Skip to main content
. 2020 Apr 3;9(4):1018. doi: 10.3390/jcm9041018

Table 3.

Summary Estimates of DL performance in retinal vessel segmentation.

SE with 95% CI SP with 95% CI LR+ with 95% CI LR− with 95% CI DOR with 95% CI
DRIVE
Human experts 0.77 0.97 NR NR NR
DL * 0.77 (0.77–0.77) 0.97 (0.97–0.97) 28.19 (24.21–32.82) 0.23 (0.22–0.25) 120.57 (99.66–145.86)
STARE
Human experts 0.89 0.93 NR NR NR
DL * 0.79 (0.79–0.79) 0.97 (0.97–0.97) 31.02 (30.77–31.28) 0.21 (0.21–0.21) 136.67 (135.42–137.0)
CHASE_DB1
Human experts 0.83 0.97 NR NR NR
DL * 0.78 (0.78–0.78) 0.97 (0.97–0.97) 22.97 (22.75–23.20) 0.23 (0.23–0.23) 109.27 (108.0–110.56)
HRF
Human experts NR NR NR NR NR
DL * 0.81 (0.81–0.81) 0.92 (0.92–0.92) 10.32 (10.26–10.38) 0.21 (0.21–0.21) 51.75 (51.35–52.16)

* Note: DL = Deep Learning, NR = Not Reported, SE = Sensitivity, SP = Specificity, LR = Likelihood Ratio, CI = Confidence Interval, * = Summarized.