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Abstract Food safety issues across the global food supply

chain have become paramount in promoting public health

safety and commercial success of global food industries.

As food regulations and consumer expectations continue to

advance around the world, notwithstanding the latest

technology, detection tools, regulations and consumer

education on food safety and quality, there is still an

upsurge of foodborne disease outbreaks across the globe.

The development of the Electronic nose as a noninvasive

technique suitable for detecting volatile compounds have

been applied for food safety and quality analysis. Appli-

cation of E-nose for pathogen detection has been successful

and superior to conventional methods. E-nose offers a

method that is noninvasive, fast and requires little or no

sample preparation, thus making it ideal for use as an

online monitoring tool. This manuscript presents an in-

depth review of the application of electronic nose (E-nose)

for food safety, with emphasis on classification and

detection of foodborne pathogens. We summarise recent

data and publications on foodborne pathogen detection

(2006–2018) and by E-nose together with their method-

ologies and pattern recognition tools employed. E-nose

instrumentation, sensing technologies and pattern recog-

nition models are also summarised and future trends and

challenges, as well as research perspectives, are discussed.

Keywords Sensors � Pattern recognition � Foodborne
pathogens � Volatile organic compounds (VOCs) �
Electronic nose

Introduction

Food pathogens characterise a special form of microbial

pathogens, which are acquired and spread through food.

Foodborne Pathogens (Campylobacter, Clostridium botu-

linum, Escherichia coli O157: H7, Listeria monocytogenes,

Norovirus, Salmonella, Staphylococcus aureus, Shigella,

Toxoplasma gondii, Vibrio vulnificus) are a significant

source of foodborne illnesses, hospitalization and deaths in

the world (Havelaar et al. 2015).

The global incidence of foodborne related diseases is on

the rise with a reported 600 million illnesses and 420,000

deaths every year, leading to the loss of 33 million healthy

life years measured in Disability-Adjusted Life Years-

DALY’s (Franz et al. 2018).

Foodborne illnesses usually occur through the contam-

ination of surfaces, oral-faecal route and improper food

storage (Nygren et al. 2013). The detection of foodborne

pathogens is a critical component in the elimination of

pathogens in the food supply chain. Current detection

methods include conventional cell culture standards,

immunological assays, DNA based methods, Biosensor

based methods, as well as emerging spectroscopic methods

and spectral imaging techniques.

Recent developments in sensor technologies have led to

innovative analytical approaches such as the electronic

nose (E-nose) that been developed and applied in the food

industry in reaction to emerging food safety issues. E-nose

provides a rapid, non-invasive online monitoring tool for
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food safety and can be used for qualitative and semi-

quantitative detection (Chen et al. 2013).

An E-nose is a device capable of identifying simple or

complex odours by combining a chemical sensor array

system with partial specificity and a suitable pattern

recognition system (Gardner and Bartlett 1994). E-nose can

analyse volatile organic compounds (VOCs) produced by

microorganisms is employed as a possible alternative

method in the identification and classification of different

chemicals and bacteria.

E-nose has gained widespread application in the food

industry and has been applied for the detection of food

spoilage bacteria (Pattarapon et al. 2018; Wang et al. 2012)

and total volatile basic nitrogen (Li et al. 2016),

trimethylamine (Ampuero et al. 2002), fungal infections

(Lippolis et al. 2018; Liu et al. 2018; Pallottino et al. 2012).

E-nose presents numerous advantages over conventional

and other non-invasive methods such as vibrational spec-

troscopic methods and hyperspectral imaging.

In this article, the following specific objectives are

discussed:

1. The use of electrochemical sensors for monitoring

microbial growth.

2. E-nose Instrumentation, sampling and pattern recogni-

tion methods.

3. The application of E-nose will be discussed as a non-

destructive analytical tool for food safety analysis

(foodborne pathogen).

Methodology

Electrochemical techniques for monitoring

microbial growth

Electrochemical (EC) techniques such as electrochemical

impedance spectroscopy, voltammetry, potentiometry, and

coulometry have made substantial contributions to the food

analysis. EC techniques directly convert chemical pro-

cesses that occur in a solution at the electrode/electrolyte

interface into quantifiable electronic signals such as altered

conductive properties (conductometric), current (ampero-

metric), and potential or charge accumulation (potentio-

metric) (Niu et al. 2014).

The application of electrochemical sensors and detectors

for food analysis is expanding rapidly due to their inherent

sensitivity, selectivity, and speed of detection. Electro-

chemistry provides a noninvasive method for monitoring

microbial activity as well as for monitoring electron flow

within microbial communities (Martin et al. 2018). The

theoretical basis of electrochemical gas sensor operation

involves interactions between gaseous molecules and

sensor-coating materials. Electrochemical gas sensors will

be described during the course of this article.

Electronic nose instrumentation

An electronic nose (Fig. 1) is an artificial olfaction system

that comprises of units for gas/odour sampling, sensing,

signal preprocessing, pattern recognition, and odour

expression (Jia et al. 2018). E-nose allows for capturing

volatile chemical compounds into an array of sensors

through a sampling system. Signal response is generated

and subsequently transmitted to a computer system for

processing and pattern recognition.

Electronic nose sensor types

Electronic noses employ an array of chemical sensors with

varying specificities which reacts and respond to volatile

organic compounds present in the gases collected from

samples (Jiang and Chen 2014; Zohora et al. 2013). The

selection of sensors to employ is quite large and have been

classified into broader classes they include quartz crystal

microbalance sensors, surface acoustic wave sensors,

electrochemical sensors, optical sensors, and calorimetric

sensors. A detailed description of these sensors together

with their merits and demerits is comprehensively dis-

cussed by Wilson and Baietto (2009).

Some chemical-based sensors (catalytic, semiconduct-

ing metal oxide, solid electrolyte, polymer and field-effect

transistor-based sensors) have been used for E-nose. Metal

oxide semiconductors (MOS) have been commonly used as

sensing elements in the electronic nose by researchers due

to their availability, high sensitivity and their ability to

respond to oxidising and reducing compounds. The MOS

sensor is based on the adsorption of gas molecules to incite

change in conductivity. The measured change in conduc-

tivity corresponds to the amount of volatile organic com-

pounds adsorbed. One disadvantage of MOS is its

susceptibility to poisoning by sulphur compounds present

in the odorant mixture.

Another conductivity sensor is the polymer sensor made

up of polypyrroles, thiophenes, indoles polyaniline, furan

material polymers (Ghasemi-Varnamkhasti et al. 2018).

Chemicals form either ionic or covalent bonds when

exposed to the polymers. Changes in conductivity occur

due to the transfer of electrons along the polymer chain.

Polymer sensors operate at ambient temperatures and do

not require heating. They are suitable for use as

portable instruments having a simple electronic interface.

Polymer sensors are however susceptible to humidity

which can mask the responses of VOCs.
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Electronic nose sampling systems

To effectively design a pattern recognition and analysis

system for electronic nose data, the processes involved in

analyzing the data generated must be studied as shown in

Fig. 2.

Selecting a suitable sampling of the volatile fractions

and conveying it to the sensor array is a major challenge

when designing the analytical methodology for microbial

volatile profiling with electronic nose. The sampling

technique for bacteria used usually depend on the sample

state of matter (liquid, solid, semi-solid), food matrix and

the level of concentration or bacterial load. Sampling

systems that allow for agitation and the use of a longer

sampling period to generate more volatiles are mostly

preferred.

Headspace methods, analytical distillation methods or

direct extraction methods are usually employed for sam-

pling odour active analytes where adequate isolation is

required. The most widely used method is the static

headspace (SHS) sampling technique. It comprises of

placing the microbial sample in a hermetically sealed vial

after equilibrium between the matrix and the gaseous phase

is established, the headspace is sampled (Peris and Escu-

der-Gilabert 2009). Therefore sampling techniques are

designed to be stable and be able to withstand environ-

mental effects (Rayappan et al. 2017).

A detailed description of E-nose sampling methods is

described by Majchrzak et al. (2018).

Feature extraction and dimensionality reduction

Preprocessing is the significant first step in E-nose data

analysis and is usually performed to remove irrelevant

information from the signal data. Preprocessing of multi-

variate signals is usually performed to prepare the for

obtained multivariate pattern analysis. These methods are

used for baseline manipulation, compression, noise reduc-

tion, detection and removal of outliers and normalisation

(Sanaeifar et al. 2017).

The influence of preprocessing methods on class

recognition of chemical compounds is described in several

studies with Gardner et al. (1998) and Gutierrez-Osuna and

Nagle (1999) using 36 and 48 different pre-processing

algorithms respectively. Sensor data preprocessing meth-

ods include Scaling (dimensional auto-scaling, mean cen-

tring, relative scaling, vector auto-scaling, logarithmic

scaling and power scaling), and Baseline correction (frac-

tional difference) (Jha et al. 2019). In other to remove

background noise from the raw sensor responses,

Fig. 1 a A fabricated E-nose

machine for online detection at

Jiangsu University,

b commercial E-nose machine,

Airsense PEN3 (Airsense

Analytics GmbH, Schwerin,

Germany)

Fig. 2 Stages of classic signal processing of electronic nose data by Gutierrez-Osuna and Nagle (1999)
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Fractional techniques deduct the baseline value of the

sensor response value and then divide by the baseline

value, to yields a per unit response. The application of

fractional changes in conductance delivers the most suit-

able pattern-recognition performance for MOS (Hierle-

mann and Gutierrez-Osuna 2008).

In Vector auto-scaling, each example vector is normal-

ized with the mean and variance computed for each

example across the different dimensions whereas, in

dimensional auto-scaling, the mean and variance are

computed for each dimension along with all the examples

in the database. The coordinates have zero mean and unit

variance (Gutierrez-Osuna and Nagle 1999). In Mean

centring constant terms are removed in the data so as to

make the data compatible with the model. It is applied to

center on the inconsistent part of the data, and to leave only

the relevant variation between the samples for analysis

(van den Berg et al. 2006).

Logarithmic scaling involves extracting the logarithm of

previous measures. It has been applied to prevent the

influence of large variations in chemical vapor concentra-

tion on sensor responses (Watson et al. 1993). Power

scaling, on the other hand, applies power law for nonlin-

earity class separation in feature space. The raw sensor

signal is scaled by suitable inverse power law to linearize

the sensor output (Sunil Kumar Jha and Yadava 2011).

Autoscaling is considered the most effective prepro-

cessing method applied to the data before feature extrac-

tion. Autoscaling involves mean centring of individual

datasets and dividing it by the standard deviation for

rescaling with unit variance. The main advantage is to

preclude high sensor responses from dominating the anal-

ysis. The data produced by an E-nose is made up of a set of

semi-independent variables from the sensor array and a set

of dependent variables (Scott et al. 2006).

The general improvement of an E-nose system usually

involves the optimisation of feature extraction and selec-

tion method, pattern recognition method as well as sensi-

tive material selection and sensor array optimization for

homemade E-nose devices. The latter refers to hardware

selection and optimization. The primary goal of feature

extraction is to extract robust information from sensor

responses with less redundancy. This would ensure the

overall effectiveness of the pattern recognition algorithm

applied subsequently (Carmel et al. 2003).

Feature extraction methods can be grouped into three

according to the source of features extraction. Firstly from

curve fitting which fits the response curves based on a

particular model and extracts a set of fitting parameters as

the features, examples include polynomial model, expo-

nential model, fractional function model and the S function

model (Yan et al. 2015).

Secondly, from original response curves of sensors by

the extraction piecemeal signal features examples include

secondary derivatives, maximum values, differences, pri-

mary derivatives integrals, the adsorption slope, and the

maximum adsorption slope and lastly, from applying

transforms such as fast Fourier transform (FFT) and dis-

crete wavelet transform (DWT) (Huang et al. 2006).

In addition to the above conventional feature extraction

techniques, new methods have been applied in recent years.

Energy vector (EV) is a vector of energy, which contains

the energy of each sensor and all the mutual energies and is

useful when studying the relationship between signals of

sensors of the same array.

Parallel factor analysis (PARAFAC) as a multi-way data

decomposition method, PARAFAC simultaneously deter-

mines the pure contributions to the dataset and optimizing

each factor as a time, in trilinear systems (Zhang et al.

2014). Dynamic moments (DM) and Phase space (PS) are

usually applied in dynamical systems whereas the power

density spectrum (PSD) describes the distribution of power

into frequency components composing that signal. The

statistical average of a signal is examined in terms of its

frequency content and windowed time slicing (WTS) is

another recent method based on window functions. It

multiplies the time response of each sensor by time win-

dows to obtain the area values and these values are further

used as features (Kaur et al. 2012; Yan et al. 2015).

Dimension reduction is achieved through principal

component analysis (PCA) or independent component

analysis (ICA) for uncorrelated and independent factors

respectively. PCA is the most commonly used method for

dimensionality reduction and feature extraction, also

known as the Karhunen–Loève transform, PCA employs

orthogonal transformations to eliminate colinearity in

variables and the sensor array response matrix is trans-

formed along the virtual axes of minimum correlation

(Jolliffe 2014).

ICA is a linear method capable of identifying hidden

factors of random variables. ICA attempts to fragment a

multivariate signal into independent non-Gaussian signals

(Hyvärinen et al. 2001). In ICA the sensor array response

matrix is transformed along the virtual axes with minimum

correlation and statistical dependency (Jha et al. 2019).

Other methods employed for dimension reduction and

feature extraction include wavelet transform, independent

component analysis (ICA), principal kernel component

analysis (KPCA) and linear discriminant analysis (LDA).

In addition to the visual discrimination of chemical com-

pounds during these processes, the resulting data is used as

input for qualitative classification and quantitative esti-

mation of chemical concentration.
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Pattern recognition methods for electronic nose

Pattern recognition methods are then applied to analyse and

classify the processed data and can be classified as linear or

nonlinear (Fig. 3). These methods can also be classified as

supervised (k-nearest neighbor, Linear discriminant anal-

ysis, naı̈ve Bayes, Backpropagation artificial neural net-

works, adaptive resonance theory map and support vector

machine) and unsupervised (k-means clustering, self-or-

ganizing map, fuzzy clustering and hierarchical cluster

analysis). A supervised learning algorithm learns from

labelled training data while unsupervised learning deals

with the unlabelled data (Sizochenko et al. 2019).

Other classification categories include reinforcement

learning (Reinforcement learning neural network) approa-

ches neighborhood approaches (RMSE Neighbourhood and

Similarity measure), neural networks (Feedforward neural

networks, Spiking Neural Networks and Learning Vector

Quantization), and decision/bagged trees algorithms.

Artificial neural network (ANN) and support vector

machine (SVM) are predominantly employed for E-nose

data classification due to their robustness and high accu-

racy. E-nose data is also known for demonstrating strong

nonlinearity. Artificial Neural Networks (ANN) is another

supervised learning model employed for classification and

regression analysis. ANN is ambiguously inspired by the

biological neural networks in the human brain and usually

consist of three layers an input, output and hidden layers

(Siswantoro et al. 2017).

SVM is a supervised learning model employed for

classification and regression analysis. The algorithm was

created by Hava Siegelmann and Vladimir Vapnik (Vapnik

2000). SVM is a powerful tool used for function estima-

tion, nonlinear classification, and density estimation and

has formed the bases for the development of kernel-based

methods. A detailed theoretical discussion of SVM and its

application to E-nose datasets is described (Acevedo et al.

2007; Distante et al. 2003; El Barbri et al. 2008; Laref et al.

2018; Pardo and Sberveglieri 2005). Back Propagation

(BP) learning is a method usually employed for training

most of the applied ANNs with multilayer perceptron

(MLP) trained by the error back-propagation algorithm the

most commonly used ANN in food analysis and classifi-

cation (Dębska and Guzowska-Świder 2011). A detailed

overview of ANN and its application to E-nose datasets is

described by (Balasubramanian et al. (2008); Luo et al.

2004). E-nose data requires training for odor discrimination

or differentiation, and this is usually performed by corre-

lating E-nose responses with chromatography (GC, HPLC),

sensory analysis or calibrating with known samples (Gha-

semi-Varnamkhasti et al. 2018).

Discussions

Volatiles associated with the microbial growth

Volatile organic compounds (VOCs) are a diverse group of

carbon-based chemicals that are volatile at ambient tem-

perature and can be detected through smell. VOCs have

low-molecular-weights with high vapour pressures that are

easily volatilized (Tait et al. 2014).

During food spoilage, pathogenic and spoilage

microorganisms act upon food substrates and emit specific

VOCs. This odor active molecules are generated during the

process of breaking down food. Electronic nose with the

requisite training program is able to discriminate amongst

several volatile profiles (Giungato et al. 2018). Microor-

ganisms have their unique characteristic volatile com-

pounds they emit during growth (Avalos et al. 2018). Some

of these volatiles provide unique odor fingerprints for a

particular microorganism and can be employed for patho-

gen identification and discrimination without the use of

conventional food analytical techniques.

In another study, Berna et al. (2013) stated that various

characteristic odours are associated with pathogenic

Fig. 3 Sampling, detection and

analysis of volatiles by E-nose
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bacteria; E. coli is associated with an amino acid (indole)

distinctive odour, Salmonella typhimurium is associated

with methyl ketones, primary and secondary alcohols

(Balasubramanian et al. 2016). There are no clear reasons

why microorganism produces VOCs but researchers have

hypothesised and attributed their production to signalling

or defence mechanisms (Selim et al. 2017) as well as for

growth monitoring (Kai et al. 2009).

Data of VOCs in (Table 1) reveal basic information

about microbial activities at the molecular level (Robin

Michael Statham and John 2012). Physiological conditions

such as moisture content, oxygen, pH, and temperature

affect the composition and amount of volatiles produced by

a particular microorganism. Another factor that affects the

composition and amount of volatiles produced are the

carbon-energy sources present for the microbes to act upon

(Romoli et al. 2014). VOCs produced mainly by bacteria

are produced through primary metabolism (metabolites

necessary for development, growth and reproduction such

as DNA, amino acids, fatty acids synthesis) and secondary

metabolism (organic metabolites not involved directly in

normal growth and reproduction and are intermediates of

the primary metabolism). Fatty acids, acetic acid, keto

acids, and amino acids act as precursors during metabolic

Table 1 A summary of volatile organic compounds produced by foodborne pathogens

Foodborne pathogen VOCs References

Escherichia coli Indole, 1-decene (E. coli O157:H7 in TSYA), Dimethyl disulfide,

ethanol, 2-nonanone, 2-heptanone, indole, pentyl cyclopropane

(E. coli in tryptone-yeast NaCl super-broth), 2,5-dimethyl

tetrahydrofuran, dimethyl disulfide, 2-heptanone, 2 undecanone,

indole, unknown, 2-tridecane, 2,5 dimethyl pyrazine,

benzaldehyde, dimethyl trisulfide, 2-nonanone, nonanal, decanal

(Escherichia coli O157:H7 and a nonpathogenic strain of
E. coli)

Siripatrawan (2008a) and Senecal

et al. (2002)

Listeria monocytogenes Acetaldehyde, Ethanol, Acetone, 2-Methyl-propanal, 2,3-

Butanedione, 2-Butanone Acetic acid, 1-Butanol,3-Methyl-

butanal,2-Methyl-butanal,3-Methyl-3-buten-1-ol 3-Hydroxy-2-

butanone, Dimethyl disulfide, Pyrazine, Pyrrole, Hexanal, Butyl

ester acetic acid,3-Methyl-2-butenal, Methyl-pyrazine,

Methoxy-phenyl-oxime 2,5-Dimethyl-pyrazine,4,6-Dimethyl-

pyrimidine, D-Limonene, 6-Methyl-5-hepten-2-one, Octanal

2-Ethyl-1-hexanol, Benzaldehyde, 2-Ethyl-6-methyl-

pyrazine,2-Ethyl-5-methyl-pyrazine Pentyl-cyclopropane,

Nonanal, Benzeneacetaldehyde, Acetophenone,1-Nonanol

Phenylethyl alcohol, Decanal, Tetradecane,1-Ethylidene-1H-

Indene,1,5-Dimethyl-naphthalene, Butylated Hydroxytoluene

(Tryptone soy broth)

Yu et al. (2014)

Salmonella Primary alcohols (1-octanol, 1-decanol), secondary alcohols (2-

undecanol, 2-tridecanol), methyl ketones (2-nonanone,2-

undecanone), 3-methyl-1-butanol (S. typhimurium in tryptic
soy yeast agar), Hydrogen sulfide, ethanol, carbon disulfide,

dimethyl cyclopropane, 1-propanol (S. typhimurium in
tryptone-yeast NaCl super-broth), Dimethyl sulfide, carbon

disulfide, heptane, acetic acid, ethyl

acetate, methyl alcohol, ethyl benzene, 1-pentanol, 3-octanone,

3-octanol, 1-hepten-3-ol (S. typhimurium in alfalfa sprouts—
glass vial)

Senecal et al. (2002), Siripatrawan

and Harte (2007) and Siripatrawan

(2008a)

Staphylococcus aureus Isovaleric acid, 2-methyl butyric acid, isobutyric acid, 1-hydroxy

2-propanone, 1-hydroxy 2-butanone, butyric acid,

4-methylhexanoic acid (S. aureus in blood agar)

Preti et al. (2009)

E. coli, S. sonnei, S. typhimurium,

Bacillus cereus, L. monocytogenes,

S. aureus

1 Octanol, 1-decanol, dodecanol, 2 undecanone, 2-tridecenone,

indole (E. coli), 1 octanol, 1-decanol, dodecanol, 2-nonanone,1-

undecene, 2-undecanone, 2-tridecanone (S. sonnei), 1 octanol,1-
decanol, dodecanol (S. typhimurium), 2-undecanone,

dimethyl disulfide (B. cereus), 2-undecanone, 2-tridecenone,
vdimethyl trisulfide (L. monocytogenes), 2-tridecenone,
dimethyl disulfide (S. aureus

Elgaali et al. (2002)

Shigella sonnei Methanethiol, dimethyl sulfide (TSA) Warren et al. (2007)
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oxidation of glucose resulting in the production of some

Microbial Volatile organic compounds (MVOCs) (Selim

et al. 2017).

Bacterial volatiles (Fig. 4) is usually dominated by

alcohols, furans, alkenes, aldehydes and ketones, ter-

penoids, sulphur compounds, acids and esters (Piechulla

and Degenhardt 2014). About 346 known volatile com-

pounds have been reported as bacterial VOCs. Reported

volatile compounds classification is shown in Fig. 4 with

an example of volatile compounds in each category. This

volatiles may differ in species and that allow for species

differentiation, although researchers for same species

reported different Volatile compounds due to different

substrates and detection times. Volatile compounds pro-

duced by foodborne pathogens during microbial growth in

food samples are employed to characterise these pathogens.

Application of electronic nose technology

for foodborne pathogen detection

As described previously, several authors have reported the

detection and measurements of VOCs associated with

bacterial foodborne pathogens, this had led to the attempts

to create a profile of microbial VOCs (MVOCs) for a

particular pathogen. The application of E-nose for patho-

gen detection is described in detail in this section and

summarised in Table 2.

Strain and species discrimination

Green et al. (2011) successfully distinguished between

E. coli and Listeria innocua in phosphate-buffered saline

by employing electronic nose based on metal oxide sensor

(MOS) and uncorrelated linear discriminant (ULDA)

analysis with a classification accuracy of 92.4%. This

method was established on odor signature processing of

single bacteria colonies removed directly from the surface

of the agar medium. Bacteria identification based on the

E-nose response of single colonies allows for rapid results

and reduces the need for culturing serological and bio-

chemical tests.

Green et al. (2014) investigated the reliability of using

E-nose for bacterial identification at the genus level using

individual colonies. Four non-pathogenic bacteria species

(E. coli DH5a, Listeria innocua, Enterococcus faecalis,

E. coli Biotype I) were used for this study, achieving a

classification accuracy of [ 80%, with a higher classifi-

cation of 96.7% when E-nose sampling was repeated for

the same colony and using all existing odor responses for

sample characterization. Rapid identification of L. mono-

cytogenes, Staphylococcus lentus, and Bacillus cereus was

carried out by integrating E-nose data with chemometrics

(Yongxin and Zhao 2012). Results from the study showed

discrimination of four different strains of Vibrio para-

haemolyticus with PCA explaining nearly 99% of the

Fig. 4 Categories of chemical classes of VOCs for bacterial identification
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variance and discrimination of four different species of

Pseudomonas by cluster analysis (CA) and PCA.

Xue et al. (2012) proposed E-nose together with

chemometrics for strain and species-level differentiation.

L. monocytogenes cultured on brain heart infusion broth. In

this study PCA integrated with ANN for feature, extraction

was successful in the identification of volatile metabolites

of nine strains of L. monocytogenes and four species of

Listeria spp.

These results showed E-nose has clear potential as an

accurate early diagnostic screening tool for bacterial

foodborne pathogen detection since discrimination between

individual bacterial colonies at both species and strain level

was possible. This is crucial since virulence and

pathogenicity are often associated with only a subset of

bacterial strains and it is importance for a technique to have

the ability to distinguish between pathogenic and non-

pathogenic strains during a foodborne outbreak.

Food matrix detection

Meat products Balasubramanian et al. (2008) achieved

successful prediction of Salmonella typhimurium in con-

taminated beef using E-nose data and independent

Table 2 Recent studies on food pathogen detection by electronic nose from 2013 to 2018

Pathogens Matrix Sensor types Chemometric

analysis

References

E. coli O157:H7, Salmonella typhimurium 857, Staphylococcus

aureus 29213, Pseudomonas aeruginosa 27853

Beef 32-polymer sensor

nose chip

Abdallah et al.

(2013)

Salmonella typhimurium Beef 8 MOS sensors LDA, QDA Balasubramanian

et al. (2012)

Salmonella typhimurium Fresh alfalfa

sprouts

12 MOS sensors PCA Siripatrawan and

Harte (2015)

E. coli, Salmonella typhimurium Super broth 12 MOS sensors PCA, BPNN Siripatrawan

(2008a)

E. coli, Listeria innocua. Lysogeny broth,

Brain–Heart

Infusion media

12 MOS sensors ULDA Green et al.

(2011)

E. coli DH5a, Listeria innocua, Enterococcus faecalis, E. coli

Biotype I

Brain–heart

infusion

12 MOS sensors PCA, ULDA Green et al.

(2014)

E. hormaechei and E. coli Mixed

vegetable soups

4 MOS sensors LDA Gobbi et al.

(2015)

Escherichia coli Processed

tomatoes

6 SMO sensors PCA, Concina et al.

(2009)

Staphylococcus. Salmonella, Shigella Apple 6 SMO sensors PCA, HCA Ezhilan et al.

(2018)

Escherichia coli, Listeria monocytogenes, Salmonella

typhimurium

Brain Heart

Infusion

4 MOX thin film

gas sensors and 2

MOX nanowires

gas sensors

PCA Sberveglieri et al.

(2015)

Listeria monocytogenes, Staphylococcus lentus, Bacillus cereus – 18 MOS sensors PCA, HCA,

DA, ANN

Yongxin and

Zhao (2012)

Escherichia coli Goat meat 32 polymer sensors PCA Ding et al. (2010)

Escherichia coli O157:H7, Salmonella spp. Lettuce PCA Berna et al.

(2013)

L. monocytogenes standard strains Brain heart

infusion broth

18 MOS sensors PCA, HCA,

ANN

Xue et al. (2012)

Enterococcus faecalis, Escherichia coli and Staphylococcus

aureus

Street foods 9 MOS sensors SVM Balbin et al.

(2017)

Salmonella enterica Poultry manure 12 MOS sensors ANN Kizil et al. (2015)

Salmonella typhimurium Beef 7 MOS sensors ICA, PCA Balasubramanian

et al. (2008)

Escherichia coli (ATCC 25922) Alfalfa Sprouts 12 MOS sensors ANN Siripatrawan et al.

(2006)

Escherichia coli (ATCC 25922) Packaged fresh

vegetable

12 MOS sensors SOM Siripatrawan

(2008b)
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component analysis (ICA). A stepwise linear regression

prediction (SLRP) model was built with the independent

component (IC) and principal components (PC) with a

prediction accuracy of 69.64% and 82.99%, and a root

mean squared error (RMSE) of 1.358 and 0.803 for PCA

and ICA respectively. The results showed that ICA per-

formed better than PCA on the E-nose dataset, ICA which

is higher-order statistical techniques can explore higher-

order information of the original inputs than PCA (Cao

et al. 2003).

Balasubramanian et al. (2012) compared two different

gas sensor-based artificial olfactory systems i.e. conducting

polymer-based and metal oxide-based sensors to success-

fully screen Salmonella typhimurium in beef. LDA and

QDA classification models achieved varying levels of

success for polymer E-nose (69%), metal oxide E-nose

(C 70%) and a fusion of the sensors ([ 80%) for classi-

fying ‘‘No Salmonella’’ (microbial counts\ 0.7 log10 cfu/

g) and ‘‘Salmonella inoculated’’ (microbial counts C 0.7

log10 cfu/g) in meat samples stored at 10 �C. The use of

only relevant sensors (through Fisher Criteria Ranking of

sensors) and sensor fusion approaches proved important in

achieving higher classification accuracies.

Ding et al. (2010) employed a Cyranose-320 E-nose

based on 32 polymer sensors for the rapid detection of

E. coli in goat meat samples with preliminary results

showing 18–77% detection accuracies for cultured bacte-

ria. There was no differentiation between PCA data gen-

erated for contaminated and uncontaminated meat samples

due to overlapping or very close marking, also the sensor

was responsive to lower concentrations of the bacteria.

Street foods are a major source of foodborne illnesses,

Balbin et al. (2017) applied SVM on E-nose signals for the

identification and classification of E. coli and Staphylo-

coccus aureus in street foods. Results from the study

revealed successful detection of the pathogens in the street

foods (Kwek–Kwek, pork barbeque and isaw) before and

after cooking showing the use of E-nose as an online tool

for process monitoring during food preparations.

An E-nose with a 32-sensor nose chip was applied by

Abdallah et al. (2013) to detect E. coli O157: H7, Sal-

monella typhimurium 857, and S. aureus 29213 in fresh

and frozen beef. Results from the study showed a strong

correlation (p\ 0.005) in gas concentration before and

after the samples were contaminated with the pathogens.

Fruits and vegetables Concina et al. (2009) applied

E-nose for the detection of microbial contaminants in

processed tomatoes. E. coli with both KNN pattern

recognition method showing good classification scores of

83% after 48 h from inoculation. The study revealed the

influence of microorganism metabolic kinetics, on the

headspace composition during microbial growth.

Siripatrawan et al. (2006) collected volatile metabolites

produced by E. coli using an E-nose with 12 metal oxide

electronic sensor. The data generated was employed to

predict the E. coli numbers in packaged alfalfa sprouts

using the ANN model with a regression coefficient

(R2) = 0.903.

Siripatrawan (2008a) developed a rapid method for

differentiating E. coli and Salmonella typhimurium by

combining E-nose data with PCA and BPNN models. PCA

was employed for data exploration and dimensionality

reduction and to successfully visualized class separation

amongst sample subgroups. BPNN achieved successful

prediction with a regression coefficient R2 = 0.96 between

true and predicted data.

A Self-organizing map () algorithm was applied for the

classification of E. coli in packaged fresh vegetable by

Siripatrawan (2008b). The SOM algorithm combined with

the data from E-nose successfully classified E. coli above

higher than 105 cfu/g in the vegetable samples. In a more

recent study, Siripatrawan and Harte (2015) applied the

Kohonen network for data visualization of Salmonella

typhimurium present in packaged fresh alfalfa sprouts. The

Kohonen network could visually distinguish different

levels of S. typhimurium contamination on the self-organ-

ising map (SOM). The Kohonen network was valuable and

better at visualizing multi-dimensional nonlinear data and

showed a much more perfect separation of different sample

groups than a conventional linear principal component

analysis (PCA) approach.

Gobbi et al. (2015) achieved a rapid diagnosis of E. coli

in vegetable soups. E-nose with four metal oxide sensors

together with LDA analysis achieved a classification per-

formance of 98% for E. coli contamination at a detection

threshold of 8 and 3 cells/100 ml. The discrimination of

bacterial contamination in this study was independent of

the initial and final microbial concentrations. The study

showed the possibility of diagnosing bacterial contamina-

tion during growth however it must be noted that the

release of VOCs from bacteria changes during their growth

is unknown.

Ezhilan et al. (2018), a trilayer approach, based on a

homemade E-nose was used to study the presence of Sta-

phylococcus, Salmonella and Shigella bacteria in delicious

royal apple from the order of zero, 102, 103–104 cfu/mL.

Voltage responses for E-nose sensors together with PCA

and wards HCA was applied to analyze the samples. The

developed E-nose combining data classification schemes,

bacterial culture study, and GC–MS analysis successfully

assessed freshness or contamination levels of the apple

samples.

Others Salmonella enterica is a pathogen usually asso-

ciated with poultry and S. enterica is primarily transferred

via manure contamination during processing. Kizil et al.
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(2015) applied E-nose to detect the presence of S. enterica

poultry manure with the ANN model achieving a classifi-

cation accuracy of 94% for both training and validation

sets. E-nose application in food quality control was

investigated by Sberveglieri et al. (2015) for the detection

of microorganism in water and different food matrices by

employing 6 MOX gas sensors and PCA. E. coli, Sal-

monella typhimurium and L. monocytogenes at a concen-

tration of 9 9 108 bacteria/ml.

Future trends and perspectives

Optimization of pattern recognition algorithms using

metaheuristic algorithms to improve E-nose detection

The development of intelligent algorithms for pattern

recognition, feature extraction, and parameters optimiza-

tion is crucial for the rapid application of E-nose for routine

food analysis (Luo et al. 2018). Metaheuristic optimization

algorithms have the ability to resolve complex large-scale

nonlinear optimization problems, and cannot be handled

other analytic approaches are beginning to gain recognition

in improving E-nose pattern recognition algorithms to

enhance the performance of E-noses by sensor selection

(Guan et al. 2014; Jiang et al. 2017; Luo et al. 2018).

Heuristic methods are applied to further enhance the per-

formance of E-noses by sensor selection and to optimize

the gas sensor array as well as dimensionality reduction of

the feature matrix.

Sensor development approaches

The development of reliable drift free sensors as well as

investigating new material for attaining improved selec-

tivity is crucial in achieving commercial use of E-nose in

the food industry. Performance degradation of E-nose data

as a result of sensor drift (variation in the sensor response

in identical measurement conditions) and noise have been

widely reported (Tian et al. 2018; Wijaya et al. 2017).

A Noise filtering framework based discrete wavelet

transform (DWT) for handling noisy signals generated by

an E-nose sensor array was developed by Wijaya et al.

(2019) with significant to existing methods. The develop-

ment of low-cost disposable sensors would mitigate against

the decrease in the sensitivity and specificity of sensors

over time. Electronic nose as a non-invasive technique

provides a better alternative for the detection of complex

gas mixtures, issues such as odour identification at con-

centrations levels higher than those of the biological

counterpart as well as providing answers with regards to

the concentration of a particular compound in mixtures

abound. This setback in the use of E-nose is associated with

lack of adequate biomolecules to allow the system to fully

mimic the biological sense of smell.

The development in the fields of genetic engineering,

biotechnology and nanotechnology has led to the improved

development of biomimetic electronic nose, bio-enose,

b-enose, bioelectronic noses in recent years (Wasilewski

et al. 2017). This new development of bioelectronics noses

provides for a more precise mimicking of human smell

imprints by applying highly selective and sensitive sensors.

Low-, mid-, and high-level data fusion

Applications such as multi-sensor data fusion are said to

increase the probability of classification. Several

researchers have applied E-nose data fusion with other

non-invasive methods such as hyperspectral imaging (Liu

et al. 2019), computer vision (Xu et al. 2019), electronic

tongue (Banerjee et al. 2019). A fusion of electronic nose,

electronic tongue, hyperspectral imaging and computer

vision data at the low, intermediate, and high-level fusion

models have shown to be effective and in some instances

better results than single sensor models.

Potentialities of E-nose for bacterial pathogen detection

Although the application of the above mentioned future

trends and perspectives for E-nose application in the food

industry have been predominantly applied for food quality

analysis especially for classification purposes, future pro-

spects for applying this technology for bacterial pathogen

detection remain feasible. Microorganism detection by

E-nose has some drawbacks which include low sensitivity

and specificity in comparison with some microbiological

and molecular methods. The detection of volatile com-

pounds is usually interfered by a complex mixture of water

vapour and carbon dioxide in the background mixture

(Sanaeifar et al. 2017).

Other setbacks include a high limit of detection (LOD)

as Siripatrawan (2008b) reported detection limit of E. coli

above 105 cfu/g with Gobbi et al. (2015) reported sensi-

tivity as low as 3 cfu per 100 ml for E. coli. This setback,

however, could be solved by the application enzyme sub-

strates to liberate exogenous VOCs of foodborne bacterial

pathogens to increase the diagnostic specificity of VOCs.

This is achieved by modifying bacteria growth media with

substrates that liberate unique VOCs through enzymatic

metabolism in response to the presence of enzyme activity

exhibited by a target pathogen. This methodology has been

successfully studied using conventional detection methods

such as gas chromatography-ion mobility spectrometry

(GC–IMS) and gas chromatography-mass spectrometry

(GC–MS) and can be improved with electronic nose

application which is noninvasivee. Example substrates
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include 2-nitrophenyl-b-d-glucuronide (E. coli), 2-nitro-

phenyl-b-d-glucopyranoside (Listeria spp.) and 2-nitro-

phenyl-b-d-galactoside-6-phosphate (Staphylococcus

aureus).

Conclusion

E-nose provides an ideal methodology for in-line process

control with straight and rapid discrimination of numerous

compounds requiring less or no sample preparation as well

as reagent consumption. In as much as laboratory-based

assessments have shown good classification rates a number

of challenges with regards to humidity influence, selec-

tivity, sensor drift, signal to noise ratio and redundancy of

sensors must be resolved before the technology is moved

into real-time industry application.

The influence of environmental conditions such as

temperature and humidity is another drawback. Metal-ox-

ide sensors exhibit swift response and recovery times but

require high power levels to the sensors at elevated tem-

peratures. Polymer sensors are cheap to use and operate at

room temperature, however, they are sensitive to temper-

ature and humidity.

Improved modelling and correlation between the exis-

tence of chemical markers and sensor responses together

with a carefully selected sampling system and sensor arrays

would greatly enhance the accuracy of results obtained

from E-nose data analysis.
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