Table 2.
Effects of the setting parameters for training the CNNs on their performance (the values followed by ± indicate the standard deviation)
No of training epochs | 30 | 40 | 50 | 30 | 40 | 50 |
---|---|---|---|---|---|---|
AlexNet | VGG19 | |||||
VA (%) | VA (%) | |||||
No of mini-baches | ||||||
5 | 88.89 ± 4.18 | 92.22 ± 4.84 | 93.15 ± 2.48 | 91.85 ± 2.79 | 90.33 ± 4.22 | 92.78 ± 3.54 |
10 | 90.00 ± 3.72 | 91.30 ± 3.15 | 92.78 ± 4.14 | 91.48 ± 4.26 | 92.18 ± 3.44 | 90.94 ± 4.76 |
20 | 93.33 ± 1.99 | 92.22 ± 2.44 | 92.59 ± 2.89 | 90.81 ± 2.97 | 90.13 ± 5.48 | 89.63 ± 3.51 |
Loss | Loss | |||||
5 | 0.31 ± 0.14 | 0.19 ± 0.07 | 0.20 ± 0.06 | 0.23 ± 0.15 | 0.27 ± 0.15 | 0.27 ± 0.23 |
10 | 0.22 ± 0.09 | 0.21 ± 0.11 | 0.19 ± 0.11 | 0.27 ± 0.21 | 0.14 ± 0.08 | 0.18 ± 0.11 |
20 | 0.10 ± 0.03 | 0.09 ± 0.04 | 0.12 ± 0.05 | 0.19 ± 0.14 | 0.21 ± 0.16 | 0.19 ± 0.13 |
Training time (s/epoch) | Training time (s/epoch) | |||||
5 | 11.82 ± 0.49 | 10.92 ± 0.25 | 10.74 ± 0.19 | 148.08 ± 14.39 | 150.4 ± 4.34 | 140.22 ± 8.45 |
10 | 12.84 ± 2.55 | 15.78 ± 0.40 | 15.90 ± 0.51 | 197.76 ± 1.38 | 192.40 ± 21.64 | 188.88 ± 4.45 |
20 | 25.02 ± 0.29 | 25.62 ± 1.33 | 27.48 ± 1.26 | 263.33 ± 21.15 | 282.34 ± 27.18 | 276.54 ± 35.90 |
VA validation accuracy, Loss the error of the model