Hindawi

Computational and Mathematical Methods in Medicine
Volume 2020, Article ID 7902072, 8 pages
https://doi.org/10.1155/2020/7902072

Research Article

Cross-Subject Seizure Detection in EEGs Using Deep

Transfer Learning

1. Introduction

Baocan Zhang ©),' Wennan Wang,” Yutian Xiao,” Shixiao Xiao (9, Shuaichen Chen,’
Sirui Chen,* Gaowei Xu®,* and Wenliang Che >

'Chengyi University College, Jimei University, Xiamen 361021, China

2Institute of Data Science, City University of Macau, Macau, China

?School of Informatics, Xiamen University, Xiamen 361001, China

*School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

*Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 201804, China

Correspondence should be addressed to Shixiao Xiao; xiaoshixiao@jmu.edu.cn, Gaowei Xu; gaoweixu@tongji.edu.cn,
and Wenliang Che; chewenliang@tongji.edu.cn

Received 28 January 2020; Revised 6 March 2020; Accepted 26 March 2020; Published 8 May 2020
Guest Editor: Yi-Zhang Jiang

Copyright © 2020 Baocan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Electroencephalography (EEG) plays an import role in monitoring the brain activities of patients with epilepsy and has been
extensively used to diagnose epilepsy. Clinically reading tens or even hundreds of hours of EEG recordings is very time
consuming. Therefore, automatic detection of seizure is of great importance. But the huge diversity of EEG signals belonging to
different patients makes the task of seizure detection much challenging, for both human experts and automation methods. We
propose three deep transfer convolutional neural networks (CNN) for automatic cross-subject seizure detection, based on
VGG16, VGGI19, and ResNet50, respectively. The original dataset is the CHB-MIT scalp EEG dataset. We use short time
Fourier transform to generate time-frequency spectrum images as the input dataset, while positive samples are augmented due
to the infrequent nature of seizure. The model parameters pretrained on ImageNet are transferred to our models. And the fine-
tuned top layers, with an output layer of two neurons for binary classification (seizure or nonseizure), are trained from scratch.
Then, the input dataset are randomly shuftled and divided into three partitions for training, validating, and testing the deep
transfer CNNs, respectively. The average accuracies achieved by the deep transfer CNNs based on VGG16, VGG19, and
ResNet50 are 97.75%, 98.26%, and 96.17% correspondingly. On those results of experiments, our method could prove to be an
effective method for cross-subject seizure detection.

analyze the EEG signal thoroughly towards the decision of
the existence of epileptic seizure or not, and this is an exten-

Epilepsy, a disorder of normal brain function characterized
by the existence of abnormal synchronous discharges in the
cerebral cortex, impacts approximately 2% of the world’s
population and is likely to jeopardize their health and life.
The epilepsy diagnose is always down by analyzing electroen-
cephalogram (EEG), which includes scalp EEG and intracra-
nial EEG. Scalp EEG signals have been wildly studied because
they are relatively cheap and easy to gain. Commonly, 19
recording electrodes and a system reference are placed on
the scalp area according to specifications by the International
10-20 system. For the seizure detection task, it is required to

sive clinical experience required and time-consuming job [1].
Due to the relatively infrequent nature of epileptic seizures,
long-term EEG recordings are necessary, to make the situa-
tion of visually reading EEG signal by human experts worse.
Therefore, computer-based technology for automatic seizure
detection is urgently needed and is also a key method to save
time and effort.

In previous studies, numerous detection algorithms have
been proposed [2-4]. The features extracted from EEG sig-
nals come from time domain, frequency domain, time-
frequency analysis [5, 6], wavelet analysis [7, 8], and so on.
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After the features are extracted, classifiers such as SVM and
other machine learning algorithms are frequently used in
the classification phase [9]. For example, Subasi et al. created
a hybrid model to optimize the SVM parameters, showing
that the proposed hybrid SVM model is a competent method
to detect epileptic seizures using EEG [10].

In recent years, deep learning (DL) has been proven to be
very successful in image classification, object detection, and
segmenting, exhibiting near-human abilities to perform
many tasks. DL extracts the global synchronization features
automatically and does not need any a priori knowledge.
Huang et al. proposed a coupled neural network for brain
medical image [11, 12] and a deep residual segmentation net-
work for analysis of IVOCT images [13]. Also, a number of
recent studies demonstrated the efficacy of deep learning in
the classification of EEG signals and seizure detection [14].
Convolutional neural network (CNN), as one of the most
widely used deep learning models, is always used. For exam-
ple, Wang et al. proposed a 14-layer CNN for multiple sclero-
sis identification [15]. For the seizure detection task, there are
two ways of using the original EEG signals as the input image
of CNN. On one hand, segments of raw EEG signals with dif-
ferent lengths serve as input directly. Emami et al. divided
EEG signals into short segments on a given time window
and converted them into plot images; each of which was clas-
sified by VGG16 as “seizure” or “nonseizure” [16]. Their
experiments resulted in that the median true positive rate
of CNN labeling was 74%. On the other hand, time and fre-
quency domain signals extracted from raw EEG signals serve
as input image of CNN. Zhou et al. designed a CNN with no
more than three layers to detect seizure, with time-frequency
spectrum image as input and achieved average accuracy 93%
[17]. They also compared the performance of time domain
with that of time-frequency domain, which resulted that fre-
quency domain signals have greater potential than time
domain signals for CNN applications. Although, deep learn-
ing especially CNN has made remarkable progress in the field
of EEG classification and seizure detection, the performance
of seizure detection still requires improvement. The chal-
lenge comes from two aspects. Firstly, training a deep learn-
ing model such as VGG16 needs a large amount of labeled
data. However, most of the EEG signals data are unlabeled.
In this study, the public-labeled scalp EEG dataset from
the Children’s Hospital Boston-Massachusetts Institute of
Technology (CHB-MIT, see http://physionet.org/physiobank/
dataset/chbmit [18]) will be used as the raw signals. Due to
the relatively infrequent nature of epileptic seizures, the raw
signals will be augmented to avoid extremely unbalanced data-
set for training. Secondly, EEG signals are person-specific. On
the other hand, Orosco proposed a patient nonspecific strategy
for seizure detection based on stationary wavelet transform
of EEG signals and reported the mean sensitivity of 87.5%
and specificity of 99.9% [19]. Hang et al. proposed a novel
deep domain adaption network for cross-subject EEG signal
recognition based on CNN and used the maximum mean dis-
crepancy to minimize the distribution discrepancy between
source and target subjects [20]. Akyol presented a stacking
ensemble based deep neural network model for seizure detec-
tion. Experiments were carried out on the EEG dataset from
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FiGURE 1: The flow of seizure detection.

Bonn University and came to the result that the average accu-
racy is 97.17% along with average sensitivity of 93.11% [21].
Zhang et al. proposed an explainable epileptic seizure detec-
tion model to the pure seizure-specific representation for
EEG signal through adversarial training, in order to over-
come the discrepancy of different subjects [22].

CNN models like VGG16 have millions of parameters
to be trained, not to mention deeper network like googLe-
Net. Transfer learning has emerged to tackle this problem,
especially in real-world applications. Transfer learning is
always down by a pretrained model, which is trained on
the benchmark dataset like ImageNet. The pretrained model
can extract universal low-level features of images and can
tremendously improve the efficiency of using CNN. How-
ever, the pretrained model should be fine-tuned in order
to match the target dataset and its goal. For example, Shao
et al. created a deep transfer CNN for fault diagnosis, in
which a pretrained CNN model is used to accelerate the
training process [23].

In this paper, three transfer CNN models, based on
VGG16, VGGI19, and ResNet50, respectively, are proposed
for seizure detection. The flow of seizure detection is shown
in Figure 1. Let us take VGG16 as an example. The target
CNN network consists of a pretrained VGG16 model with
nontop layers frozen and fine-tuned top layers. The pre-
trained model uses parameters based on ImageNet. The
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F1GURE 2: The conversion process from raw EEG signals to time-frequency image. In CHB-MIT EEG database, segments of raw signal from
subject No. 13 are converted to t-f images by using STFT. Then, three t-f images are treated as three channels to form an input image.

fine-tuned top layers include an output layer with two cate-
gories: seizure and nonseizure.

For experiments, the public CHB-MIT EEG dataset is
used. Raw EEG signals from FP2-F8, F8-T8, and T8-P8 elec-
trodes are converted to time-frequency spectrum image
using short-time Fourier transform (STFT) [24] and then
fused as one image, inspired by [25]. The fused images from
different persons all putted together are the target dataset.
Then, the target dataset serves as the input of the deep trans-
fer models, to perform cross-subject seizure detection.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the used dataset from CHB-MIT. Section 3
describes in detail the conversion process of EEG signal to
time-frequency spectrum image and introduces all three deep
transfer models. Section 4 conducts experiments and gives a
comparison of three models. Section 5 discusses the results.
Section 6 concludes the paper with a summary.

2. Dataset Description

The dataset used in this paper is an open-source EEG data-
base from the MIT PhysioNet, collected at the Children’s
Hospital Boston (CHB-MIT). The dataset consists of record-
ings from pediatric subjects with intractable seizures using
scalp electrodes. Recordings are grouped into 23 cases. Each
case contains 9 to 42 hours’ continuous recordings from a
single subject. All subjects were asked to stop related medical
treatments one week before data collection. The sampling

frequency for all subjects was 256 Hz. The start time and
end time of epileptic seizure were labeled explicitly based
on expert judgments. Most recordings contain 23 EEG chan-
nels and multiple seizure occurrences.

The duration of seizure varies for each subject very much.
Thus, some of the recordings with relatively long seizure
durations are used only. The reason for not including all
the recordings is that recordings with a low proportion of sei-
zure duration lead to an unbalanced dataset and would cause
over-fitting of the CNN model.

3. Methods

In this section, we convert the raw EEG signals to time-
frequency (t-f) spectrum images by using STFT and combine
three t-f images from different channels as one input image,
as shown in Figure 2. Then, deep transfer CNNs are proposed
for seizure detection.

3.1. Data Preparation Based on STFT. The short-time Fourier
transform (STFT) is used to analyze how the frequency con-
tent of a nonstationary signal changes over time. The STFT
of a signal is calculated by sliding a window over the signal
and calculating the discrete Fourier transform of the win-
dowed signal. The window moves along the time axis at a
given interval, with overlap or not. Commonly, overlap is
used in order to compensate for the signal attenuation at
the window edges.
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FIGURE 3: (a) Segmenting the signal of EEG along the time axis with 30% overlap and (b) segmenting the signal with one second per step in

time interval [¢,, ¢,], while epileptic seizure happening.

Formally, STFT is defined as follows:

+00
STFT (7, w) = J x(t)h(t-T)e*'dt, (1)
—00
where x(t) is the original EEG signal, h(t) is a window func-
tion, and 7 is the window position on time axis.

Although, epileptic seizure is person-specific, they could
have something in common. According to [24], signals from
FP2-F8, F8-T8, and T8-P8 electrodes are relatively promi-
nent. In this paper, we use signals from those three elec-
trodes. And the t-f images from FP2-F8, F8-T8, and T8-P8
are treated as red, green, and blue channels, respectively,
while combining them as one input image.

Due to the infrequent nature of seizures, the number of
positive samples should be increased in order to avoid unbal-
anced dataset by augmenting. In detail, we prepare the data-
set by two steps. Step one, as shown in Figure 3(a), for each
signal of EEG, we move a window of length 180 seconds
along the time axis with 30% overlap. Then for each win-
dowed segment, we use STFT to calculate complex ampli-
tude versus time and frequency, where window used by
STFT is 413 signal points long and is moved along the time
axis with 50% overlap. This results in a spectrum image
whose size is 207 x 224, where 207 is the number of sample
frequency and 224 the number of segment times. At last,
the spectrum image is resized to 224 x 224. When epileptic
seizure happens in the windowed segment, the resized spec-
trum image is labeled positive, otherwise negative. Step two,
as shown in Figure 3(b), for each signal of EEG, let us
assume that epileptic seizure happens at time interval [t,,
t,]. Let the segmenting window start at ¢, and move along
the time axis one second per step, and furthermore overlap
with [t;,¢,] no less than 3 seconds. Then, each segmented
window is converted to a spectrum image of size 224 x
224 as in step one. All spectrum images in this step are
labeled positive.

In order to avoid an unbalanced dataset, only the EEG
signals of subjects No. 05, 08, 11, 12, 13, 14, 15, 23, and 24
with relative long duration of epileptic seizure are used. This
results in the target dataset of 8474 images of size 224 x
224 x 3, of which about 49.5% are labeled positive.

3.2. Deep Transfer Model. A pretrained model is a saved
network that was previously trained on a huge dataset, such
as ImageNet. Then, we can use transfer learning to custom-
ize this model to a given task. Intuitively, if a model is
trained on a large and general dataset, this model could
extract low-level features and serve as a generic model of

the visual world. Then, we could use this model to extract
meaningful features from new samples and add a new clas-
sifier on top of it to do specific classification, where only
the added layers should be trained from scratch on our
dataset. Transfer learning has also been proved effective in
applications [26, 27].

In this paper, three deep transfer models are proposed for
comparison:

(1) The deep transfer model based on VGG16 (referred
as Model-1): deep neural network VGG16 is a well-
known CNN model with 16 layers introduced in
2014 and has achieved amazing performance in vari-
ous image tasks. VGG16 is characterized by small-
sized filters, which is very suitable for our purpose
of detecting the difference in frequency between sei-
zure and nonseizure. As can be seen in Figure 4(a),
Model-1 consists of a transferred VGG16 and top
trainable layers. The transferred VGG16, with the
output layer removed from the original model, is pre-
trained using the ImageNet database. The added top
trainable layers consist of two trainable full connec-
tion layers and a softmax output layer with two neu-
rons corresponding to seizure or nonseizure.

(2) The deep transfer model based on VGG19 (referred
as Model-2): Model-2 has almost the same structure
as Model-1. The only difference between those two
transfer models is that one use pretrained VGG16
and the other use pretrained VGG19.

(3) The deep transfer model based on ResNet50 (referred
as Model-3): ResNet50 is one of the famous residual
neural networks, which are characterized by utilizing
shortcuts to jump over some layers. As shown in
Figure 4(b), the first part of Model-3 is a pretrained
ResNet50 without top layers. Then after global aver-
age pooling, two full connection layers of 2048 neu-
rons are added. The output is a softmax output
layer with two neurons.

The loss function used in three models is softmax cross
entropy, which is defined as

H(r,p) = _Zri -log (p;) (2)

where r and p are the labeled and predicted probabilities,
respectively.
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FIGURE 4: (a) The deep transfer model from VGG16, where the output layer is replaced by a new softmax output layer with two neurons,
corresponding to seizure or nonseizure. (b) The deep transfer model from ResNet50, where the output layer is replaced by a new softmax
output layer with two neurons, corresponding to seizure or nonseizure, and the size of full connection layers are also altered.

4. Experiments and Results

Experiments have been carried out to evaluate the per-
formance of the proposed deep transfer models. The test
platform is a desktop system with Nvidia RTX 2080Ti and
64GB memory running Ubuntu.

4.1. Training the Deep Transfer Network. After being shuf-
fled, the target datasets are divided into training set, valida-
tion set, and test set, which occupy 60%, 20%, and 20%,
respectively.

Model-1 and Model-2 almost have the same structure, so
their training methods are of the same. Let us take Model-1
for example. The parameters of VGG16 pretrained on Ima-
geNet are transferred to the network and would be frozen
while training. Other trainable parameters are initialized ran-
domly. The optimizer is SGD with learning rate of 0.001 and
a small decay of le-5. Then, the network is trained and val-
idated on the training set and validation set, respectively,
with batch size of 64. As for Model-3, we transfer the
parameters of ResNet50 pretrained also on ImageNet and
froze them through training. Other trainable parameters
are also initialized randomly. For the training optimizer,
the Adam algorithm is used, with a starting learning rate
of 0.001, beta_1 of 0.9, and beta_2 of 0.999. The learning
rate would be reduced by a factor 0.8 when validation loss
has stopped descending for 5 epochs. Then, the network
is trained and validated on the training set and validation
set, respectively, with a batch size of 16. For all three
models, the epoch is set to be 500, but the training
would be stopped while validation loss is not descending
for 20 epochs.

4.2. Results and Analysis. The statistical measures for eval-
uating classification performance contain accuracy (acc),
sensitivity (recall), precision, and the Matthews correlation
coefficient (mcor). The measure mcor takes into account true
and false positives and negatives and is regarded as a bal-

anced measure. The more mcor approaches 1, the better the
prediction is. Formally, their definitions are as follows:

TP+ TN
accuracy = ———,
N
TP
precision = TP T EP’
TP
recall= ———
TP+ FN
TPx TN — FP x FN
mcor =

/(TP + FP)(TP+ FN)(TN + FP)(IN + FN)’
(3)

where TP means the true positive, TN the true negative, FP
the false positive, FN the false negative, and N the total.

As shown in Figure 5, both the loss and accuracy of
Model-1 and Model-2 converge after about 170 epochs.
The loss and accuracy of Model-3 converge after about 100
epochs. But the metrics, including loss and accuracy, of deep
transfer networks based on VGG16 and VGG19 are better
than those of the deep transfer network based on ResNet50.
Because the test dataset is randomly selected from the target
dataset, the training and testing processes are carried out 10
times, and then, the average of all metrics is used. As shown
in Table 1, the performance of Model-1 is almost the same as
that of Model-2. But both models based on VGG outperform
the model based on ResNet50 (Model-3).

For comparison, different sizes of full connection layers
of each model are used for seizure detection. All experiments
are carried out with the same training, validating and testing
datasets. The results are shown in Table 2.

5. Discussion

For seizure detection, the methods frequently used include
classical ones like SVM and modern ones like convolutional
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TaBLE 1: The test loss, accuracy, and metrics of recall, precision, and mcor (average).

Deep transfer network Loss Accuracy Recall Precision Mcor
Model-1 (on VGG16) 0.0659 0.9795 0.9844 0.9747 0.9589
Model-2 (on VGG19) 0.0699 0.9826 0.9801 0.9851 0.9653
Model-3 (on ResNet50) 0.2249 0.9617 0.9865 0.9400 0.9246

neural networks. Conventional approaches rely on time and
frequency, where methods based on frequency are more capa-
ble and efficient than on time. But the frequency bands should
be customized for a particular patient, which makes it very dif-
ficult to generalize this method to different patients. The latest
CNNs used in this study are highly suited for EEG classification
because they can select features adaptively and automatically.
In order to take the advantage of frequency, we use the time-
frequency images as an input dataset of the CNNs.

The prominent CNN like VGG16 has tens of millions
of parameters. If all those parameters are trained from
scratch, millions of images would be needed to ensure that
the network could select features properly. The demand of
so many images could be almost impossible to meet due
to the infrequent nature of epileptic seizure. On the other
hand, the images from ImageNet and our time-frequency

images would have low-level universal features in common.
So, we transfer the parameters pretrained on ImageNet to
our models, to extract universal features, and train from
scratch the parameters of the full connection layers.

Most existing literatures on seizure detection are
patient-specific, which require a priori knowledge of the
patient. In this study, the deep transfer models, by using
the CHB-MIT EEG dataset as the original signals, are
patient-independent. The t-f images from different objects
are put together and shuffled, from which the testing dataset
is selected randomly. For comparison, three transfer models
based on VGG16, VGG19, and ResNet50, respectively, are
proposed. Experiments are carried out to evaluate their per-
formance of cross-subject seizure detecting. In detail, the
input dataset, generated from the original signals, consists
of 8474 t-f images. The ratio of positive to negative samples
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TaBLE 2: The metrics of each model with different full connection size.
Size of FC Base model Loss Accuracy Recall Precision Mcor
Model-1 0.0631 0.9837 0.9837 0.9839 0.9674
2048 x 2048 Model-2 0.0698 0.9816 0.9844 0.9789 0.9632
Model-3 0.1790 0.9578 0.9596 0.9563 0.9157
Model-1 0.0638 0.9826 0.9844 0.9810 0.9653
1024 x 1024 Model-2 0.0731 0.9805 0.9823 0.9788 0.9611
Model-3 0.1739 0.9663 0.9806 0.9526 0.9331
Model-1 0.0596 0.9833 0.9823 0.9844 0.9667
4096 x 2048 Model-2 0.0712 0.9791 0.9851 0.9734 0.9583
Model-3 0.1820 0.9568 0.9724 0.9430 0.9140
Model-1 0.0618 0.9830 0.9851 0.9810 0.9660
2048 x 1024 Model-2 0.0690 0.9815 0.9844 0.9789 0.9631
Model-3 0.2020 0.9567 0.9752 0.9406 0.9142
Model-1 0.0637 0.9816 0.9851 0.9782 0.9631
4096 x 1024 Model-2 0.0672 0.9808 0.9851 0.9768 0.9617
Model-3 0.2091 0.9564 0.9752 0.9400 0.9135
Model-1 0.0673 0.9809 0.9837 0.9782 0.9618
1024 x 512 Model-2 0.0758 0.9777 0.9872 0.9687 0.9555
Model-3 0.1649 0.9642 0.9851 0.9456 0.9292
Model-1 0.0624 0.9844 0.9823 0.9865 0.9688
1024 x 256 Model-2 0.0664 0.9808 0.9872 0.9748 0.9618
Model-3 0.1452 0.9610 0.9653 0.9572 0.9221
Model-1 0.0678 0.9769 0.9851 0.9693 0.9541
512 %512 Model-2 0.0669 0.9815 0.9851 0.9782 0.9632
Model-3 0.1201 0.9773 0.9879 0.9674 0.9548
Model-1 0.0653 0.9794 0.9844 0.9747 0.9589
512 x 256 Model-2 0.0841 0.9720 0.9880 0.9575 0.9445
Model-3 0.1198 0.9745 0.9844 0.9653 0.9491
is almost one to one after augmentation. Then, all three = Data Availability

transfer models are trained, validated, and tested on our
augmented dataset. The average accuracies are 97.95%,
98.26, and 96.17%, respectively.

However, in the original EEG dataset, not all signals are
used, due to the short durations of epileptic seizure. Those
cases are not rare. So, a method for seizure detection includ-
ing those objects will be addressed in the future. GAN might
be a choice to tackle the problem, with its utilization of gen-
erative model.

6. Conclusions

This study gives a method to detect seizure in EEGs for
cross-subjects, by using deep transfer learning. Three deep
transfer models are proposed based on VGG16, VGG19, and
ResNet50, respectively. Experiments are performed to evalu-
ate the models over the CHB-MIT EEG dataset, without the
need for denoising the EEG signals. Also, on the same data-
set, experiments of the three models with full connection
layers of different sizes are carried out for comparison. In
the future, we plan to extend this method to EEG signals with
a relatively short duration of epileptic seizure.

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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