Skip to main content
. 2020 Jan 24;57(6):2233–2240. doi: 10.1007/s13197-020-04259-y

Table 2.

Effects of the setting parameters for training the CNNs on their performance (the values followed by ± indicate the standard deviation)

No of training epochs 30 40 50 30 40 50
AlexNet VGG19
VA (%) VA (%)
No of mini-baches
 5 88.89 ± 4.18 92.22 ± 4.84 93.15 ± 2.48 91.85 ± 2.79 90.33 ± 4.22 92.78 ± 3.54
 10 90.00 ± 3.72 91.30 ± 3.15 92.78 ± 4.14 91.48 ± 4.26 92.18 ± 3.44 90.94 ± 4.76
 20 93.33 ± 1.99 92.22 ± 2.44 92.59 ± 2.89 90.81 ± 2.97 90.13 ± 5.48 89.63 ± 3.51
Loss Loss
 5 0.31 ± 0.14 0.19 ± 0.07 0.20 ± 0.06 0.23 ± 0.15 0.27 ± 0.15 0.27 ± 0.23
 10 0.22 ± 0.09 0.21 ± 0.11 0.19 ± 0.11 0.27 ± 0.21 0.14 ± 0.08 0.18 ± 0.11
 20 0.10 ± 0.03 0.09 ± 0.04 0.12 ± 0.05 0.19 ± 0.14 0.21 ± 0.16 0.19 ± 0.13
Training time (s/epoch) Training time (s/epoch)
 5 11.82 ± 0.49 10.92 ± 0.25 10.74 ± 0.19 148.08 ± 14.39 150.4 ± 4.34 140.22 ± 8.45
 10 12.84 ± 2.55 15.78 ± 0.40 15.90 ± 0.51 197.76 ± 1.38 192.40 ± 21.64 188.88 ± 4.45
 20 25.02 ± 0.29 25.62 ± 1.33 27.48 ± 1.26 263.33 ± 21.15 282.34 ± 27.18 276.54 ± 35.90

VA validation accuracy, Loss the error of the model