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Abstract

Despite advances in surgery, the reconstruction of segmental nerve injuries continues to pose 

challenges. In this review, current neurobiology regarding regeneration across a nerve defect is 

discussed in detail. Recent findings include the complex roles of non-neuronal cells in nerve defect 

regeneration, such as the role of the innate immune system in angiogenesis and how Schwann cells 

migrate within the defect. Clinically, the repair of nerve defects is still best served by using nerve 

autografts with the exception of small, non-critical sensory nerve defects, which can be repaired 

using autograft alternatives, such as processed or acellular nerve allografts. Given current clinical 

limits for when alternatives can be utilized, advanced solutions to repair nerve defects 

demonstrated in animals are highlighted. These highlights include alternatives designed with novel 

topology and materials, delivery of drugs specifically known to accelerate axon growth, and 

greater attention to the role of the immune system.
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Introduction

Traumatic peripheral nerve injuries are common and caused by factors ranging from acts of 

violence, motor vehicle accidents, and recreational activities, to iatrogenic injuries during 

surgery. The majority of nerve injuries occur in the upper extremity1,2. It is estimated that 1–

3% of all upper extremity trauma patients are diagnosed with nerve injuries during the first 

few months after trauma3–5. These injuries are often severely debilitating, resulting in 

lifestyle disruptions from loss of function, both at work and in leisure6–12. Moreover, 

traumatic nerve injuries frequently affect relatively young individuals, resulting in lifelong 

reductions in quality of life and income13–15,4.
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Despite advances in surgery and neuroscience, the improvement of patient outcomes by the 

surgical reconstruction of nerve injuries continues to pose challenges. The most severe nerve 

injuries, in which trauma to the nerve generates a defect between the nerve ends, remain an 

area in significant need of improvement and further research. This review will discuss the 

current known neurobiology of regeneration across a nerve defect, and present current 

clinically available options for nerve defect repair. Additionally, we will provide a brief 

overview highlighting select areas of the large body of experimental animal work towards 

advanced solutions to repair nerve defects.

Biology of nerve regeneration across a defect

Peripheral nerve is capable of robust regeneration following injury. The molecular and 

cellular mechanisms have primarily been studied in rodent models. Following injury, 

neurons and their axons and the non-neuronal cellular environment distal to the injury 

undergo immediate morphological and molecular changes. Within the axon, there is a rapid 

influx of ions, principally calcium, as well as a disruption of transport proteins signaling a 

disruption to homeostasis with its end-organ. This multifactorial injury response from axon 

damage is rapidly transported to the neuron cell body leading to an upregulation of a 

regeneration associated gene (RAG) program16. This RAG program includes the 

upregulation of inflammatory genes, neurotrophic factors, and cytoskeletal protein-related 

genes serving to promote axon outgrowth from the damaged end of the proximal axon16,17. 

While this RAG program is upregulated in surviving neurons, some neurons will not survive 

the injury. Specifically, motor neurons are generally spared from cell death if the axonal 

injury is distal enough from the cell bodies18, while sensory neuron death can be as high as 

40% regardless of injury location19–22.

Distal to the injury site, the process of Wallerian degeneration is initiated, which involves the 

fragmentation of axons disconnected from the neuron, and non-neuronal cell activation that 

primes the distal nerve environment for new axon outgrowth. Schwann cells (SCs) sensing 

the axon damage dedifferentiate and adopt a unique “repair” phenotype23–26. SC signaling 

involved in this dedifferentiation relies on Notch signaling and ERK-mediated signaling 

pathways27–29, and is orchestrated by the phosphorylation of c-Jun30,23. Following c-Jun 

phosphorylation, myelination genes are down-regulated while growth promoting genes are 

up-regulated30. These activated repair SCs serve multiple functions. First, SCs begin to 

phagocytose axon and myelin debris around the site of injury to permit future axon growth. 

This debris is also mitogenic and thereby plays a role in SC proliferation post-injury31,32. 

Secondly, SCs begin to express neurotrophic factors and inflammatory factors, such as 

chemokines and cytokines33–36, through activation of signaling pathways, such as Sox-237, 

which serve to recruit cells of the innate immune response, such as neutrophils38 and 

macrophages39. Both hematogenous and resident macrophages are recruited to the site of 

injury. These innate immune cells provide critical phagocytic functions40. But additionally, 

these innate immune cells provide other functions essential to nerve regeneration, including 

re-myelination and functional recovery, which are not yet entirely understood41,42,40. After 

this Wallerian degeneration process is complete, SCs progressively assume long processes 

and align on the basal lamina of the intact distal nerve environment (Bands of Bungner), 

providing a permissive growth environment for the regenerating axons that emerge from the 
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proximal nerve stump24,43. As axon growth proceeds from proximal to distal nerve, 

remyelination of the axons is initiated primarily by axon-derived neuregulin-1 signaling 

through SCs’ ErbB receptors44,45. At the target end organs, specialized SCs have already 

begun priming this environment for reestablishment of axonal connection46. For example, in 

muscle a unique type of SC, terminal SCs, extend cytoplasmic processes within days after 

injury, which serve as platforms for incoming axonal growth47,48,46.

Our understanding of the regenerative processes enabling nerve regeneration across a small 

nerve defect or cell-free nerve graft, where the entire nerve tissue must regenerate, is 

incomplete (Figure 1). To first allow for cell migration and infiltration into this defect, an 

endogenous matrix must form. The repair of nerve defects using a pseudosynovial sheath 

demonstrated that plasma exudates from the proximal and distal nerve stumps fill the empty 

tube volume, and provide a deposition of extracellular matrix (ECM), including a fibrin 

matrix, that allows for innate immune system cell migration49–56. While the earliest (<4 

days) macrophages are derived from tissue resident macrophages, subsequent macrophages 

are primarily hematogenous-derived40. Due to the hypoxic nature of this environment, 

macrophages support a substantial amount of angiogenesis enabling endothelial cell 

recruitment and vessel formation56 (Figure 1A). These blood vessels become polarized 

allowing for the migration of SCs56, which have a distinct phenotype similar to a stem cell 

in this 57,26, and in turn form cellular cords through their interactions with fibroblasts58 

(Figure 1B). After axons cross this bridge (Figure 1C), the regenerative processes described 

in the distal nerve promote the growth of axons to their down-stream targets.

Identifying and managing traumatic nerve injuries

In the clinic, nerve injuries present on a spectrum, which includes damage to the many axons 

contained within nerve that may be recoverable or non-recoverable depending on the type 

and degree of injury. Therefore, the extent of nerve injury must first be determined before 

any surgical decisions are made. For severe nerve injuries requiring repair, this identification 

may be immediately obvious due to substantial soft tissue damage resulting in loss of nerve, 

or less obvious and result from damage to nerve that generates a “zone of injury.” This zone 

of injury, which refers to the scarring of nerve following damage, is not fully present until 

approximately 3 weeks after the initial injury59,60. It is critical to identify this zone, as this 

scar inhibits the endogenous processes for regeneration. Nerve repair performed before this 

is present has the risk that the proximal or distal end of the nerve still contains scar that 

would block endogenous regeneration facilitated by the repair from proceeding. To identify 

this zone of injury, the use of electrodiagnostics, clinical examination, and in the operating 

room, a technique termed “bread-loafing,” as it dissects the nerve back to the start of scarred 

tissue, are commonly used59,60. Imaging modalities can be used as well, but these imaging 

modalities are generally of minimal clinical utility. Current clinical imaging modalities are 

unable to provide direct correlation to axonal injury and cannot adequately evaluate 

peripheral nerve injury in which the damaged tissue recovers over time61.

After identifying the zone of injury together with any original gap, the effective defect size is 

revealed. A defect of even a few millimeters will often prevent the previously described 

endogenous mechanisms for regeneration, and therefore, nerve repair acts primarily to 
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facilitate this regenerative process. However, even with a nerve defect, nerve grafting to 

bridge the defect is not the only option to repair the nerve and restore function. After 

identifying the injury, the location of the injury is also considered. Nerve transfers, whereby 

the proximal portion of an expendable nerve is sutured to the damaged distal nerve end, are 

frequently used for most proximal nerve injuries. Transfers avoid not only the regenerative 

processes involved to bridge the nerve defect, but also reduce the long period of axon growth 

needed to reestablish axon reinnervation of end-organs62–64. It also obviates the need for 

grafts. Therefore, distal nerve injuries are typically reconstructed by direct coaptation of the 

proximal and distal nerve ends, either directly or with a grafting material. Direct epineurial 

or grouped fascicular repair is possible when a defect is small, only a few millimeters, so as 

to avoid inducing longitudinal tension65,66. For other injuries, nerve grafting is then 

employed67–69.

Bridging materials to repair nerve defects

While the repair of nerve defects using a bridging material dates to the 1800s, it was not 

until the 1970s that the current standard of nerve defect management was initiated with the 

advent of the nerve autograft. The efforts of Huber and Bunnell established nerve 

autografting for nerve defect repair, while further understanding of anatomy and 

microsurgical techniques from Sunderland, Millesi, and Buncke advanced this technique60. 

Since then, several alternatives have become clinically-approved for repair of nerve defects. 

But, while this section will detail the clinically available options to repair a segmental nerve 

injury, the autologous nerve graft, nerve tissue harvested from the patient, remains the gold 

standard of nerve gap repair.

Nerve autografts

From all the biological principles just described in the previous sections, the nerve autograft 

serves in theory as an ideal bridging material. Nerve autograft is nerve tissue harvested from 

the patient taken from an area in the body where the loss of function from its harvest is 

thought to be minimal. Donor nerves that are commonly used as autografts are expendable 

sensory nerves, such as the sural nerve or the medial antebrachial cutaneous nerve60. The 

nerve autograft provides not only a suitably matched scaffolding structure for regenerating 

nerve, principally ECM arranged to include endoneurial tubes, but also a diverse cell supply, 

including a vascular network and support cells of nerve, critically SCs. While blood flow is 

initially disrupted during the grafting procedure, functional blood flow is rapidly restored 

within days via inosculation, or spontaneous end to end repair of existing vasculature, which 

occurs from both the tissue bed and reconnected nerve ends70–72. Furthermore, these graft 

undergo remodeling in the weeks that follow, including Wallerian degeneration, thus 

mimicking the scenario just described following injury for the distal portion of an injured 

nerve. These processes include an invasion of macrophages, proliferation of the donor graft 

SCs, degeneration of axons and myelin debris within the graft, and even a robust migration 

of SCs from the graft to the repaired nerve ends73. While similar in many ways to the 

processes affecting nerve distal to an injury site, there is one critical difference. It is highly 

likely that a portion of non-neuronal support cells within the graft die because of disrupted 

blood flow and tissue oxygenation before inosculation is complete. But, this cell death does 
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not appear to be a major issue that disrupts its capabilities to facilitate robust regeneration. 

Therefore, an autograft currently represents the best available, while imperfect, option for a 

grafting material.

Despite the inherent advantages of providing a cellular supplemented scaffold that promotes 

robust nerve regeneration across a defect, autografting comes with significant drawbacks. 

The donor harvest will entail morbidity at the site, including loss of donor nerve function, 

and its harvest entails additional operations that can include complications, scarring, and 

even the potential for neuroma formation at this additional surgical site74,75. Furthermore, 

there is a limited supply of expendable donor nerves, and the harvesting of these nerves adds 

to the overall operative time for the patient. Therefore, there has been a desire for 

alternatives, and a continued push to use these alternatives even if the outcomes do not yet 

match the autograft.

Cadaveric nerve allografts

Following the advent of adequate immunosuppressive regimens in the 1980s, cadaveric 

nerve allografts became a feasible clinical alternative to autografts. Nerve allografts, i.e. 

nerve tissue from organ donors, represent an analogous form of bridging material to the 

autograft while sparing the donor from loss of function. However, as their use requires 

immunosuppression to avoid rejection and regeneration failure76, and the use of 

immunosuppression is associated with significant clinical morbidity77, the use of allografts 

in peripheral nerve repair is quite rare, and limited to the repair of only the most severe cases 

of nerve injuries, with a considerably long nerve defect length78.

Nerve guidance conduits

Conduits, also referred to as nerve guidance conduits, are the most diverse and deeply 

researched category of nerve autograft alternatives. Conduits consist of tubular structures to 

encapsulate and facilitate cellular and axon growth across the nerve ends, as these tubes 

serve to provide a protective environment for nerve regeneration. The idea of repairing a 

nerve using a conduit was largely driven from the previously-discussed animal studies that 

determined that encapsulating a nerve can promote a robust endogenous mechanism that 

drives an entire nerve to regenerate its structure. These experiments provided a framework 

demonstrating that even in the absence of a scaffold or cells, peripheral nerves are capable of 

producing their own scaffolding, and in turn, use that scaffolding to support cell migration 

and ultimately axon regeneration50,49,79,53.

From this animal work, conduits were the first translated work providing “off the shelf” 

alternatives to treat nerve defects80. However, non-degradable conduits demonstrated 

significant limitations arising from the side-effects to nerve. Silicone conduits have been 

shown to cause significant chronic nerve compression and irritation at the implantation sites, 

requiring removal81–83. This incompatibility from the long-term presence of a material 

surrounding the nerve drove research into alternative materials that could act as more natural 

or temporary biodegradable conduits. Naturally-derived conduits, such as arteries, muscles 

and tendons, have been studied for bridging nerve defects, but vein tubes have received the 

most attention among researchers and even are used clinically84. Far and away, 
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manufactured conduits synthesized with properties that yield biodegradable structures 

represent the majority of modern products available in the clinic. At least seven synthetic 

nerve conduits have been approved by the US Food and Drug Administration (FDA) for 

clinical use in nerve reconstruction85. However, these conduits are generally similar in their 

principles and features, as they are biodegradable through various mechanisms and promote 

regeneration via first the formation of endogenous ECM within the empty tube structure. 

Extensive reviews of the wide range of conduit material properties are available68,85–87.

Processed or acellular nerve allografts

More recently, processed or acellular tissue scaffolds have gained prominence for clinical 

reconstructions specifically in the United States (U.S.). For example, a recent survey 

estimated that ~70% of U.S. hand surgeons use processed nerve allografts in nerve defect 

repair88. Acellular tissue scaffolds are generated using techniques to retain a large portion of 

native ECM proteins while minimizing cellular debris and undesired immunological 

response (i.e. rejection). Acellular tissues, despite their lack of cells and processing 

techniques, typically maintain a highly organized extracellular matrix structure providing an 

ideal scaffold structure for regeneration. As such, acellular nerve allografts (ANAs) or 

processed nerve allografts (PNAs), which are generally synonymous, have become a 

prominent nerve autograft alternative choice due to these features89,69,88. Acellular nerve 

grafts are conceptually appealing not only because they provide a scaffold for immediate cell 

migration and angiogenesis, making them distinct from clinically-available conduits90–92, 

but their ECM structure is similar to native nerve.

Numerous experimental methods have been used to generate these nerve grafts, which all 

entail some technique to remove cells and antigens from the nerve. This topic was reviewed 

extensively by Szynkaruk et al 92, but examples of decellularizing techniques include 

repeated freeze-thaw cycles, exposure to radiation, lyophilization, extended storage in 

cryopreservation solution, and decellularization with detergents93–99. However, a detergent 

based protocol developed by Hudson et al.100 has been the only processing technique to 

translate to a clinical nerve product with FDA approval. A variation of this protocol was 

used in 2008 to develop the first commercially available acellular peripheral nerve allograft 

for clinical use. These PNAs are produced from harvested cadaveric human nerves, 

processed to remove cells using a human variation of Hudson et al.100, as well as enzymatic 

removal of chondroitin-6-sulfate proteoglycan, a known inhibitor of axonal 

regeneration101–103.

Guidelines for nerve graft repairs

Any form of nerve repair is affected by a range of variables that ultimately limits the 

quantity of axons regenerating and reaching their target. These include the distance for axon 

growth, a general decline in the capacity to promote axon growth over time, axonal 

misdirection from their appropriate end-organ targets, as well as atrophy of the end-organ 

targets91,104–108. For nerve grafting repairs, outcomes are also additionally affected by the 

bridged defect size (i.e. both diameter and length) and whether the nerve defect repaired is 
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supporting primarily sensory or motor functions. Furthermore, the choice of material to 

repair the defect affects the outcome.

The nerve autograft provides generally superior and more consistent outcomes compared to 

any currently available clinical alternatives. Animal studies have demonstrated the 

superiority of nerve autografting over alternatives to support axon regeneration and 

functional recovery. Two independent research groups have demonstrated in rodent models 

that autografts support a greater extent of axon regeneration across a defect compared to any 

clinically available alternative, as well as more rapid axon growth across the graft reaching 

the distal nerve109,110. As autografts supported axon regeneration across a defect more 

rapidly and to a greater extent than alternatives, this outcome has critical implications for 

functional recovery. Reducing the time of distal nerve and end-organ denervation is the best 

known strategy to achieve reinnervation of end-organ targets and functional recovery104,91. 

From these specific research studies, it was also determined that a hierarchy between 

grafting procedures exists. Autografts supported the greatest extent of axon regeneration 

across a defect, followed by ANAs, and then empty conduits109,110.

Rather critically, there has yet to be a head-to-head prospective clinical study comparing the 

results of autografts to any existing nerve graft alternatives, which would provide the best 

evidence to support or oppose a change in practice. A comparison of nerve autografting to 

current clinical autograft alternatives has only been directly demonstrated in animal studies, 

as just described. Thus, any evidence demonstrating alternatives are comparable to 

autografts in outcomes has been derived from individual studies of alternatives used in nerve 

repair that are then compared to historical autograft data. Not only do these study designs 

introduce additional confounding factors, such as differences in surgical techniques and 

patient population, but comparisons to historic data can make the outcome comparisons 

appear biased.

While autografts remain the best option for managing nerve defect repairs, there are criteria 

that specify situations in which the use of autograft alternatives is preferred. First, the use of 

nerve graft alternatives in the reconstruction of small and short segmental sensory nerve 

injuries can be supported for logical reasons regardless of evidence of their efficacy. There 

are situations where harvest of a nerve autograft would be counterintuitive: for example, 

sacrificing a non-critical, small sensory nerve to fix a single non-critical, small sensory nerve 

defect. Another example is autograft harvest in a patient with an established pain syndrome, 

where pain at a nerve donor site is more likely to occur. If the reconstructed nerve is non-

critical, more harm may be done than good with autograft harvest. In clinical situations such 

as these, alternatives are better justified so long as the risks of complications are minimized.

Short or small sensory nerve defects

A growing body of evidence has now demonstrated that nerve graft alternatives support 

adequate recovery (i.e. comparable recovery to an autograft based on historic data on 

outcomes) to treat short and small diameter segmental sensory nerve injuries. While defining 

these parameters can be slightly subjective, in general there is a consensus that short length 

defects are less than 30 mm111,60,112. The most common metric used for these comparisons 

has been meaningful recovery based on the Medical Research Council (MRC) scale (Table 
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1), set for sensory function113 at ≥S3 and motor function114 at ≥M4115. For digital nerves 

repaired with an autograft, the reported ranges of meaningful recovery are nearly 

100%116,117. For comparison, commercial conduits yielded meaningful recovery in 44–75% 

of repairs81,118,119. Alternatively, the data for PNAs suggests superior clinical results when 

compared to conduits for the reconstruction of digital nerve defects. Multiple independent 

studies demonstrated meaningful recovery in 80–89% of digital nerve defect repairs using 

PNAs meeting similar criteria120–122. And finally, while there is limited data demonstrating 

a major difference in the degree of recovery when regeneration is successful, evidence 

demonstrates that autografts and PNAs provide more consistent recovery compared to 

conduits for treating short length or small diameter sensory nerve defects123,111,124.

Short or small motor / mixed nerve defects

In general, regardless of grafting option (autograft or alternative), anticipated motor 

functional recovery rates will be appreciably reduced compared to sensory recovery when 

repairing motor and mixed segmental nerve injuries. Furthermore, the evidence to use any 

nerve graft alternative for their repair is much more contentious, and there are no evidence-

based guidelines to use nerve graft alternatives instead of nerve autograft to reconstruct 

motor or mixed nerve defects111. For the repair of mixed or motor nerves, such as the 

median and ulnar nerves, studies have demonstrated that autograft repair results in 

meaningful recovery in 60–80% of radial and median nerves125,126 and 57–60% of ulnar 

nerves127. For conduits, while few studies exists, the outcomes are dismal. In one study, the 

repair of median or ulnar nerve (defects less than 30 mm) resulted in only 8% meaningful 

recovery119. For the other prominent category of alternatives (PNAs), the outcomes from 

studies have been more promising. For median nerve repairs up to 50 mm, 75% of patients 

experienced meaningful recovery, and for ulnar nerve repairs of similar criteria, up to 67% 

of patients experienced recovery120. Furthermore, in a more recent study, a motor recovery 

rate of ~67% was appreciated across a variety of repaired nerve defects up to 30 mm122. 

Therefore, recent data suggest that even mixed or motor nerve defects less than 30 mm could 

be repaired equally well using PNAs compared to autografts. But, these outcomes represent 

few studies with select surgeons. As reviewed in greater detail by Rbia and Shin, there is still 

insufficient evidence at this time to support the widespread use of alternatives to repair 

mixed or motor nerve defects111.

Long or large nerve defects

There is still a critical unmet need for improved nerve grafting options to treat long (>30 

mm) segmental nerve injuries. Regardless of considerations for sensory or motor functions, 

neither is anticipated to recover well. And, these anticipated poor outcomes result even from 

repair using a nerve autograft, while it remains the best available option. There is no 

consensus on the maximum gap that can be bridged by a nerve autograft, and in fact, widely 

varying degrees of success have been reported in autografts up to 200 mm128. However, 

there is a general consensus that any regenerative success declines as autografts go beyond 

60 mm60. As an example, meaningful sensory recovery from a digital nerve defect repair 

using autografts was observed in 100% of patients with defect lengths less than 21 mm, 

while this recovery rate fell to 67% for lengths between 21 and 49 mm and only 9% for 

lengths greater than 49 mm117. This relationship regarding defect length and recovery rates 
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has also been observed for conduits81 and PNAs122. Similar to data on autograft repairs for 

long defects, studies using PNAs to repair long nerve defects demonstrate that sensory and 

motor recovery can vary considerably among studies. In one study, a high level (~86%) of 

meaningful sensory recovery was observed in patients with nerve defects repaired using 

PNAs at lengths between 40 and 50 mm129. Yet, more recent studies from Leckenby et al 

significantly temper these promising outcomes. In their studies, PNAs used to repair nerve 

defects between 30–49 mm yielded ~75% meaningful sensory recovery but only 38% motor 

recovery. Similarly, defects greater than 50 mm yielded 53% sensory recovery, but only 10% 

recovery ofmeaningful motor function122.

Concerns regarding alternatives for repairing defects

A prevailing concern for caution regarding the use of alternatives is due to the general 

variability and inconsistency of results with alternatives compared to autografts. Alternatives 

can fail to facilitate any nerve regeneration across a bridged nerve defect, which is distinct 

from autograft repair. Specifically, a failure to regenerate across an alternative can result in 

no appreciable functional recovery, while a poor outcome from autografting will still yield 

some recovery, even if not ≥S3+ or M4. This phenomenon whereby nerve fails to regenerate 

any axons across a defect repaired using an alternative is well-documented in the animal 

literature,130–132 but now there is an increasing body of evidence of these issues present in 

the clinical literature. Indeed, Moore et al, found that use of conduits can result in inferior 

quality nerve regeneration, which is most prevalent when conduits are used to repair nerve 

defects beyond their length indications. This failure can not only lead to lack of recovery, but 

can even result in formation of a painful neuroma in the repaired nerve defect133. Specific 

examples of this issue have been published on PNAs as well. Nietosvaara et al. presented 

three cases of PNAs ranging from 20 mm to 50 mm failing to facilitate any measurable axon 

regeneration across these PNAs. In fact, they document that the PNAs resorbed leaving 

behind scar tissue, and in one case, had thickened into a neuroma-like stump134. Overall, 

this evidence is perhaps the strongest reason to take a conservative approach to utilizing 

alternatives in the clinic until these circumstances are better understood.

Experimental nerve graft alternatives

Since the development of biodegradable conduits and identification of their limitations, 

experimental work to develop improved nerve graft alternatives has been ongoing. As the 

body of work on experimental alternatives is substantial, this section will highlight specific 

recent areas that show promise for translation. For a more comprehensive review of 

bioengineered nerve graft alternatives, see Pfister et al.68, Boecker et al86, and Kornfeld et 
al87.

Scaffolding and topology

The use of synthetic conduits containing internal scaffolding that has included ECM, such as 

collagen, laminin, and fibrin131,135,136, has demonstrated advantages in improving 

regeneration compared to empty conduits. However, there are limits to these internal 

scaffolds compared to acellular nerve. These scaffolds develop with a random arrangement 

of the molecular fibers, which differs significantly from the organized and longitudinal 
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arranged structure of nerve. Instead, recent advances that arrange the topology of the 

scaffold fibers holds promise, and the most interesting developments are the use of scaffolds 

with a longitudinal organization. This scaffolding can be achieved through a variety of 

means, including the use of electromagnetic fields and photolithography, but electrospinning 

techniques are becoming increasingly well-developed for this approach137,138. These 

techniques allow for aligned fibers, synthetic or “naturally-derived”, to be deposited, 

resulting in longitudinally oriented pores or channels as small as 1 μm, which are 

comparable to endoneurial tubes, ranging from 1–20 μm137. These designs allow for 

scaffolds that not only more closely mimic the nerve’s structure139,140 but could lead to 

more rapid cell migration and polarization of cells141,142. As endothelial cell polarization is 

important for both SC migration and then axon outgrowth56, this could lead to a major 

translational development. In addition, the use of synthetic fibers and/or conduits also holds 

an advantage in that drugs for improving regeneration (detailed in the next section) could be 

readily incorporated into the underlying scaffold.

Local drug delivery

The delivery of biologically active molecules locally during regeneration is another strategy 

that has been extensively pursued for several decades. Nerve scaffolds or the conduit itself 

can be incorporated with bioactive molecules via chemical interactions, via crosslinking or 

affinity-based interactions, or physically encapsulated. While chemical interactions can 

provide drugs immediately to cells or as cells proceed to grow within a scaffold, physical 

encapsulation of drugs provides a greater range of delivery options, such as long-term or 

sustained release. Numerous molecules or drugs have been delivered to nerve for 

regeneration across a nerve defect143,144, but the most researched category for delivery has 

been neurotrophic factors. Of these, glial cell line-derived neurotrophic factor (GDNF) is a 

promising example that promotes regeneration because it targets both axons and SCs. Both 

sensory and motor neurons express receptors for GDNF (Ret/GFRα1)145, where GDNF 

signaling promotes axon outgrowth and neuronal survival146–151. In addition, SCs also 

express receptors for GDNF (NCAM/GFRα1)152, where GDNF signaling activates 

pathways in SCs implicated in cell migration, differentiation, and trophic factor 

production152–163. Exogenous GDNF delivered to nerve has been shown to improve not only 

axon regeneration but functional recovery131,164.

More recently, the local delivery of drugs that accelerate axon outgrowth have been 

investigated. FK-506, an immunosuppressive drug, enhances nerve regeneration, as it 

increases the axonal growth rate in animal models165–172. Now, approaches have been 

developed to provide FK506 locally to enhance axon regeneration given its abilities to 

stimulate more rapid axon outgrowth173–177. This strategy is quite intriguing given that it 

reduces the potential for any systemic toxicity from its immunosuppression. Furthermore, 

while this delivery strategy has demonstrated its potential to improve nerve regeneration in 

animal models174, the sustained local delivery of FK506 from a nerve graft alternative 

bridging a nerve defect could translate to benefits even after axons cross the bridged region, 

as it could continue to stimulate accelerated axon growth through the distal nerve.
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Alternatively, based on our increasing knowledge of the immune response during 

regeneration across nerve defects, recruiting immune cells, such as macrophages, is a 

promising strategy. While angiogenic factors, such as vascular endothelial growth factor 

(VEGF), have been locally delivered from conduits to promote improved angiogenesis 

within bridged nerve gap178,179, modulating the local immune system in order to recruit 

cells to promote endogenous angiogenesis could have advantages, such as a greater degree 

of endothelial cell polarization. Furthermore, the immune system has a critical role in 

resolving inflammation following injury, where macrophages also have additional roles in 

this aspect of tissue regeneration. Macrophages alter their secreted cytokines based on their 

phenotype. While a simplification, macrophages are broadly classified as classically 

activated (M1) or alternatively activated (M2) phenotypes. The M1 macrophage response 

predominates during the onset of injury while the M2 polarization or subtypes generally 

promotes healing, remodeling, and resolution of regeneration180,181. Studies using conduits 

releasing factors promoting a more M1-like phenotype (IFNγ) versus a more M2-like 

phenotype (IL-4, collagen VI, or fractalkine) have demonstrated improved nerve 

regeneration when factors promoting a greater accumulation of M2-like phenotype 

macrophages were used to repair a nerve defect compared to conduits lacking this 

ability182–184. Furthermore, the nerve autograft alternative itself could be designed to 

promote macrophage polarization to the more M2-like phenotype through its inherent 

biomaterial properties, which has been observed upon conduit materials such as chitosan185. 

Indeed, these conduits are now undergoing clinical trials to determine their efficacy in nerve 

repair186.

Supplementing cells

Match and surpassing the outcomes of the autograft will likely entail alternatives that 

include a cellular component. SCs and stem cells have been shown to be the most promising 

sources for this supplementation187. However, several challenges remain: improving the 

survival of transplanted cells and determining the cells to transplant. Supplementing ANAs 

with SCs has been shown to result in very low survival of the transplanted cells, which can 

be as low as 2% of transplanted cells surviving up to 7 days188,189. And while SCs in culture 

do not transform or reach a proliferative limit190, the difficulty in SC isolation and culture 

has impeded clinical translation191,95,192. Instead, stem cell transplantation seems a more 

promising avenue. A more extensive review of stem cells used for nerve graft alternatives 

can be found in Johnson et al.69. Recent work from Shin and colleagues is noteworthy. They 

developed an approach to seed mesenchymal stromal (stem) cells upon ANAs with 

improved viability and greater reproducibility. A bioreactor was used to seed the 

mesenchymal stromal cells onto ANA193, a technique that has led to cells surviving up to 29 

days194. Overall, supplementation of cells to nerve graft alternatives seems an inevitable 

translational advance once the processes to reliably seed these cells to the alternatives are 

robust.

Future research needed to improve alternative designs

While these experimental strategies are promising, unaddressed issues remain, and it is 

unclear whether these will be adequately addressed by new designs. The goal of these new 
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designs should be not only to meet the autograft “gold standard” but to also understand what 

drives and inhibits nerve regeneration in order to surpass the results of an autograft. To do 

this requires looking beyond new designs to also consider what are the factors limiting the 

current designs.

How is consistent regeneration and motor recovery promoted?

As demonstrated by clinical evidence, sensory recovery can generally be achieved using 

nerve graft alternatives, but motor recovery is highly inconsistent. Specifically, repairing 

motor nerve defects with alternatives yields meaningful motor function recovery at rates 

ranging from 8–75%133,69,111,195. We need to understand how to promote consistent 
regeneration across alternatives with robust recovery. A critical component to achieving any 

level of functional recovery is regeneration of an adequate number of axons to their target 

(i.e. skin or muscle) in a timely manner196–201,17, but the promotion of functional recovery 

also requires other processes. Axonal guidance and non-neuronal cell signaling, including 

that occurring through the immune system, all contribute to regeneration leading to 

functional recovery197,198,200,104,42. The essential mechanisms involved in promoting nerve 

regeneration across alternatives yielding robust motor functional recovery are unresolved, 

despite many animal studies demonstrating return of motor recovery. Uncovering what 

factors are missing in the translation of animal to human research will be critical to 

advancing the field.

Why is regeneration functionally limited by graft length?

Animal studies have yet to demonstrate that nerve graft alternatives can reliably facilitate 

axon regeneration across longer defects (>30mm) despite their robust abilities to promote 

regeneration across shorter defects202–206. A review of this specific topic is available: see 

Kornfeld et al87. However, there is limited understanding as to why few axons regenerate 

across these long graft alternatives despite cues to promote axon growth and regeneration 

that succeed at shorter lengths. Effectively, alternatives are functionally limited by length.

While the cause of limited axon regeneration across long nerve graft alternatives is still 

controversial, a series of recent studies has illuminated some novel and insightful findings. 

Using ANAs as a model nerve graft alterative, these studies compared the regenerative 

processes within short (non-critical length) vs long (critical-length) ANAs revealing that cell 

repopulation of ANAs due to length was the primary reason for limited axon 

regeneration202,203,206 (Figure 2). In these studies, to establish whether the environment that 

develops in long nerve graft alternatives – not the ability of neurons to regenerate their axons 

over long distances – is responsible for axon growth arrest203, experiments were performed 

whereby long alternatives were shortened <30mm in length. These shortened alternatives, 

which should normally facilitate axon regeneration across a short defect, still contained this 

altered cellular environment and ECM structure. These now “stressed” short grafts halted 

axon growth and regeneration203. Furthermore, it was also established that this poor 

regenerative outcome across long grafts is not caused by a failure of neurons to regenerate 

their axons. Using a sciatic nerve defect repair with a long acellular nerve, regenerating axon 

growth was first arrested and then proceeded by replacing the remaining scaffold with an 

isograft (animal equivalent to an autograft). In this scenario, axon growth resumed203. 
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Overall, these results demonstrated the environment of long nerve graft alternatives 

generates a barrier to axon growth.

Recently, immune cells other than macrophages were determined to have additional, 

undescribed processes that contributed to regeneration across ANAs based on length. 

Specifically, a novel role for T cells was elucidated. T cells accumulated within short 

(20mm) ANAs after macrophages, but before appreciable SC accumulation or axon growth. 

T cell accumulation within short ANAs was associated with robust nerve regeneration. 

Conversely, few T cells accumulated within long (40mm) ANAs, which were associated 

with minimal axon regeneration across these grafts. Furthermore, a direct causal relationship 

between T cells and nerve regeneration across ANAs was demonstrated. Nerve regeneration 

across short (20mm) ANAs, which normally support robust axon regeneration across the 

gap, was decreased by ~50% in T cell deficient rats206. Overall, research regarding the role 

of the immune system represents an important area that needs further examination in this 

context (Figure 3). Given the prominent role that the immune system plays in tissue 

regeneration, there is still limited knowledge on its role during regeneration across a nerve 

defect.
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Figure 1. 
Schematic of nerve regeneration across a short nerve defect. After formation of an 

endogenous matrix, the innate immune system infiltrates the defect. (A) Due to the hypoxic 

nature of this environment, macrophages produce factors to support angiogenesis, such as 

vascular endothelial growth factor (VEGF). The secretion of VEGF from macrophages 

recruits endothelial cells into the injured nerve bridge56. (B) As blood vessels form, 

Schwann cells migrate upon this network, and in turn fibroblasts interact with Schwann cells 
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forming cellular cords through EphrinA-EphrinB signaling58. (C) These processes enable 

axon growth across the nerve defect.
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Figure 2. 
Long nerve graft alternatives develop an environment limiting axon regeneration. Using 

acellular nerve allografts (ANAs) as a model, studies have compared the regenerative 

processes within short (non-critical length) vs long (critical-length) ANAs to discover 

factors contributing to successful or failed nerve regeneration across ANAs202,203,206. (A) 

Short ANAs are repopulated with cells similar to previously described in Figure 1. 

Conversely, (B) long ANAs are repopulated with an environmental imbalance consisting of 

altered populations of immune cells, cells expressing markers of senescence203, and delayed 

angiogenesis compared to their shorter counterparts72,70,71,206. These cumulative changes to 

long ANAs limit axon regeneration and represent a “barrier” to axon regeneration203,202.
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Figure 3. 
Temporal relationship between immune system cells within nerve defects and regeneration. 

Each cell type migrates within a defect, where its accumulation peaks at different times 

during regeneration across nerve defects and precedes axon growth. Prior to substantial 

Schwann cell migration within a nerve defect, the innate immune system plays a pivotal 

role. Neutrophils are the first cells to infiltrate the defect, and have key processes involved in 

debris clearance, as well as yet unresolved roles in further cell recruitment. Macrophages 

shortly follow neutrophils and are responsible for the majority of blood vessel formation, as 

well as providing signaling for Schwann cell functions. Cells of the adaptive immune 

system, such as T cells, arrive at the same time as Schwann cells, and regulate axon 

myelination. The nature of how T cells regulate myelination is not yet resolved.
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Table 1.

Medical Research Council (MRC) scale

Sensory Function113 S0 absence of sensibility in the autonomous area of the nerve

S1 recovery of deep cutaneous pain and tactile sensibility

S1+ recovery of superficial pain sensibility

S2 recovery of some degree of superficial cutaneous pain and tactile sensibility

S2+ as in S2, but with over response

S3 return of pain and tactile sensibility with disappearance of over response, s2-PD: >15mm

S3+ return of sensibility as in S3 with some recovery of 2-point discrimination, s2-PD: 7–15mm

S4 complete recovery, s2-PD: 2–6mm

Motor Function114 M0 no contraction

M1 flicker or trace of contraction

M2 full range of active movement, with gravity eliminated

M3 active movement against gravity

M4 active movement against gravity and resistance

M5 normal power

Abbreviations: S2-PD: static two-point discrimination test
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