distal intestinal bacteria (Rao & Georgieff, 2009). Iron is a cofactor in the growth of 

Gammaproteobacteria (Hedrich, Schlomann, & Johnson, 2011); in vitro experiments find 

that iron potentiates the proliferation and virulence of various pathogens, including many 

Proteobacteria (Kortman, Boleij, Swinkels, & Tjalsma, 2012). In a randomized double-

blinded study of anemic children in Cote d’Ivoire, home iron supplementation increased 

pathogenic Proteobacteria, such as Shigella, Salmonella, and enteroinvasive Escherichia coli 
and reduced beneficial bacteria, such as Lactobacilli and Bifidobacteria (Zimmermann et al., 

2010). Iron supplementation was also shown to increase intestinal dysbiosis and mucosal 

inflammation in a population of Kenyan infants (Jaeggi et al., 2015; Krebs et al., 2013; Tang 

et al., 2017; Zimmermann et al., 2010). We find that VLBW infants who received a higher 

dose of enteral iron supplementation harbor a higher proportion of Proteobacteria in their 

stool (Ho et al., 2020). These results indicate that enteral iron therapy could contribute to 

preterm infant gut dysbiosis and inflammation.

Stress

Lifesaving interventions performed in the NICU are potentially extraordinarily stressful and 

traumatic experiences for VLBW infants (D’Agata et al., 2016). Of additional concern, toxic 

stress, leading to an abnormal stress response, is associated with lack of nurturance or 

support of a parent or caregiver (Franke, 2014). How these early life experiences shape 

physiology and neurodevelopment continues to be studied in these infants (D’Agata, 

Roberts, et al., 2019; D’Agata et al., 2017). D’Agata and colleagues developed an algorithm 

to count the types, amounts, and severities of stressful events experienced by NICU preterm 
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infants every day for six weeks (D’Agata, Wu, et al., 2019). Events like diaper changes were 

classified as moderate stressors, while severe stressors included airway suctioning. It was 

found that stress scores calculated during the preceding two weeks before the stool was 

collected were positively correlated with the proportion of the Gammaproteobacteria genera, 

Proteus and Veillonella, in the infants’ gut microbiome. Additional research is needed to 

further understand the relationship of early life NICU stressors and development, as well as 

supportive interventions for infants and families.

Discussion

There are important differences (Figure 1) between the inflamed and non-inflamed gut, and 

the distinct cellular and biochemical differences in bacteria-host interactions are important 

contributors to dysbiosis in VLBW infants. We suggest that these factors scaffold and 

perpetuate onto each other in a way that negatively affects the composition of the 

microbiome, with gut inflammation at the center of these perturbations. The dominance of 

Gammaproteobacteria, which affects colonization by obligate anaerobes, is the common 

abnormality seen in dysbiosis in these infants. This overgrowth of facultative anaerobes in 

the immature gut may produce intestinal disruption associated with inflammation, reduced 

gut barrier function, increased leakiness, and local effects and systemic effects in other 

organs. These effects are then amplified by standard NICU care practices such as infant 

feeding, enteral iron supplementation, antibiotic use, and stressful interventions.

Since dysbiosis in preterm infants is often shaped by inflammation, we propose that 

dysbiosis may lead to inflammation as a response by the innate immune system to the 

endotoxin produced by Gammaproteobacteria. Inflammation progresses through migration 

of blood cells that can act to cause vasodilation, increased vascular and gut permeability, 

tissue damage, and ultimately even tissue death (Kamada, Seo, Chen, & Nunez, 2013; 

Underwood, 2014). The outcome of inflammation in VLBW infants can lead to severe 

gastrointestinal disease such as NEC, or could affect gut membrane integrity and health 

through various linked pathways with both short and long-term consequences (R. M. Patel & 

Denning, 2015).

Interfacing with the epithelium is the gut-associated lymphoid tissue (GALT). During early 

life, as the GALT is maturing, it is educated to respond to pathogens and tolerate 

commensals through a complex interplay of dendritic cell sampling and presentation, T and 

B cell activation, and sIgA production (Ahluwalia, Magnusson, & Ohman, 2017). Not only 

is this process delayed by the immaturity of the infant, but it is likely delayed further by 

dysbiosis; a lack of specific sIgA production facilitates an overgrowth of 

Gammaproteobacteria (Rizzatti, Lopetuso, Gibiino, Binda, & Gasbarrini, 2017). Thus, 

without the antigen-specific activities of T and B cells, for example, inflammation may 

increase in response to endotoxin produced by these bacteria.

The use of antibiotics in VLBW infants in the NICU can lead to a reduction in the synthesis 

of microbially-mediated butyrate, a short-chain fatty acid produced by commensal bacteria 

and a key nutrient for the developing colonocytes. Thus, antibiotics could be delaying 

maturation of the gut, and creating metabolic conditions that favor oxygen translocation 
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from gut arteries to the gut lumen, upregulation of nitric oxide, and increase nitrate release. 

All these favor the growth of facultative anaerobes (Rivera-Chavez, Lopez, & Baumler, 

2017; Rizzatti et al., 2017). The inflamed gut is a metabolic environment that increases 

dysbiosis in preterm infants by favoring overgrowth of facultative anaerobes. In addition, 

excess iron from enteral supplementation also promotes Gammaproteobacteria overgrowth 

and increases inflammation. Proinflammatory factors like nitrate produced by the epithelium 

can promote the growth of Gammaproteobacteria and are opposed by butyrate. 

Gammaproteobacteria produce acetate and ethanol, which are proinflammatory. Added to 

these insults, are the treatments, stressors and traumas associated with life in the NICU, the 

perturbation by antibiotics, the influences of maternal factors, and the ingestion of formula 

that favors potential pathogens. In addition, the enteric microorganisms in the NICU 

environment readily colonize the infant gut.

Conclusions

Contributing factors to gut dysbiosis in VLBW infants include maternal health, perinatal 

events, immaturity, enteral feeding, medications, and the NICU environment. Moving 

forward, we should consider how best to interrupt the resulting inflammatory cycle as we 

design strategies to improve the health and outcomes of these vulnerable infants. Reducing 

preterm deliveries is an obvious first choice, as the U.S. has unacceptably high rates of 

preterm births compared to other developed and developing nations. Better prenatal care for 

all women is a priority. Ensuring MOM as the sole source of food for VLBW preterm 

infants, reducing stress by clustered care and increasing skin-to-skin care, using appropriate 

probiotics along with more judicious use of antibiotics and iron should be considered. We 

should encourage the development of new algorithms for sepsis evaluation, and more 

scrupulous hygiene of all personnel equipment and visitors as these are all potentially 

important interventions that can reduce the immediate and long-term health threats 

associated with preterm dysbiosis.
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Figure 1: 
A non-inflamed (A) and inflamed (B) infant guts. A. In the non-inflamed infant gut, butyrate 

produced by commensal bacteria decreases oxygen levels in the gut lumen, lowering 

abundance of Enterobacteriaceae. Human milk promotes the growth of commensal bacteria 

via HMOs, while IgA in milk reduces Enterobacteriaceae growth. B. In the inflamed infant 

gut, oxygen in the gut lumen facilitates the growth of Enterobacteriaceae, which produces 

LPS and promotes inflammation. Antepartum factors, antibiotics, neonatal toxic stress, and 

neonatal enteral iron can also exacerbate the inflammatory milieu.
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