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Abstract

Simultaneous profiling of transcriptome and chromatin accessibility within single cells is a 

powerful approach to dissect gene regulatory programs in complex tissues. However, the current 

tools are limited by modest throughput. We now describe an ultra high-throughput method, Paired-

seq, for parallel analysis of transcriptome and accessible chromatin in millions of single cells. We 

demonstrate the utility of Paired-seq for analyzing the dynamic and cell-type specific gene 

regulatory programs in complex tissues, by applying it to mouse adult cerebral cortex and fetal 

forebrain. The joint profiles of a large number of single cells allowed us to deconvolute the 

transcriptome and open chromatin landscapes in the major cell types within these brain tissues, 

infer putative target genes of candidate enhancers, and reconstruct the trajectory of cellular 

lineages within the developing forebrain.

Introduction

The spatiotemporal gene expression patterns of multi-cellular organisms are driven in large 

part by the cis-regulatory elements (CREs) in the genome1. Applications of next generation 

DNA sequencing techniques such as ChIP-seq2, DNase-seq3 and ATAC-seq4 have enabled 
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identification of candidate CREs in the genomes of many species5, 6, but the cellular 

heterogeneity of primary tissues in these organisms presents a significant challenge for 

annotation of cell-type specificity of the CREs using the conventional assays. To address this 

challenge, a variety of single-cell genomic tools have been invented7. In particular, methods 

have been developed to probe chromatin accessibility8–10, histone modifications, 

transcription factors11–14, higher-order chromatin conformation15, and DNA 

methylation16, 17 and its derivatives18–20, in single cells. These techniques have improved 

our understanding of the heterogeneity of epigenome among cells. More recently, with the 

advancement in higher throughput single-cell analysis of transcriptome21, 22, chromatin 

accessibility23, 24, DNA methylome25 and histone modification26, it has been possible to 

deconvolute cell types from mixed cell populations and dissect the cell-type specific 

transcriptomic and epigenomic states in primary tissues.

While most of the present single-cell assays profile individual molecular modalities one at a 

time7, a few do allow for parallel analysis of multiple modalities in the same cells. These 

include combined analysis of gene expression and genome sequence27, 28, joint 

transcriptome and DNA methylome profiling29–31, and simultaneous mapping of 

nucleosome occupancy and DNA methylome32, 33 along with transcriptome34. A method for 

combined single-cell analysis of chromatin accessibility and transcriptome have also been 

developed, by physically splitting nuclei and cytoplasm of induvial single cells35. Recently, 

methods for joint analysis of chromosome architecture and DNA methylation in single cells 

have also been reported36, 37. Droplet-based systems have also been adopted for 

simultaneous measurement of protein-epitopes and transcriptome from thousands of single 

cells38, 39.

To better understand the cell-type specific gene regulatory programs, it is necessary to 

simultaneously measure the transcriptome and states of the candidate CREs within the same 

cells. Recently, two methods that allow for co-assay of RNA and accessible chromatin in 

individual cells were reported40, 41. These strategies can jointly profile chromatin 

accessibility and transcriptome in tens of thousands individual cells in an experiment. 

However, for analysis of gene regulatory programs at an organismal scale, a cost- and time-

efficient technology of much greater throughput would be desired.

We describe here a strategy for ultra high-throughput joint analysis of transcriptome and 

accessible chromatin that could be used to study millions of individual cells at once. The 

method, referred hereafter as Paired-seq, for parallel analysis of individual cells for RNA 

expression and DNA accessibility by sequencing, adopts a ligation-based combinatorial 

indexing strategy42 to simultaneously tag both the open chromatin fragments generated by 

the Tn5 transposases and the cDNA molecules generated from reverse transcription of RNA 

in millions of cells. We also introduce an amplify-and-split “library-dedicating” strategy to 

separately amplify the DNA fragments corresponding to the open chromatin and 

transcriptome, for construction of DNA sequencing libraries. To demonstrate the utility of 

Paired-seq, we used it to study the gene regulatory programs in forebrain tissues in two 

stages of mouse fetal development and in cerebral cortex from adult mice. We uncovered 

major cell types in these brain tissues and revealed the dynamic cellular composition during 
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mouse forebrain development. We also inferred putative target gene for candidate CREs that 

we mapped, and reconstructed the trajectories for different brain cell lineages.

Results

Joint-analysis of accessible chromatin and transcriptome in single cells

Paired-seq includes the following steps. First, cell-specific combinations of DNA barcodes 

were introduced to open chromatin fragments and cDNA molecules from the same cells 

through multiple rounds of ligation reactions coupled with split-and-pooling 42 (Fig. 1a). 

Specifically, Tn5 tagmentation reaction was first carried out for cells in 8 different wells 

with Tn5 transposase containing barcoded adaptors. The cells were then subject to reverse 

transcription (RT) with primers containing the same set of barcodes so that the DNA 

fragments and cDNA from the same wells were labelled with the same first-round DNA 

barcodes. Next, the cells were pooled and redistributed to a 96-well plate containing well-

specific DNA barcodes, which were ligated to 5’ ends of the DNA fragments released in the 

tagmentation reaction and the cDNA molecules. Two additional rounds of ligation were then 

performed in 96-well plates after pooling and splitting, leading to the generation of more 

than 107 unique barcode combinations (Fig. 1a). Second, the nuclei were split into sub-

libraries and lysed, and the DNA was purified from each sub-library, which was subject to 

amplification by a modified TdT (terminal deoxynucleotidyl transferase)-assisted single-

stranded DNA amplification method43. The amplified DNA products were then split into 

two portions and digested with restriction enzymes targeting the pre-designed sites in Tn5 

and RT primers respectively, to give rise to DNA and RNA libraries for sequencing (Fig. 1a, 

Extended Data Fig. 1a, Supplementary Tables 1, 2 and see Methods).

As a proof of principle, we first applied Paired-seq to individual and mixed population of 

two human cell lines and a mouse cell line, namely NIH/3T3 (murine), HepG2 (human) and 

HEK293T (human) (Methods). We compared the distribution of mapped reads around 

transcription start sites (TSS) and transcription termination sites (TTS) from both libraries 

(Extended Data Fig. 1b). As expected, reads from the DNA library showed a high 

enrichment around TSS while those from the RNA library were enriched at regions upstream 

TTS (Fig. 1b). Both DNA and RNA libraries showed high purity, evidenced by high 

percentage of the restriction enzyme cutting sites in the short-read sequences, suggesting a 

high efficiency of the restriction enzyme-based “library-dedicating” strategy (Extended Data 

Fig. 1c). Further, the ensemble signals from the two biological replicates were highly 

reproducible (Fig. 1c, d), and correlated very well with the published bulk DNase-seq and 

polyA RNA-seq datasets from the same cell lines5, respectively (Fig. 1b and Extended Data 

Fig. 1d, e).

The ligation-based combinatorial barcoding strategy used here could tag well over 1 million 

cells in a single experiment. As a proof of principle, we collected 8.0 million nuclei for 

barcoding and after 3-round of ligation, we recovered 1.51 million barcoded nuclei (18.9% 

recovery rate). Without losing generality, we then divided the nuclei into sub-libraries and 

constructed and sequenced a sub-library corresponding to ~10,000 nuclei (0.66% of the total 

number of the barcoded nuclei) to a moderate sequencing depth (15 k reads/nuclei and UMI 

duplication rate ~60%), obtaining median counts of 2,635, 2,066 and 1,641 uniquely 
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mapped DNA reads per nucleus, and median counts of 1,872, 1,337 and 1,236 uniquely 

mapped RNA reads per nucleus for NIH/3T3, HepG2 and HEK293T, respectively (Fig. 1e, f 

and Supplementary Table 3). The number of uniquely mapped reads, the fraction of DNA 

reads around TSS and inside peaks of DNA library, and the numbers of genes captured of 

RNA library for each cell are similar to those of recently published sci-CAR method40 (Fig. 

1e–g and Extended Data Fig. 1f, g). Compared to the stand-alone single-cell methods, 

Paired-seq DNA have similar coverage to sci-ATAC-seq9 but lower than a recently published 

dscATAC-seq (droplet single-cell ATAC-seq)44 (Fig. 1e). Paired-seq RNA reads were lower 

than commonly used single-cell RNA-seq methods21, 42, 45 (Fig. 1f, g), which may result 

from the sub-optimal buffer conditions and degradation of RNA during the multi-omic 

barcoding processes. On the other hand, the increased number of barcode combinations 

reduced the chance of random barcode collision to less than 3%, estimated based on analysis 

of a mixed population containing human and mouse cells (Extended Data Fig. 1h–j). After 

filtering out the cells with low sequencing coverages (less than 750 uniquely mapped reads), 

we recovered 2,053 (out of a total ~6,000 profiled) human cells with both DNA profiles and 

RNA profiles. Using principal components analysis (PCA) followed by an unsupervised 

density-based clustering method, these cells were readily clustered into two groups, 

corresponding to the HepG2 and HEK293T cells, respectively (Extended Data Fig. 1k, l).

Paired-seq recovered the major cell types in the adult mouse cerebral cortex

To demonstrate the utility of Paired-seq to resolve heterogeneity of complex tissues, we 

applied it to freshly collected adult mouse cerebral cortex. We used 10 million nuclei as 

input and recovered approximately 2.51 million barcoded nuclei (25.1% recovery rate). We 

then sequenced a few sub-libraries corresponding to ~30k nuclei (1.20% of total library), 

obtaining 15,191 nuclei with both DNA and RNA profiles, with median counts of 1,762 

uniquely mapped DNA reads and 1,166 uniquely mapped RNA reads per nucleus, 

respectively, for the sub-library sequenced to ~25k reads/nucleus depth (Supplementary 

Table 3).

To cluster the cells based on the similarity of the Paired-seq profiles, we adopted a 

computational software SnapATAC, originally designed for processing of snATAC-seq 

data46. Cell-to-bins DNA matrix and cell-to-genes RNA matrix were generated from the 

Paired-seq data and used to calculate the pairwise Jaccard similarity matrices. The resulting 

two matrices were then combined by computing their Hadamard product. The combined 

matrix was then subject to dimensionality reduction with the use of PCA, followed by 

graph-based clustering using Louvain clustering approach as previously described46 (Fig. 2a 

and see Methods). This analysis revealed nine major cell types in the mouse cerebral cortex, 

including 3 types of glutamatergic neurons (Snap25+, Neurod6+, Gad1−), 3 types of 

GABAergic neurons (Snap25+, Neurod6−, Gad1+), and 3 non-neuronal cell types 

corresponding to astrocytes (Apoe+), microglia (C1qb+) and oligodendrocytes (Mog+)47 

(Fig. 2b, c, and Extended Data Fig. 2a–c). These results indicate that Paired-seq can uncover 

major known cell types in a complex tissue.

To identify the genes specifically expressed in each cell population, we performed 

differential gene expression analysis by comparing the aggregated RNA reads from one 
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cluster with that from all the other clusters, and recovered a combined total of 329 cell-type-

specific genes (p < 0.05 by edgeR48, see Methods). The variability of chromatin 

accessibility at their promoters exhibited good concordance with the variation in gene 

expression levels (Fig. 2d, e and Extended Data Fig. 2d, e). We also identified 188,460 

potential CREs that were accessible in one or more cell types, and found that a majority of 

them were only accessible in a cell type specific manner (Fig. 2f). Motif enrichment analysis 

with the JASPAR database49 identified potential transcription factors (TFs) acting in at least 

one of the major cell groups (Fig. 2g). We further investigated the promoter accessibility and 

gene expression of individual TF genes across major cell groups, and found members of 

some TF families exhibit distinct expression patterns in different cell clusters (Fig. 2h). For 

example, although SOX9 motif was enriched for both neuronal and non-neuronal cells, Sox5 
was expressed in multiple cell clusters including astrocyte, excitatory neurons, and 

inhibitory neurons while expression of Sox9 is more restricted to astrocytes, consistent with 

previous reports that SOX5 controls generation of multiple neuron subtypes50 and SOX9 

regulates astrocyte-specific gene expression in the adult brain51. Hence, combining gene 

expression with chromatin accessibility analysis is useful for identifying functional 

regulators.

The dynamic cellular composition of the developing mouse forebrain

We further applied Paired-seq to frozen mouse forebrain samples previously collected from 

two different stages of fetal development, E12.5 and E16.5, which were analyzed as part of 

the ENCODE project52 (see Methods). We collected a total of 6.0 million nuclei from these 

two samples, and recovered 0.56 million barcoded nuclei (9.3% recovery rate). We then 

constructed and sequenced sub-libraries containing ~20k nuclei (3.57% of total library), 

obtaining 12,155 nuclei with both DNA and RNA profiles, after removing the nuclei with 

less than 400 DNA reads and 150 RNA reads (Supplementary Table 3). Using Snap-

ATAC46, we classified these nuclear profiles into 8 distinct groups and assigned cell type 

identity based on marker gene expression (Fig. 3 a, b and Extended Data Fig. 3). In line with 

previous observations23, the proportion of neuronal progenitor cells decreased from E12.5 to 

E16.5, together with the expansion of glutamatergic neuron cells. In the adult mouse 

cerebral cortex, we observed a dramatic increase of astrocytes and mature neurons 

populations, accompanied by a decrease of neuronal progenitors (dEx1 and dIn1 with 

accessibility at Hes1 and Ascl1 loci, respectively) (Fig. 3a, Extended Data Fig. 3c). These 

results also demonstrated the capability of Paired-seq in dissecting heterogeneity of cryo-

preserved biospecimens.

Paired-seq allowed linking of cis-regulatory elements to their putative target genes

A large number of CREs have been annotated in the mammalian genome, but annotating 

their target genes remains a challenge due to the fact that many CREs can regulate 

expression of genes from a large genomic distance53. The knowledge of open chromatin and 

RNA transcripts from the same cells provides an excellent opportunity to link CREs to 

potential target genes in specific cell types in the developing mouse brain. The ultra high-

throughput nature of Paired-seq can further help to overcome the sparsity of DNA and RNA 

reads from individual cells: we merged 50 nuclei exhibiting high similarity to each other into 

pseudocells (based on integrated Jaccard matrix). We then calculated the pairwise Pearson 
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correlation coefficient (PCC) of the normalized gene expression and promoter accessibility 

with CRE accessibility (within 500-kb range of TSS) across these pseudocells (Fig. 3c and 

Methods). We first identified 171,551 and 173,694 candidate CREs from E12.5 and E16.5 

forebrains, respectively. We found that 10,097 and 6,197 gene-CRE pairs, corresponding to 

4,132 and 3,123 genes from these two stages, respectively, showed a significant PCC (FDR 

< 0.1, Extended Data Fig. 4a and Supplementary Table 4). To validate the predictions, we 

compared them with enhancer and promoter chromatin contacts mapped in the same tissue 

samples using Proximity Ligation-Assisted ChIP-seq (PLAC-seq)54 with antibodies against 

H3K4me3 (Methods). 1,121 (E12.5) and 1,357 (E16.5) genes with linked CREs were 

detected by both Paired-seq and PLAC-seq, among them 42.7% (E12.5) and 70.1% (E16.5) 

of gene-CRE pairs from Paired-seq were also supported by PLAC-seq, while by chance 

11.0% and 16.4% are expected (Fig. 3d, e and Extended Data Fig. 4 b, c). This result 

supports the utility of Paired-seq to predict target genes for individual CREs (Extended Data 

Fig. 4 d–k). We also identified 34,473 gene-CRE pairs for 5,639 genes from Paired-seq data 

from adult cerebral cortex (FDR < 0.1, median 3 CREs per gene, with most CREs linked to 

only one gene. Fig. 3f, Extended Data Fig. 4a, l–o and Supplementary Table 5). Only a small 

proportion of the CREs (17.0%) were linked to the nearest genes, but more than half were 

linked to the top 5 nearest genes (Extended Data Fig. 4o).

The promoter of differentially expressed genes are generally more dynamic than those of 

stably expressed genes. For both groups of genes, the linked CREs showed much more 

dynamics in chromatin accessibility than the corresponding promoters (Fig. 3g). In addition, 

we found that the changes in gene expression levels between stages are correlated with the 

numbers of linked CREs, with genes linked to the dynamic CREs tending to be upregulated 

or downregulated between the two stages, consistent with a role for the candidate CREs in 

regulation of the linked genes (Fig. 3h, i and Extended Data Fig. 5). Interestingly, many 

genes with a large number of linked CREs were involved in key cellular processes in neural 

development (Extended Data Fig. 5c–e).

Reconstruction of cellular trajectory from Paired-seq data

The joint analysis of open chromatin and RNA profiles in individual cells also allowed us to 

construct cellular trajectories of mouse forebrains during fetal development. As a proof of 

principle, we used a random-walk-based distance, diffusion pseudotime (DPT)55, to position 

individual nuclei in neurogenesis or astrogenesis from the common progenitors (Fig. 4a and 

Extended Data Fig. 6a–d). We then predicted potential transcriptional regulators of cell fate 

transition by performing motif enrichment analysis using chromVAR56. We further analyzed 

the expression levels of the corresponding transcription factor encoding genes (Fig. 4b, c and 

Extended Data Fig. 6e). By plotting the motif enrichment, TF gene expression levels, and 

chromatin accessibility on the same pseudotime axis, it is possible to uncover potential 

regulators of mouse brain development. Indeed, Neurog2, known to be involved in 

neurogenesis57, is found at the starting points of the neurogenesis trajectory, while Neurod2, 

which play a role in later stages of neurogenesis and in mature neurons23, 47 (Fig. 4c), 

appears at a later stage after Neurog2 on the same trajectory.
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To further look into the ordering of TF gene expression and TF motif accessibility, we 

identified the pseudotime points at which there is a gain or loss of TF motif enrichment in 

the accessible regions (Fig. 4d, Extended Data Fig. 6f and Methods). We also identified the 

time of gain or loss based on gene expression and promoter accessibility for TF genes. We 

then compared the order of activation and inactivation of TF genes and the time of gain or 

loss of enrichment of their corresponding DNA recognition motifs (Fig. 4e and Extended 

Data Fig. 6g). We observed that the time of gain or loss of motif in the accessible chromatin 

are within 20% range of the time of gain or loss of gene expression along the pseudotime 

trajectories for a majority of the TFs (Fig. 4e and Extended Data Fig. 6g). Only a small 

portion of TFs do not demonstrate synchronized changes in motif enrichment in the 

accessible chromatin and gene expression (Fig. 4e). Altogether, these results show that the 

joint analysis of chromatin accessibility and transcriptome from single nuclei can facilitate 

the study of gene regulatory programs during development.

Discussion

In summary, we report here an ultra high-throughput method for joint profiling of chromatin 

accessibility and gene expression in single cells. We demonstrate the utility of this method 

using both freshly collected and flash frozen brain tissues. Integrated analysis of chromatin 

accessibility and gene expression from the same cells revealed major cell types during 

mouse brain development and helped to identify functional regulators involved in this 

process. We further show that Paired-seq data permitted inference of potential target genes 

for distal CREs and generation of cell lineage trajectories during forebrain development.

Compared to two previous methods, sci-CAR and SNARE-seq41, Paired-seq dramatically 

increases the throughput of the analysis by at least two orders of magnitude. Currently, 

Paired-seq library complexity is comparable to that of both sci-CAR and SNARE-seq, but 

lower than stand-alone single-cell and single-nucleus ATAC-seq and RNA-seq. Further 

optimization in experimental conditions58 or reduction of ligation cycles likely could lead to 

increased coverages (data not shown).

Co-accessibility between promoters and distal candidate CREs, or between gene expression 

and chromatin accessibility of candidate distal CREs has been used to predict gene-CRE 

targeting relationships40, 59. Here we took advantages of the joint profiles of transcriptome 

and chromatin accessibility to identify gene-CRE pairs with higher confidence. It is worth 

noting that the correlation between chromatin accessibility of candidate CREs and target 

gene expression levels or between distal CREs and promoter is frequently accompanied with 

physical proximity of the predicted pairs (Fig. 3d, e). Future studies with increased number 

of cells from more developmental stages, as well as optimized protocols for better genomic 

coverage could lead to better delineation of CRE-target gene relationships with higher 

temporal resolution.

Finally, it is worth noting that the DNA barcoding strategy present here can be further 

extended to stand-alone or parallel profiling of other molecular biology layers, including 

DNA methylation, histone modifications, TF binding, and 3D genome organization. The 
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endonuclease-assisted amplify-and-split “library-dedicating” method can also be used to 

distinguish multiple types of biomolecules in future single-cell multi-omics analyses.

Methods

Cell culture and processing

HEK293T (human, ATCC CRL-11268), HepG2 (human, ATCC HB-8065) and NIH/3T3 

(murine, ATCC CRL-1658) cells were cultured according to standard procedures in 

Dulbecco’s Modified Eagles’ Medium (Thermo Fisher Scientific, 10569010) supplemented 

with 10% fetal bovine serum (FBS, Thermo Fisher Scientific, 16000044) and 1% penicillin–

streptomycin (Thermo Fisher Scientific, 10378016) at 37 °C with 5% CO2. Cells were not 

authenticated nor tested for mycoplasma. To prepare nuclei, HepG2 and 3T3 cells were 

harvested by centrifugation, washed with PBS (Thermo Fisher Scientific, 10010-23) and 

counted using BioRad TC20 cell counter. The percentage of live cells in the samples were 

higher than 95%. The cells were then resuspended in cold Lysis Buffer (10 mM Tris-HCl pH 

7.4 [Sigma, T4661], 10 mM NaCl [Sigma, S7653], 3 mM MgCl2 [Sigma, 63069], 0.1% 

IGEPAL CA-630 [Sigma, I8896]) and centrifuged for 15 min at 600 g, 4 °C. For the species 

mixing experiment, nuclei were then washed with PBS and resuspended, counted using 

BioRad TC20 cell counter. HepG2, HEK293T and 3T3 nuclei were then mixed in equal 

proportions and applied to Paired-seq.

Processing of biospecimens

Male C57BL/6J mice were purchased from Jackson laboratories at 8 weeks of age and 

maintained in the Salk animal barrier facility on 12 hr dark-light cycles with food ad libitum 

for four weeks before dissection. Cerebral cortex was dissected and snap-frozen in dry ice. 

All protocols were approved by the Salk Institute’s Institutional Animal Care and Use 

Committee (IACUC).

Frozen tissues of mouse fetal brains, previously collected as part of the ENCODE project52, 

were mechanically grinded in liquid nitrogen and weighted. Nuclei were prepared and 

processed as previously with modifications23. 10-30 mg frozen tissue were transferred to a 

1.5 mL Lobind tube (Eppendorf, O22431021) in with 1 mL of NPB (5% BSA [Sigma, 

A7906], 0.2% IGEPAL-CA630 [Sigma, I8896], 1 mM DTT [Sigma, D9779], 1X cOmplete 

EDTA-free protease inhibitor [Roche, 05056489001], 0.4 U/μL RNase OUT [Invitrogen, 

10777-019] and 0.4 U/μL SUPERase In [Invitrogen, AM2694] in PBS [Thermo Fisher 

Scientific, 10010-23]) and incubated for 15 min at 4 °C. Nuclei suspension was then filtered 

over a 30 μm Cell-Tric (Sysmex), counted using BioRad TC20 cell counter and proceed to in 
situ tagmentation and reverse transcription immediately.

Tn5 Transposomes generation

To generate barcoded Tn5 transposomes, barcoded DNA adaptors oligos were annealed to a 

common pMENTs oligo (Supplementary Tables 1 and 2) in a thermocycler with the 

following program: 95 °C for 5min, slowly cooled to 10 °C with a temperature ramp of −0.1 

°C/s. The transposons (1μL, 50 μM) were then mixed with 6 μL unloaded transposase Tn5 

(0.5 mg/mL), mixed by brief vortex and quickly spin-down, incubated at room temperature 
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for 30 min. 63 μL storage buffer (50% Glycerol [Sigma, G6279], 50 mM Tris-HCl pH 7.4 

[Sigma, T4661], 100 mM NaCl [Sigma, S7653], 1 Mm DTT [Sigma, D9779]) was then 

added and the loaded transposases can be stored at −20 °C for up to 6 months.

To generate DNA barcoded plates, 6 μL 100 μM barcoded oligos (Supplementary Table 2) 

were distributed to 96-well plates. 44 μL 12.5 μM Linker-R02, Linker-R03 and Linker-R04 

oligos (Supplementary Table 1) were then added to each well of the 96-well plates 

containing corresponding the barcoded oligos. The plates were then sealed and annealed in a 

thermocycler with the following program: 95 °C for 5 min, slowly cooled to 20 °C with a 

temperature ramp of −0.1 °C/s.

Paired-seq procedure

In situ tagmentation and reverse transcription—8 of 1.5 mL Maxymum recovery 

tubes (Axygen, MCT-150-L-C) were pre-washed with 5% BSA in PBS (Sigma, A3311). 250 

k of nuclei were transferred to the pre-washed tubes and then centrifuged at 1,000 g for 10 

min at 4 °C. The supernatants were aspirated and 45 μL 1.11X TB (36.7 mM Tris-Ac pH 7,8 

[Thermo Fisher Scientific, BP-152], 73.3 mM KAc [Sigma, P5708], 12.1 mM MgAc 

[Sigma, M2545], 17.8 % DMF [EMD Millipore, DX1730]) were used to carefully resuspend 

the nuclei palleted. 5 μL barcoded Tn5 (BC#1-01 – BC#1-08) were added to the 8 labeled 

tubes and mixed gently. The tagmentation reaction was carried out in ThermoMixer 

(Eppendorf) for 30 min at 37 °C and 550 r.p.m. The reaction was terminated by adding 25 

μL of 45 mM EDTA (Invitrogen, AM9260G).

The nuclei were then centrifuged at 1,000 g for 10 min at 4 °C. The supernatant was 

discarded, and nuclei palette were resuspended in 8 μL 0.5 X PBS with RNase Inhibitor Mix 

(0.5X PBS, 1 U/μL RNase OUT and 1 U/μL SUPERase In), and then transferred to 200 μL 

tubes with 4 μL corresponding barcoded RT primers (the same order to tagmentation 

barcodes). 8 μL RT mix (10 pmol dNTPs, 20 U RNaseOUT, 40 U SUPERase In, and 400 U 

Maxima Reverse Transcriptase [Thermo Fisher Scientific, EP0743] in RT buffer) were then 

added and reverse transcription were performed using the following program (Step1: 50 °C 

× 10 min; Step2: 8 °C × 12 s, 15 °C × 45 s, 20 °C × 45 s, 30 °C × 30s, 42 °C × 2 min, 50 °C 

× 5 min, and repeat Step2 for additional 2 times; Step3: 50 °C × 10 min and hold at 12 °C). 

After the reaction, the nuclei were transferred to Maxymum recovery tubes pre-washed with 

5% BSA in PBS and cooled on ice for 2 min, 0.4 μL of 5% Triton-X100 (Sigma, T9284) 

were then added. The nuclei from individual reactions were then combined and centrifuged 

at 1,000 g for 10 min at 4 °C and supernatant were discarded.

Tagging of individual nuclei by ligation-based combinatorial DNA barcoding—
Nuclei were resuspended in 1 mL 1X NEBuffer 3.1 and then transferred to Ligation Mix 

(2,262 μL ultrapure H2O, 500 μL 10X T4 DNA Ligase Buffer, 50 μL 10 mg/mL BSA, 100 

μL 10X NEBuffer 3.1 and 100 μL T4 DNA Ligase [NEB, M0202L]). 40 μL of the mix was 

then distributed to Barcode-plate-R02 and incubate in ThermoMixer (Eppendorf) at 37 °C 

for 30 min, 300 r.p.m. 10 μL of R02-Blocking-Solution (264 μL of 100 μM Blocker-R02 

oligo [Supplementary Table 1], 250 μL of 10X T4 Ligation Buffer, 486 μL ultrapure H2O) 

was then added to each well and reaction were continued for 30 min. Pool all nuclei together 
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and centrifuge at 1,000 g for 10 min at 4 °C. The 2nd round of ligation was carried out 

similar to the 1st round of ligation, except using Barcode-plate-R03 and Blocker-R03 oligo 

instead of the reagents used above. The 3rd round of ligation was carried out similarly with 

Barcode-plate-R04. After 30 min of the ligation reaction, R04-Termination-Solution (264 μL 

of 100 μM R04 Terminator oligo [Supplementary Table 1], 250 μL of 0.5 M EDTA and 236 

μL ultrapure H2O) was added to quench the reaction.

Typically, between 500,000 to 1,000,000 nuclei could be tagged after 3 rounds of ligation-

based barcoding. Nuclei were resuspended in PBS, counted and separated to sub-libraries 

containing 10k to 100k nuclei (optimal ~25k nuclei per tube) and each sub-library were 

diluted to 35 μL by PBS. 5 μL 4M NaCl (Sigma, S7653), 5 μL 10% SDS (Invitrogen, 

15553-035) and 5 μL 10 mg/mL Protease K (NEB, P8107S) was added and incubated in 

ThermoMixer (Eppendorf) at 55 °C for 2 hr, 850 r.p.m. The samples were cooled to room 

temperature, purified with 1X SPRI beads (Beckman coulter, B23319) and eluted in 12.5 μL 

ultrapure H2O.

TdT-Tailing and pre-amplification—TdT-Tailing and pre-amplification reaction were 

adopted from TELP with modifications43. 1 μL 10X TdT buffer, 0.5 μL 1 mM dCTP (NEB, 

N0447S) was added into 12.5 μL purified DNA/cDNA mix. The samples were incubated at 

95 °C for 5 min and quickly chilled on ice for 5 min. 1μL of TdT (NEB, M0315S) was then 

added and tailing reaction was carried out under 37 °C for 30 min followed by inactivation at 

75 °C for 20 min. Anchor Mix (6 μL 5X KAPA Buffer, 0.6 μL 10 mM dNTPs, 0.6 μL 10 μM 

Anchor-Oligo [Supplementary Table 1] and 0.6 μL KAPA HiFi HS [KAPA, KK2502]) were 

added and the linear amplification was performed with the following program (Step1: 98 °C 

× 3 min; Step2: 98 °C × 15 s, 47 °C × 60 s, 68 °C × 2 min, 47 °C × 60 s, 68 °C × 2 min and 

repeat Step2 for additional 14 times; Step3: 72°C × 10 min and hold at 12 °C).

Preamplification Mix (4 μL 5X KAPA buffer, 0.5 μL 10 mM dNTPs, 2 μL of 10 μM PA-F 

and PA-R [Supplementary Table 1], 0.5 μL KAPA HiFi HS) were then added and 

preamplification were performed as the following program (Step1: 98 °C × 3 min; Step2: 98 

°C × 20 s, 65 °C × 20 s, 72 °C × 2.5 min and repeat Step2 for additional 9 times; Step3: 

72°C × 2 min and hold at 12 °C). Amplified products were purified with SPRI double-size 

selection (10 μL + 32.5 μL) and were eluted in 34 μL ultrapure H2O, use 1 μL for 

quantification.

2nd adaptor tagging and endonuclease digestion—Divide 33 μL of the purified 

products into 2 tubes for DNA and RNA libraries construction. Add 2 μL 10X Cutsmart 

buffer (NEB, M7204S) into each tube. Add 1.5 μL SbfI-HF (NEB, R3642) (per 100 ng 

amplified product) to DNA-tube and 0.75 μL Notl-HF (R3189) (per 100 ng amplified 

product) to RNA-tube. The digestion reaction was incubated at 37 °C for 60 min. Add 1 μL 

3M NaAc pH 5.4 (Sigma, 71196) and cleaned up using QIAquick PCR purification kit 

(QIAGEN, 28104) and eluted in 30 μL 0.1X EB (QIAGEN). Add 31 μL 2X TB and 0.5 μL 

(per 100 ng amplified product) 0.05 mg/mL Tn5-P5 and incubate in ThermoMixer 

(Eppendorf) at 37 °C for 30 min, 550 r.p.m. Cleaned up using QIAquick PCR purification 

kit and elute in 30 μL 0.1X EB (QIAGEN).
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Indexing PCR—Prepare the PCR mix (30 μL purified P5-tagged product, 10 μL 5X Q5 

buffer, 1 μL 10 mM dNTP, 0.5 μL 50 μM N5 primer, 2.5 μL 10 μM P7 primer 

[Supplementary Table 1], 5 μL H2O and 1 μL NEB Q5 DNA Polymerase [NEB, M0491]) 

and run the following program (Step1: 72 °C × 5 min, 98 °C × 30 s; Step2: 98 °C × 10 s, 63 

°C × 30 s, 72 °C × 1 min and repeat Step2 for additional 10-15 times to reach 10 nM 

concentration; Step3: 72°C × 1 min and hold at 12 °C). Cleanup the libraries using 0.85X 

(42.5 μL) SPRI beads. The final libraries were sequenced using a HiSeq 2500 (iliumina) 

with the following read lengths: PE 53 + 7 + 130 (Read1 + Index1 + Read2).

PLAC-seq procedure

PLAC-seq was performed as previously described54. The frozen tissues were pulverized 

prior to formaldehyde crosslinking. About 30-50 mg of frozen tissue were crosslinked with 

1% formaldehyde at room temperature for 20 min. Dissociation of crosslinked tissues were 

performed with gentleMACS dissociator. Single-nuclei suspensions prepared from 

crosslinked tissues were incubated in 50 μL 0.5% of SDS and incubated at 62 °C for 10 min. 

25 μL 10% Triton X-100 and 145 μL water were then added, followed by incubation at 37 

°C for 15 min. Digestion was performed by Mbol for 2 h 37 °C, followed by inactivation at 

62 °C for 20 min. 15 nmol of dCTP, dGTP, dTTP, biotin-14-dATP (Thermo Fisher 

Scientific) each and 40 unit of Klenow were then added, and incubated at 37°C for 1.5h. 

Proximity ligation was performed at room temperature in 1X T4 DNA Ligase Buffer, 0.1 

mg/ml BSA, 1% Triton X-100 and 4000 unit of T4 DNA Ligase (NEB). The nuclei were 

harvested at 2,500 g for 5 min and the supernatant was discarded. The nuclei were then 

resuspended in 130 μl RIPA buffer (10 mM Tris, pH 8.0, 140 mM NaCI, 1 mM EDTA, 1% 

Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate, proteinase inhibitors) and lysed on ice 

for 10 min, followed by sonication using Covaris M220. The samples were centrifugation at 

14,000 rpm for 20 min and supernatant was collected. The clear cell lysate was incubated 

with H3K4me3 antibody-coated (04-745, Millipore, 5 μg per sample) Dynabead M-280 

Sheep Anti-Rabbit IgG at 4°C overnight. After incubation, the beads were washed with 

RIPA buffer three times, high-salt RIPA buffer (10 mM Tris, pH 8.0, 300 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate) twice, LiCl buffer (10 mM 

Tris, pH 8.0, 250 mM LiCI, 1 mM EDTA, 0.5% IGEPAL CA-630, 0.1% sodium 

deoxycholate) once, TE buffer (10 mM Tris, pH 8.0, 0.1 mM EDTA) twice. To elute DNA, 

washed beads were first treated with 10 μg RNase A in extraction buffer (10 mM Tris, pH 

8.0, 350 mM NaCl, 0.1 mM EDTA, 1% SDS) for 1 h at 37 °C, followed by adding 20 μg 

proteinase K and incubate at 65 °C 2 h. The fragmented DNA was purified by Zymo DNA 

Clean&Concentrator kit. Biotinylated DNA was pulled-down by Dynabeads MyOne 

Streptavidin T1 beads and PCR amplified for sequencing.

Data analysis procedures

Pre-processing of Paired-seq data—Cellular barcodes and the linker sequences are 

read by Read2. The first base of BC#1, BC#2, BC#3 and BC#4 should locate within 

121-124th, 84-87th, 47-50th and 10-13rd base of read2 (see Extended Data Fig. 1a for 

details). We first compared the sequences adjacent to the locations with linker sequences, 

only sequences with less than 5 mismatches with linkers for all 4 rounds of barcodes were 

retained for further analysis. The location of first base for each barcode was identified based 
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on the alignment of the linker sequences. Read1 and Read2 of each library were combined 

to generate a single new FASTQ file by joining read sequence (sequence of Read1 and UMI 

from Read2) and quality values into Line1 and joining the 4 rounds of barcodes sequences 

as well as the quality values into Line 2 and Line 4.

A bowtie2 reference index was generated by combining all possible cellular barcodes 

combinations. The combined FASTQ file contains barcodes sequences were then mapped to 

the cellular barcodes reference using Bowtie260 with parameters: -v 3 --norc. The resulting 

SAM file was then converted to a final FASTQ file by using adding RNAME (of SAM file) 

into Line1 and extract the original Read1 sequence and quality values from QNAME (of 

SAM file) into Line2 and Line4 of the final FASTQ file.

Nextera adaptor sequences were trimmed from 3’ of DNA libraries, Poly-dT sequences were 

trimmed from 3’ of RNA libraries and low-quality reads (length < 30, quality < 20) were 

excluded for further analysis.

Analysis of Paired-seq data from cultured cells

Reads mapping and evaluation of collision rate:  Reads were first mapped to a reference 

genome using STAR (version: 2.6.0a61) with the combined reference genome (GRCh37 for 

human and GRCm38 for mouse). Duplicates were removed based on the mapped position 

and UMI. For Paired-seq from cultured cells, we used BC#1 for the identification for origin 

of samples: BC#1-01 to label NIH/3T3 cells, BC#1-02 for HEK293T cells, BC#1-03 for 

HepG2 cells, BC#1-04 and 05 for mix of NIH/3T3 with HEK293T cells, BC#1-06 and 07 

for mix of NIH/3T3 and HepG2 cells, BC#1-08 for mix of all the 3 cell types. For evaluation 

of the collision rate, we used only cells with BC#1-04 to 08 and nuclei with less than 80% 

UMIs mapped to one species were classified as mixed cells.

Clustering and quality analysis:  Cells classified as human cells were then used for 

clustering analysis. DNA accessible peaks were called using MACS262. DNA and RNA 

alignment files were then converted to a matrix with cells as columns and genes or peaks as 

rows, DNA matrix was then binarized. Cells with less than 200 peaks or genes and peaks or 

genes with less than 10 cells were removed from further analysis (Supplementary Table 3). 

Clustering of both DNA and RNA profiles of cell lines were performed using Seurat63. The 

read coverages for genomic regions were compared with multiBamSummary of deepTools64 

with 10-kb bins. The reads distributions around TSS and TTS were calculated with 

Homer65.

Analysis of Paired-seq data from adult mouse cerebral cortex and fetal mouse 
forebrain

Reads mapping:  Reads were first mapped to a reference genome with STAR (version: 

2.6.0a61) with mouse GRCm38 genome. Duplicates were removed based on the mapped 

position and UMI. For Paired-seq from adult mouse cerebral cortex, we used BC#1 for the 

identification for the origin of samples: BC#1-01 to 04 and BC#1-05 to 08 to label the two 

replicates. For Paired-seq from archived mouse fetal forebrain, we also used BC#1 for the 

identification for the origin of samples: BC#1-01 and 02 for the two replicates of E12.5 

Zhu et al. Page 12

Nat Struct Mol Biol. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



forebrain, BC#01-03 and 04 for the two replicates of E16.5 forebrain. Libraries were 

sequenced to 30-70% duplication level. Low coverage nuclei were removed from further 

analysis (we used different criteria for libraries of different depths, for detailed information 

see Supplementary Table 3).

Clustering of Paired-seq profiles:  RNA alignment files were converted to a matrix with 

cells as columns and genes as rows. DNA alignment files were converted to a matrix with 

cells as columns and 1-kb bins (instead of peaks) as rows. For RNA matrix, cells with less 

than 200 genes and genes with less than 10 cells were removed from further analysis. For 

DNA matrix, cells with less than 200 bins and bins with less than 20 cells were removed. 

DNA matrix was further filtered by removing the 5% highest covered bins. To enable 

integrated clustering based on both DNA and RNA profiles, we first convert the cell-by-

genes matrix of RNA and the cell-by-bins matrix of DNA into cell-by-cell Jaccard similarity 

matrices with same dimensions (Ncell × Ncell) using snapATAC46. The Jaccard similarity 

matrices were then normalized by the regression-based normOVE of snapATAC to decrease 

the effect of read depth. The normalized matrices (O) were further scaled to matrices (S) 

with all values in between 0 and 1:

Sij =
oij2 − min om = i

2

max om = i
2 − min om = i

2

The Hadamard product (H) of the scaled DNA matrix (D) and scaled RNA matrix (R) were 

then calculated:

ℎij = d ∘ r ij = dij × rij

Dimension reduction (PCA) was then performed on H, followed by construction of k-

nearest neighbors (KNN) graph from significant principal components. The Louvain 

method66 was then used to cluster nuclei with similar Paired-seq profiles (R packages: 

igraph and FNN). UMAP was used for data visualization (R package: uwot). We found that 

clustering based on Hadamard product of two matrices is more effective than based on the 

sum of two matrices. Clustering based on simply appending two matrices biases towards 

RNA-matrix, necessitating careful weighting between DNA and RNA.

Accessible regions (cis-regulatory elements) were identified by peak-calling of DNA reads 

using MACS262 with default parameters. To allow the comparison of CREs between 

different stages, the aggregated DNA profiles from E12.5, E16.5 forebrain and adult cerebral 

cortex were first down-sampled to the sample depth and merged, peak-calling were then 

performed with MACS2. Next, CREs were extended to 1-kb bins from the peak summits 

and RPM of each CRE (of each stage) were calculated. CRE (of each stage) with RPM < 1 

were excluded from further analysis. For differential analysis of gene expression and CRE 

accessibility, RNA and DNA reads were separated according to stages or cell types and then 

aggerated. The differentially expressed genes, differential accessible promoters and distal 

accessible sites were identified by edgeR48, by comparing reads of cells from the 
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corresponding cell type or stage with reads of cells from all other clusters, with thresholds of 

Log2(Fold-change) > 1 and P-value < 0.05 (negative binomial test). Motif enrichment 

analysis was performed by HOMER65. Only reads located in 3’UTR (or within 1000-bp of 

TTS for genes with short 3’UTR) were used for differential expression analysis.

Connect cis-regulatory elements with target genes using Paired-seq profiles:  To reduce 

potential measurement noise, we generated pseudo-cells by merging cells with high-

similarity in Paired-seq profiles. We first removed nuclei with less than 500 DNA and 200 

RNA reads and randomly selected 5,000 single-nuclei (from E12.5, E16.5 and adult 

separately), then merging every 50 single-nuclei with highest Jaccard similarity to each 

other. To estimate the false-positive detection rate (FDR), we randomly selected 100 × 50 

single-nuclei to generate 100 shuffled-pseudo-cells; we also permuted the cell IDs, randomly 

select reads and generated 100 permuted-pseudo-cells with similar read coverages compared 

to pseudo-cells from high similarity cells and shuffled-pseudo-cells. TPM of each gene and 

RPM of each cis-regulatory element were calculated and log-transformed (T):

Tij = ln
106 × nUMIij

i = 1
n nUMIij

+ 1

We then calculated the Pearson correlation coefficient between gene expression and cis-

regulatory elements accessibility within the 500-kb range from TSS of the corresponding 

gene. The Pearson correlation between promoter accessibility and cis-regulatory elements 

accessibility within 500-kb range were also calculated. By comparing with the Pearson 

correlations coefficient of gene-CRE pairs in pseudo-cells (and shuffled-pseudo-cells) with 

that in permuted-cell-ID (Δr = (rpseudo-cell or shuffled-pseudo-cell − rpermuted-cell-ID), we defined a 

correlation threshold (Δr = 0.27 for promoter-CRE and Δr = 0.23 for gene-CRE pairs in 

mouse adult cerebral cortex, and Δr = 0.09 for promoter-CRE pairs and Δr = 0.11 for gene-

CRE pairs in mouse E12.5 and E16.5 forebrains). Only pairs detected by both promoter-

CRE and gene-CRE were preserved. Using the same criteria, less than 10% of pairs were 

identified from shuffled-pseudo-cells; FDR was estimated from dividing the number of pairs 

identified from shuffled-pseudo-cells by the number of pairs identified from pseudo-cells.

Diffusion pseudotime analysis:  To order cells in pseudotime, we used diffusion map (R 

package: destiny55) to create a trajectory. First, we selected single cells classified into NP as 

starting points, single cells of dAC were selected as the endpoint for astrogenesis; for 

neurogenesis of both GABAergic and glutamatergic neurons, NP cells were also selected as 

starting points, dIn2 and dEx2 (who present in both fetal and adult mouse brain) were 

selected as endpoints. Next, we computed the mean coordinates of the aforementioned 

combined Hadamard product (H) of each cluster, cells of the top 5% Euclidean distance to 

the mean coordinates were filtered out. We then used diffusion map67 to construct the 

trajectory projection. The cells were ordered according to the main diffusion coordinate 

along the direction of astrogenesis or neurogenesis. For visualization, a combined map of 

NP, dAC, dIn2 and dEx2 were also constructed using the same method. TF motif analyses 

were performed using chromVAR56, the motif hit counts were smoothed to 10 quantiles 
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according to the cell orders. To find TF-motif pairs more likely to be involved in gene 

regulation across the diffusion pseudotime, we computed the pairwise Pearson correlation 

coefficient of log transferred motif hit counts of TFs, expression and promoter accessibility 

of TF encoding genes and filtered the top 30% TF-motif pairs. Heatmaps were ordered 

according to the change of row scaled TF motif enrichment, and smoothed using 

“smooth.spline” with spar=0.5. For the identification of time-of-gain and time-of-loss of 

TFs, the 10-quantiles smoothed enrichment matrices were used: (1) we first identified the 

pseudotime point (tmax) with highest enrichment (Emax), we then identified the pseudotime 

points with lowest enrichment before and after tmax (Emin-1 and Emin-2); (2) for time-of-gain 

and time-of-loss we searched the pseudotime points with enrichment (E) = (Emax − Emin-1)/2 

before tmax (time-of-gain) and E = (Emax − Emin-2)/2 after tmax (time-of-loss), some TFs may 

have fluctuation with multiple such points and only the one nearest to tmax was considered as 

time-of-gain or loss; (3) only TFs with time-of-gain later than 2 and time-of-loss earlier than 

9 were used for further comparison: we only considered the TF motifs with time-of-gain 

later than 2 and time-of-loss earlier than 9, as we cannot distinguish unsynchronized from 

synchronized activation as their relative enrichment was already the highest at the earliest 

pseudotime point (e.g., FOXP1), and vice versa (e.g., MAF, Fig. 4d). To compare the order 

of TF motif activation and TF gene upregulation, a cutoff of Δt = 2 was used to classify 

synchronized and unsynchronized activation.

Analysis of PLAC-seq data—We performed PLAC-seq experiments on mouse E12.5 

and E16.5 forebrain tissues, and applied our recently developed MAPS68 for the downstream 

data analysis. Specifically, we first used “bwa mem” to map the two ends of one paired-end 

reads to the reference genome mm10 separately, and then kept the valid mapped reads, and 

removed PCR duplicates by “samtools rmdup”. Next, we divided intra-chromosomal reads 

into short-range reads (<= 1 kb) and long-range reads (> 1 kb), and used the short-range 

reads to measure ChIP-enrichment level, and the long-range reads to measure chromatin 

interactions. We further binned the autosomal chromosomes (chr1-chr19) into consecutive, 

non-overlapping 10-kb bins, and selected 10-kb bin pairs where at least one bin contains 

H3K4me3 ChIP-seq peaks (since PLAC-seq is designed to measure protein-mediated 

chromatin interactions) for the downstream analysis.

We have shown that PLAC-seq data contain multiple layers of systematic biases, including 

restriction enzyme cutting frequency, GC content, sequence mappability and ChIP-

enrichment level68. To normalize PLAC-seq data, we fitted a positive Poisson regression 

model for the selected 10-kb bin pairs, taking the raw contact frequency as the outcome and 

the aforementioned systematic biases and 1D genomic distance as predictors. We obtained 

expected contact frequency and P-value from the fitted positive Poisson regression model, 

and then converted P-value into false discovery rate (FDR). We defined a 10-kb bin pair as 

candidate significant interaction if the normalized contact frequency (the ratio between 

observed contact frequency and the expected contact frequency) is >=2, and the FDR < 1%. 

We further grouped candidate significant interactions together if they are within 10 kb. If a 

candidate significant interaction has no other significant interaction in neighborhood region, 

we defined it as a singleton, otherwise, we defined it as a peak cluster. Since biologically 

relevant interactions tend to cluster together and singletons are more likely to be false 
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positives, we applied a more stringent FDR threshold 1×10−4 for singletons. The final list of 

significant interactions consists of peak clusters with FDR < 1% and singletons with FDR < 

1×10−4.

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Code Availability

MAPS is freely available at https://github.com/ijuric/MAPS. Custom scripts used in this 

study can be downloaded from https://github.com/cxzhu/paired-seq.

Data Availability

The sequencing data obtained in this study have been deposited to the NCBI Gene 

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE130399. Source data for Figure 1e–g, 2b, 2e, 2f, 3a, 3b and 4b–d are available with the 

paper online. External datasets used in this study are available from GEO: ENCODE DNase-

seq (GSE37074), PolyA-RNA-seq (GSE39524) of mouse NIH/3T3 cells, sci-CAR mixed 

cells datasets (GSE117089), SPLiT-seq (GSE110823), sci-RNA-seq (GSE98561), Drop-seq 

(GSE63269), sci-ATAC-seq (GSE67446) and dscATAC-seq (GSE123581); or from 10X 

genomics website: 10X scRNA-seq (https://www.10xgenomics.com, 

1k_hgmm_v3_nextgem dataset). All other data are available upon request.

Extended Data
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Extended Data Fig. 1. Quality control for Paired-seq libraries.
a, Sequence of Paired-seq products illustrating the structure of DNA barcode combinations. 

b, Paired-seq DNA profiles are enriched around the transcription start sites (TSSs) while (e) 

RNA profiles are enriched at the transcription termination sites (TTSs) in NIH/3T3 cells. As 

comparison, DNA and RNA profiles from sci-CAR were also plotted. c, Proportions of 

DNA and RNA reads in both libraries are shown, n=3 independent experiments. Scatter plots 

showing the correlation of reads from two replicates of Paired-seq (d) DNA profiles or (e) 

RNA profiles. Boxplots showing (f) the fraction of reads around TSS (−1000 to +500 bp) 
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and (g) the faction of reads inside known peaks (GSE:49847) of Paired-seq DNA profiles 

from HEK293T, HepG2 and NIH/3T3 cells. sci-CAR40 datasets (GSE117089) from the 

same cell types were also used for comparison. Scatter plot showing the proportion of 

human and mouse reads in each cell in Paired-seq (h) DNA and (i) RNA profiles. j, Scatter 

plot showing the proportions of both DNA and RNA reads mapped to genomes in the same 

single cells. Cells with more than 80% reads mapped to human and mouse genome were 

colored in red and blue, respectively. UMAP visualization of HepG2 and HEK293T cells 

based on (k) DNA and (l) RNA reads. Cells were colored by density-based clustering from 

each profile and cell identities. The clustering results were also projected to each other. In 

boxplots center lines indicate the median, box limits indicate the first and third quartiles and 

whiskers indicate 1.5x interquartile range (IQR). The sample sizes are provided in the 

Source Data with this paper online.
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Extended Data Fig. 2. Integrative analysis of Paired-seq DNA and RNA profiles from mouse 
adult cerebral cortex.
a, UMAP visualization of co-clustering of nuclei from two replicates. b, Comparison of 

DNA-based, RNA-based and integrated clustering results. Cells were colored based on 

unsupervised clustering from integrated clustering and colored the same as Fig. 2b. c, 

Promoter accessibility and gene expression of several marker genes in the nine major 

groups. Relative promoter accessibilities and gene expressions were indicated in the size and 

the color of circles. d, Expression levels of genes of all clusters are plotted in a boxplot for 
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each quantile of promoter accessibility. e, For each cell cluster, expression levels of genes 

are plotted in a boxplot for each quantile of promoter accessibility. In boxplots center lines 

indicate the median, box limits indicate the first and third quartiles and whiskers indicate 

1.5x interquartile range (IQR).
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Extended Data Fig. 3. Co-clustering of Paired-seq datasets from mouse E12.5, E16.5 forebrain 
and adult cerebral cortex.
a, UMAP visualization of Paired-seq data from two replicates of both mouse E12.5 and 

E16.5 forebrains showing clustering of cells based on cell types, not replicates. b, UMAP 

visualization of Paired-seq data of mouse E12.5, E16.5 forebrains and adult cerebral cortex 

showing clustering of cells based on cell type, not batches. c, Aggregate chromatin 

accessibility (blue) and gene expression (green) profiles for each cell clusters at several 

marker gene loci.
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Extended Data Fig. 4. Paired-seq facilitates the linking of candidate CREs to putative target 
genes in mouse fetal forebrains.
a, Bar charts show the numbers of gene-CRE links identified in mouse E12.5 and E16.5 

forebrain, and adult cerebral cortex datasets. b and c, Barcharts show the fractions of gene-

CRE pairs (b) identified by Paired-seq and supported by PLAC-seq or (c) identified by 

PLAC-seq and supported by Paired-seq. P-value, two-sided Fisher’s exact test. d-o, Number 

of identified CREs linked to each gene, number of identified genes linked to each CRE, 
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number of CREs between CREs and their linked genes, and number of genes between CREs 

and their linked genes in (d-g) E12.5, (h-k) E16.5 forebrain and (l-o) adult cerebral cortex.
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Extended Data Fig. 5. Dynamics of gene-CRE pairing during mouse brain development.
Boxplots showing the number of linked CREs for genes of each group of (a) E12.5 to E16.5 

and (b) E16.5 to Adult. P-value, two-sided K-S test. Genes were classified according the 

number of linked candidate CREs: genes with a gain of CREs (Log2[fold-change] > 3), 

genes with unchanged number of linked CREs (−1 < Log2[fold-change] < 1) and genes with 

a loss of linked CREs (Log2[fold-change] < −3). c, DAVID GO analysis of genes with more 

than 10 linked CREs. d, Top 20 TF genes with the highest number of linked CREs. e, The 

predicted gene-CRE pair for Dlx1 gene in dIn2 cluster. The common links shared by two 

stages of development were shown in grey and the stage-specific links were shown in light- 

and dark-violet red. In the close-up view, the positions of stage-specific CREs were 

indicated by red dashed box. In boxplots center lines indicate the median, box limits indicate 

the first and third quartiles and whiskers indicate 1.5x interquartile range (IQR).
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Extended Data Fig. 6. Analysis of cellular trajectory of developing mouse forebrain.
a-c, Diffusion map showing the single-cell trajectories of neurogenesis towards (a) 

GABAergic neurons, (b) glutamatergic neurons and (c) astrogenesis. d, The combined 

diffusion map corresponding to Fig. 4a was also shown. The cells were colored by stages 

and clusters, respectively. e, Heatmap shows the ordering of the chromVAR TF motif 

enrichments across astrogenesis. The relative expression and promoter accessibility of 

corresponding TF genes were also shown. f, Line plots showing the relative enrichment of 

TF motifs, gene expression and promoter accessibility for STAT3, NFKB1 and SP1 
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according to the diffusion pseudotime for astrogenesis. The estimated time-of-gain and time-

of-loss of TF motif were indicated by red and green rectangles below. g, Pie-charts showing 

the fraction of TFs with the TF gene promoters became accessible before (TF gene first), 

synchronized with, or after (Motif first) the TF motifs became accessible, for neurogenesis 

towards GABAergic neurons, glutamatergic neurons and astrogenesis.
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Fig. 1 |. Paired-seq enables simultaneous profiling of accessible chromatin and gene expression in 
millions of single cells.
a, Schematic of Paired-seq workflow. Paired-seq includes five rounds of combinatorial 

barcoding that enables labeling of millions of cells in one single experiment. In the first 

round, cells are subject to Tn5 transposition followed by reverse transcription in separate 

tubes. This is followed by three rounds of ligation-mediated barcoding carried out in 96-well 

plates using a split and pool strategy. In the final round, DNA barcode tags are first added to 

genomic DNA and cDNA by TdT-assisted DNA tailing. The resulting DNA is PCR 
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amplified with different primers, and subject to restriction digestion to produce separate 

libraries for detecting chromatin accessibility and RNA transcripts. b, A representative 

genome browser view of Paired-seq data from NIH/3T3 cells (Mouse genome assembly 

mm10). Tracks of DNase-seq and RNA-seq data downloaded from ENCODE data portal are 

also shown. Proportions of DNA and RNA reads in both libraries are shown. A zoomed-in 

view of Dnpep gene locus were shown in the bottom right panel, indicated by the light blue 

wedge. Scatter plots show the correlation of read counts from two technical replicates of 

Paired-seq DNA profiles (c) or RNA profiles (d). Boxplots show (e) the number of uniquely 

mapped DNA reads, (f) the number of uniquely RNA mapped reads and (g) the number of 

genes captured per cell from either HEK293T, HepG2 and NIH/3T3 cells. As comparison, 

the numbers of reads or genes captured per cell by sci-CAR40 (GSE117089), sci-ATAC-seq9 

(GSE67446), dscATAC-seq44 (GSE123581), SPLiT-seq42 (GSE110823), sci-RNA-seq45 

(GSE98561), Drop-seq21 (GSE63269) and 10X scRNA-seq (1k_hgmm_v3_nextgem 

dataset) from the same cell types are also shown. All datasets were sequenced or down-

sampled to ~15k raw reads per cell. In boxplots center lines indicate the median, box limits 

indicate the first and third quartiles and whiskers indicate 1.5x interquartile range (IQR). 

Source data for panels e-g are available online; sample sizes are provided there.
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Fig. 2 |. Paired-seq identified major cell types in the mouse cerebral cortex.
a, Schematic of integrated analysis of Paired-seq DNA and RNA profiles. Pairwise similarity 

matrices were first constructed from accessible chromatin and expression profiles of the 

nuclei using the Jaccard similarity index. DNA and RNA matrices are combined into a new 

matrix by calculating the Hadamard product, which is then processed with SnapATAC to 

cluster cells and generate both open chromatin and RNA transcript profiles of each cluster. 

b, Clustering of single nuclei from mouse adult cerebral cortex revealed nine major groups: 

astrocyte (AS), microglia (MG), oligodendrocyte (OC), Glutamatergic neural cells (Ex1, 

Ex2 and Ex3) and GABAergic neural cells (In1, In2 and In3). c, Aggregate chromatin 

accessibility (blue) and gene expression (green) profiles for each cell cluster at several 

marker gene loci. d, Heatmaps show promoter accessibility and the corresponding gene 

expression level of differentially expressed genes. e, Expression levels of genes for each 

cluster are plotted for each quantile of promoter accessibility. In boxplots, center lines 

indicate the median, box limits indicate the first and third quartiles and whiskers indicate 

1.5x interquartile range (IQR). Sample sizes are provided in the Source data available 
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online. f, Pie-chart showing the fractions of CREs accessible in different number of clusters. 

g, Transcription factor motif enrichment analysis for each major group. h, Promoter 

accessibility and gene expression of representative TF genes. Relative promoter 

accessibilities and expression levels of each TF gene are indicated by the size and color of 

circles. Source data for panels b, e and f are available online.
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Fig. 3 |. Paired-seq links candidate cis-regulatory elements to their putative target genes.
Clustering of single nuclei from mouse E12.5 and E16.5 forebrain samples revealed eight 

distinct major groups: neuronal progenitors (NP), glutamatergic neural cells (dEx1, dEx2, 

dEx3), GABAergic neural cells (dIn1, dIn2 and dIn3), and astrocytes (dAS) according to the 

maker genes (Extended Data Fig. 3c.) a, Stacked bar charts showing the percentages of 

different cell clusters identified from E12.5 forebrain, E16.5 forebrain and adult cerebral 

cortex. b, UMAP plot shows the different representation of cell clusters from E12.5 

forebrain, E16.5 forebrain and adult cerebral cortex. c, Schematics for identifying potential 

gene-CRE pairs. d, Venn-diagram showing the fraction of gene-CRE pairs identified from 

Paired-seq and H3K4me3 PLAC-seq data from mouse E12.5 and E16.5 forebrains. e, 

Genome browser view of the Nfia locus. Gene-CRE pairs identified by Paired-seq and 

PLAC-seq data from E16.5 mouse forebrain samples are shown in purple and yellow, 

respectively. Promoter region and 3’UTR of Nfia gene are highlighted in grey. f, Histogram 

of the genomic distances between the candidate CREs and their linked genes. g, Cumulative 

distribution function plot of promoter and CRE dynamics. Genes were grouped into 

unchanged genes and differentially expressed genes according to the fold-change of the 

expression level between E12.5 and E16.5 (Log2[Fold-change]>2). The x-axis is the 

absolute value of fold-change of promoter or CRE accessibility between the two stages. P-

value, two sided K-S test, nI and III = 22,923 unchanged genes and nII and IV = 1,776 

differentially expressed genes. h, Pie-charts showing genes classified according to changes 
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of candidate CREs linked to them: genes with a gain of linked candidate CREs between 

stages (Log2[fold-change] > 3), genes with unchanged number of CREs (−1 < Log2[fold-

change] < 1) and genes with a loss of linked candidate CREs (Log2[fold-change] < −3). i, 
Boxplots showing the fold-change of expression and promoter accessibility of genes in the 3 

groups. P-value, two-sided K-S test. In boxplots center lines indicate the median, box limits 

indicate the first and third quartiles and whiskers indicate 1.5x interquartile range (IQR). 

The sample size of each group is provided in h. Source data for panels a and b are available 

online.
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Fig.4 |. Analysis of cellular trajectory in the developing mouse forebrain.
a, Diffusion map showing the trajectories of astrogenesis and neurogenesis. b, c, Heatmaps 

show the ordering of the chromvAR TF motif enrichments during neurogenesis towards (b) 

GABAergic neurons and (c) glutamatergic neurons. The relative expression and promoter 

accessibility of corresponding TF genes are also shown. d, Line plots showing the relative 

enrichment of TF motifs, gene expression and promoter accessibility for FOXP1, DLX6 and 

MAF according to the diffusion pesudotime for neurogenesis of GABAergic neurons. The 

estimated time-of-gain and time-of-loss of TF motif enrichment in open chromatin are 

indicated by red and green rectangles below. e, Pie-charts of the fraction of TFs showing 

upregulation of TF genes before (TF gene first), synchronized with, or after (Motif first) the 

detection of TF motif enrichment in accessible chromatin during neurogenesis towards 

GABAergic neurons, glutamatergic neurons and astrogenesis. Source data for panels b-d are 

available online.
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