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ABSTRACT

Diet is an important, modifiable lifestyle factor of cardiometabolic disease risk, and an improved diet can delay or even prevent the onset of disease.
Recent evidence suggests that individuals could benefit from diets adapted to their genotype and phenotype: that is, personalized nutrition. A novel
strategy is to tailor diets for groups of individuals according to their metabolic phenotypes (metabotypes). Randomized controlled trials evaluating
metabotype-specific responses and nonresponses are urgently needed to bridge the current gap of knowledge with regard to the efficacy of
personalized strategies in nutrition. In this Perspective, we discuss the concept of metabotyping, review the current literature on metabotyping in
the context of cardiometabolic disease prevention, and suggest potential strategies for metabotype-based nutritional advice for future work. We
also discuss potential determinants of metabotypes, including gut microbiota, and highlight the use of metabolomics to define effective markers
for cardiometabolic disease–related metabotypes. Moreover, we hypothesize that people at high risk for cardiometabolic diseases have distinct
metabotypes and that individuals grouped into specific metabotypes may respond differently to the same diet, which is being tested in a project
of the Joint Programming Initiative: A Healthy Diet for a Healthy Life. Adv Nutr 2020;11:524–532.
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Introduction
Diet is among the most important modifiable lifestyle factors
contributing to cardiometabolic disease risk. Changes in
a diet can delay or even prevent the onset of disease. In
the current work, we define cardiometabolic disease as
various disease entities that are either consequences of or
late stages of the metabolic syndrome. We therefore include
metabolic syndrome, Type 2 diabetes, and cardiovascular
disease endpoints in this definition. Prevention is considered
to be the most sustainable and cost-effective way to manage
chronic diseases (1). While national and international dietary
guidelines serve to promote health and prevent disease from a
population perspective, data from Europe, the United States,

and Australia have clearly shown that these guidelines are
poorly adhered to (2–6). To combat obesity and related
conditions, some individuals may need to follow person-
alized nutrition strategies as a complement to the general
population-based advice. Such recommendations have been
suggested in the most recent advisory report for the Dietary
Guidelines for Americans, based on recent randomized
controlled trials showing that personalized interventions
could lead to greater weight loss than non-personalized
strategies (7). In addition to health status being improved
as a result of improved biological effects when personalizing
the diet, there is also evidence that people are more open to
health-promoting information when it is personalized and
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when the individuals recognize themselves as being highly
susceptible to preventable diseases (8, 9). However, it remains
to be elucidated to what extent personalized nutrition has
advantages over generalized strategies and whether it is
feasible at a large scale (10–12).

Personalized nutrition at the individual level requires not
only the comprehensive collection of information, which
is both costly and demanding, but also models that are
capable of accurately generating personalized advice for the
individual. A more feasible approach may be to personalize
diets at the group level. Over the last 10–15 years, individuals
have been grouped according to genetic set up, for example
based on genetic variants that are associated with disease
risk (13). However, the benefits to public health have been
limited. More recent studies have suggested that individuals
may be grouped according to unique metabolic responses to
foods and dietary changes (14, 15). In fact, what constitutes
a healthy diet may differ across individuals as a consequence
of a number of factors beyond genetics, including health
status, medication, and also the gut microbiota (16–18).
Grouping individuals based on similarities in their metabolic
phenotype—that is, metabotypes—is a novel concept,
and different definitions have been used (19–23). The
underlying idea behind metabotyping is to identify metabolic
phenotypes based on factors such as diet, anthropometric
measures, clinical parameters, metabolomics data, and the
gut microbiota. An optimal diet can then be tailored to fit
each metabotype specifically (Figure 1). In this perspective
article, we discuss the current literature reporting on
metabotypes in the context of cardiometabolic disease and
how metabotyping may be used as a nutritional strategy for
the improved prevention of chronic disease.

Current Status of Knowledge
Definitions and strategies for personalized nutrition
There is currently no overall, generally agreed-upon defi-
nition of personalized nutrition or precision nutrition. As
in other scientific fields under development, concepts have
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been used often without uniform definitions. In the area
of personalized nutrition, concepts adapted to individuals
or groups of individuals have been described: Ordovas and
colleagues (10) defined “stratified and tailored nutrition” as
approaches attempting to tailor diets to groups of individuals
sharing similar characteristics, “personalized nutrition” as
an attempt to deliver nutritional interventions or advice
suited to each individual, and “precision nutrition” as the
most ambitious definition, which implies a quantitative
understanding of the individual, their food intake, and
their phenotype (including health) to offer the nutritional
interventions or advice of the greatest benefits to the
individual. Furthermore, Gonzalez and Betts (24) integrated
dynamics—that is, a time dimension—in their definition of
precision nutrition, aiming to tailor nutrition to best meet
the varying demands and requirements throughout a day,
week, season, or lifespan. Most recently, the North American
Branch of the International Life Sciences Institute convened a
multidisciplinary panel and defined personalized nutrition as
using “individual-specific information, founded in evidence-
based science, to promote dietary behavior change that
may result in measurable health benefits.” In addition, they
suggested 10 guiding principles for personalized nutrition
approaches (25). Here, we use personalized nutrition and
precision nutrition interchangeably, and define it as the most
appropriate diet to maximize health benefits tailored to the
individual or a group of individuals.

It has been suggested that targeted nutritional advice
can be personalized on 3 levels: on the basis of the
current diet (Level 1); on the diet and phenotype, consisting
of anthropometric and biochemical/clinical measurements
(Level 2); or diet, phenotype, and genotype (Level 3)
(26–29). Some evidence suggests that strategies that include
genetic information have greater potential than strategies
based on the background diet and health phenotype alone
for improving health through personalized nutrition (28,
30–32). However, omics techniques other than genomics
may also benefit personalized nutrition, such as analyses
of the microbiome (metagenomics) and the metabolome
(metabolomics), but these techniques have not been included
in the investigation of different personalization levels. Al-
though such omics techniques provide phenotype informa-
tion, represented at Level 2, they hold immense potential
compared to the traditional phenotypic measurements, as
they provide a functional readout of a phenotype at a much
more detailed level. Metabolomics can, to some degree,
reflect food and nutrient consumption, as well as provide
mechanistic evidence of the specific metabolic pathways
impacted by diet (33, 34), and the gut microbiota phenotype
has been shown to modulate physiological responses to diet
(18).

In a landmark article from 2015, Zeevi et al. (16) showed
benefits when adapting diets based on factors underlying
inter-individual differences in post-prandial glucose re-
sponse. In brief, the post-prandial glucose response could be
accurately predicted using a tree-based machine learning al-
gorithm, combining data on gut microbiota, blood markers,
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FIGURE 1 Metabotyping and group-based nutrition in the context of the conventional population-based guidelines and personalized
nutrition.

body composition, diet, and exercise. Next, the authors were
able to perform personalized interventions with “good” and
“bad” diets, capable of affecting post-prandial glucose levels
in a favorable or non-favorable direction. Importantly, what
constituted a “bad diet” for some participants resembled the
“good diet” for other participants, and vice versa. This study
thus showcased the potential to use phenotypic measures in
combination with machine-learning algorithms on biological
big data for precision nutrition at the individual level. The
approach was recently validated in an American cohort of
non-diabetic subjects (35). Similar phenotyping strategies
can be used to identify metabotypes and, thus, personalize
nutrition on a group level.

Metabotyping based on anthropometric and
clinical/biochemical parameters
Metabotyping, where individuals were clustered into meta-
bolic phenotypes based on anthropometric, biochemical,
and clinical cardiometabolic measures, has been suggested
as a potential nutritional strategy (21, 36–42). Riedl et
al. (43) showed that 3 metabotypes, derived from BMI
and 33 biochemical parameters (e.g., blood lipids, glucose,
hormones, and liver enzymes) using k-means clustering,
differed in cardiometabolic disease prevalence and 7-year
disease incidence, thus illustrating the ability to detect
high- and low-risk groups. Krishnan et al. (44) detected
unique, post-prandial leptin and glucose responses for 3
distinct groups of overweight, healthy women in a cross-
over study on high– versus low–glycemic index meals,
using a principal component analysis. Although a firm
link between post-prandial glucose response and long-
term health outcomes has yet to be established among
healthy subjects, differences in post-prandial metabolism
are considered reflective of the metabolic health status of
individuals and serve as a proxy for high-risk groups of
cardiometabolic disease (45). Interestingly, when reanalyzing

data from a weight-loss trial, Ritz and colleagues (46) found
that metabotyping based on fasting glucose and insulin
could predict weight loss from a healthy, Nordic diet rich in
dietary fiber, versus a control diet (46). They also concluded
that these basic measures, although seemingly of clinical
relevance, likely lacked details on metabolic regulation,
and that more complex measurements could provide better
personalized nutrition advice. Moreover, O’Donovan and
colleagues (21) demonstrated a communication strategy
for large-scale, metabotype-based personalized nutrition:
a decision-tree approach providing each participant with
pre-defined dietary messages based on their metabotype,
in combination with their BMI, waist circumference, and
blood pressure. The 3 metabotypes had been identified based
on 4 blood-based, clinical measures: blood glucose, tria-
cylglycerols, total cholesterol, and high-density lipoprotein
cholesterol. Compared to the personalized advice delivered
by a dietitian, the decision tree generated comparable
recommendations.

Gut microbiota as a potential determinant of
metabotype
In recent years, the immense role of the gut microbiota
in cardiometabolic disease has been highlighted, and this
has been an area of intensive research (47–49). The impact
of the gut microbiota on human health could partly be
mediated through the ability of the gut microbiota to
metabolize dietary compounds into new metabolites that
impact disease risk. For example, the bacterial metabolism
of dietary L-carnitine into the metabolites trimethylamine
and trimethylamine N-oxide presents a mechanistic link
of the relationship between red meat consumption and
cardiovascular disease risk (50), and short-chain fatty acids
provide a functional link between gut microbiota, dietary
fiber intake, and several diet-related diseases (51–53).
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FIGURE 2 The graphic illustration of potential determinants of metabotypes and a metabolomics-based strategy for the identification of
biomarkers of metabotypes by using untargeted LC-MS metabolomics. Individuals are grouped into metabotypes based on potential
determinants and their interactions, using certain statistical approaches, such as PC analysis. PC, principal component.

Interestingly, the diet–microbiota interactions have been
shown to vary amongst individuals (54) and appear to be
a determinant of the post-prandial response, as previously
discussed (16). Moreover, even when a diet seemingly
induces more systematic effects on the phenotype, a large part
of the residual variability is associated with the microbiota
in terms of composition and functionality (55). Several
researchers have observed that individuals with similarities
in their microbiota composition also share similarities in
their phenotypic response to exposures. For instance, Romo-
Vaquero et al. (56) observed that the Coriobacteriaceae could
play a central role in urolithin production metabotypes (i.e.,
metabotypes that reflect the unique patterns of microbiota-
derived metabolites from ellagitannin-rich foods), which
in turn were associated with blood cholesterol levels and
cardiometabolic health implications. The grouping of indi-
viduals by microbiota phenotype (enterotype) (57, 58) is a
concept similar to metabotyping, with the important distinc-
tion that enterotyping is based on the microbial composition,
with potential impact on diet–health interactions, whilst the
metabotype partly reflects the activity of the microbiota in
conjunction with dietary exposures and other phenotypic
traits. The enterotype may thus be an important determinant
of the metabotype, and studies investigating enterotyping
in the context of diets can, therefore, provide unique and
valuable insights into how to integrate metabotyping into
precision nutrition (Figure 2).

For example, Kovatcheva-Datchary et al. (18) demon-
strated the potential to predict response to diet on the

enterotype level by showing that the prevalence of Prevotella
determined individuals’ glycemic response to barley-based
bread in healthy adults. The contribution of the enterotype
was further shown by fecal transplants from study partici-
pants to germ-free mice. Improved glucose regulation and
a higher capacity to digest dietary fiber were observed only
in mice of the enterotype rich in Prevotella. Similarly, Korem
and colleagues (17) found low– and high–glucose response
groups after subjects had consumed whole-grain sourdough
bread and refined wheat bread, and the groups could be
accurately predicted based on the baseline gut microbial
composition. Their results suggest that although there may
be underlying, systematic health effects on a population level
for different bread types, that effect could be overshadowed
by systematic variabilities between individuals. Furthermore,
enterotypes based on the relative abundance of the Prevotella
and Bacteroides genera have been shown to impact the re-
sponse to dietary weight loss interventions, where individuals
with a high Prevotella-to-Bacteroides ratio lost more weight
and body fat in response to high-fiber diets, compared to
those with a low bacterial ratio (59).

Taken together, enterotypes may be a key determinant of
phenotypes and be especially useful when personalizing diets
in terms of dietary fiber and glycemic response. Enterotypes
are also considered to influence the metabolisms of other
dietary compounds, such as polyphenols, leading to the
production of enterotype-specific bacterial metabolites (60–
62). However, gut microbial genes, which may be important
for metabolic disease phenotypes, can be present across
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bacterial phyla and also differ between bacterial strains that
otherwise share the same genetic makeup (63). This supports
the idea of metabotyping: that is, that the functionality of the
gut microbiota, rather than the presence of bacteria per se,
may be important for disease prevention.

Metabolites as markers for cardiometabolic disease
metabotypes
Metabolomics may be particularly well suited to discover
metabotypes and the biomarkers thereof, as well as to
unravel how the gut microbiome contributes to variations in
phenotypic responses to diets (Figure 2). Metabolites have
been shown to reflect cardiometabolic disease states and risk
factors (64–67), as well as host and gut microbial genetics and
lifestyle factors (67–69). Moreover, recent studies have shown
that microbiota composition can be effectively mirrored in
both the fecal and plasma metabolomes (68).

Very few studies have been published where
metabolomics has been applied for metabotyping as a means
to set up improved strategies to combat cardiometabolic
diseases. These studies have clustered men and women
into metabolite-derived groups correlated to disease traits,
risk factors, and eating patterns (15, 70–72). Men and
women from a large Irish study, for example, were clustered
according to their plasma fatty acid profile, creating 4 groups
that differed in terms of metabolic syndrome components,
anthropometric measures, dietary habits, and demographics
(70). In another study, urinary metabolites associated with
diabetes were used to divide diabetic and non-diabetic
participants into 4 novel groups (71). Differences in plasma
glucose levels led the authors to speculate on differences in
disease management and the risk of future complications
for the 2 metabotypes with diabetic patients. From a
nutritional perspective, Fiamoncini and colleagues (15)
identified 2 metabolite-based metabotypes, and evaluated
their respective responses to a dietary intervention aimed
at weight loss. In brief, healthy, overweight men and
women were clustered into 2 distinct metabotypes based
on post-prandial concentrations of metabolites related to
lipid metabolism. Individuals belonging to the different
metabotypes also differed in terms of amino acid and
carbohydrate metabolism, post-prandial glucose and insulin
levels, liver lipid contents, intra-abdominal fat mass, and
eating patterns. When challenged with a 12-week weight
loss trial with a reduced caloric intake, only the individuals
with the more disease-associated metabotype showed
improvements in glucose and insulin levels at the end of
the intervention; thus, the study identified a responsive
and a nonresponsive metabotype (15). In another recent
study, Muniandy et al. (72) identified 2 distinct subgroups of
monozygotic twin pairs associated with cardiometabolic risk
factors, high-density lipoprotein cholesterol, and BMI using
metabolomics.

A framework for metabotype-based nutritional advice
Given the heterogeneity in choices of variables which can be
used to cluster into metabotypes, it is difficult to compare

metabotypes between studies and populations (40). In fact,
obtained metabotypes should be carefully assessed and
validated against underlying research questions and, con-
sequently, clustering variables. Planning the experimental
study design also encompasses the choice between baseline
(fasting or not fasting) and post-prandial samples, biological
samples (blood, urine, or fecal samples), and continuous
sampling to evaluate responses over time; these decisions are
closely linked to the choice of study endpoints. Choosing
statistical approaches for deciphering metabotypes from the
large and complex data sets will be an instrumental part of
future metabotyping studies and presents a great challenge
at present. Part of the difficulty lies in how to handle and
weigh the vastly different types of data. Appropriate data
analytical methods will not only dictate how metabotypes
are defined, but also reproducibility across research groups
and, subsequently, generalizability across study populations.
Although beyond the scope of this perspectives article, we
note that arbitrary selection of the number of metabotypes
seems to be a common practice to date; however, there are
objective methods that select the ultimate number of clusters,
as demonstrated by Riedl et al. (40).

Whilst the discovery of metabotypes may be complex
and require careful consideration, metabotyping should
preferably be simple, rapid, and affordable once metabotypes
have been defined and validated. Biomarkers suitable for
large-scale applications are needed, and we encourage the
consideration of metabotype biomarker evaluation and
validation in future metabotyping studies (Figure 2). Blood
biomarkers could be useful, as they can be measured
repeatedly and continuously, whilst other biological samples
(e.g., fecal samples) may be more difficult to collect at defined
time points and close time intervals. Moreover, work is
needed to evaluate potential underlying mechanistic links
and to identify traits of the metabolic phenotype undetected
by measurements of a few traditional risk factors, and it
may require the inclusion of other data domains, such as gut
microbiota and the entire metabolome. Metabolites present
as interesting candidates: they may not only be reflective
of metabotypes and responses but have the advantage
of being present in several biological specimens, such as
blood, urine, and stool. On the other hand, future work
should assess whether grouping individuals based on a small
number of anthropometric, clinical, or other easily measured
parameters alone might be adequate to identify those diets
that would be optimal for specific metabotypes. This is
relevant to make personalized nutrition more feasible and
cost-effective in clinical practice.

Performing dietary intervention trials that evaluate
metabotype-specific responses is a fundamental step re-
quired to bridge the current gap of knowledge with regard
to the efficacy of personalized strategies in nutrition. In
an ongoing Joint Programming Initiative, A Healthy Diet
for a Healthy Life project, “Diet × gut microbiome-based
metabotypes to determine cardio-metabolic risk and tai-
lor intervention strategies for improved health” (73), we
have hypothesized that adults at high risk of developing
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cardiometabolic disease will have different responses to
fermentable dietary fibers, dependent on their metabotypes
and specific diet–gut microbiota interactions. The idea is
to define metabotypes based on the subjects’ metabolomes
in the context of the gut bacterial profiles, host genet-
ics, lifestyle factors, anthropometric measures, and dietary
profile. We will next test our hypothesis in a separate
study population using a randomized controlled cross-over
dietary intervention; we will investigate the stability of
the metabotypes throughout the intervention and research
whether it is possible to shift an unhealthy metabotype into
a more healthy metabotype. Although the primary endpoint
will be postprandial glucose, we will also evaluate other
parameters that are important for cardiometabolic diseases,
including blood pressure, blood lipids, and circulating C-
reactive protein, as a proxy for systemic inflammation. Our
study will allow us to not only investigate a new approach for
personalized nutrition, but also to provide estimates of the
efficacy of such interventions.

Along with short-term interventions to evaluate the
effects of specific dietary interventions across metabotypes
on cardiometabolic risk factors, long-term studies to evaluate
adherence to metabotype-specific diets and their role for
hard endpoints are warranted, but difficult to perform.
However, metabotyping may also be used in an observational
setting in prospective cohort studies. Such a study setting
would allow for the assessment of long-term reproducibility
of reported metabotypes and could be used to deduce
potential biomarkers, as well as to investigate their gener-
alizability across populations. Recent studies suggest that
distinct metabotypes (and enterotypes) may be present
across populations (21, 74), although the prevalence of a
given metabotype may vary between countries (21). More-
over, metabolite-based metabotypes have been shown to be
stable over several years (75, 76), yet some metabolites have
shown higher conservation than others (76). Interestingly,
metabotype instability per se has been correlated with the
incidence of cardiovascular disease and all-cause mortality
(75).

Practical considerations of implementing
metabotype-based precision nutrition in the
health-care setting
Personalized strategies rely on the premise that advice can be
delivered to individuals or groups of individuals in an effec-
tive manner and that such strategies have been proven to be
effective and economically feasible. Studies assessing health
economic parameters for different personalized strategies,
including metabotyping, are currently lacking and, therefore,
needed. For the delivery of personalized nutrition advice, the
ability of health-care professionals to communicate targeted
nutritional advice, and their likelihood of doing so, will be
instrumental if implementating metabotyping and precision
nutrition in the health-care setting, together with support
from policymakers, society, and other actors (8).

Several communication strategies have been employed to
deliver personalized dietary advice to consumers, differing

in terms of target group, means of communication, and
basis of personalization (77). The previously mentioned work
by O’Donovan and colleagues also investigated the delivery
of metabotype-specific dietary advice on a larger scale (21,
41). Individuals’ willingness and motivation to undergo
metabotyping and nutritional interventions form another
practical aspect that warrants consideration. There is a need
to evaluate attitudes and acceptance towards metabotyping,
as well as other strategies in precision nutrition. In the
meantime, studies investigating attitudes towards genetic
testing as a means to prevent disease can provide some insight
(78–80). For example, these studies have suggested that
adults at high risk for cardiometabolic diseases may be more
motivated to change their health behaviors (78); presenting
with disease risk factors was associated with a higher
willingness to undergo genetic testing, and perceived risks
and family medical history were related to the motivation
to exercise, as well as to modify lifestyle factors, such as diet
and physical activity (79). Yet, the relatively low proportion of
participants (14–33%) who reported improving their health
behavior 3–9 months following genetic testing also raises the
questions of how to achieve high intervention compliance,
lasting changes in health behaviors, and improvements in
health parameters. We believe it is realistic to assume that a
multitude of factors will impact the outcomes and that the
contribution of such factors in specific populations needs to
be addressed.

Concluding Remarks
Metabotyping is a relatively new concept within the area of
personalized nutrition. In the current literature, metabotypes
are often defined either based on clinical and anthropometric
markers (disease-associated metabotypes) or the metabolism
of certain nutrients and dietary components, such as dietary
fiber and polyphenols (diet-associated metabotypes). We
hypothesize that the disease-associated metabotypes—that
is, metabotypes present in those populations at high risk
for cardiometabolic diseases—will affect the response to a
specific diet. We further hypothesize that the gut microbiota
is a key determinant and a modifier of metabotypes, in
addition to habitual diet, genotype, anthropometric mea-
sures, and biochemical and clinical markers. In other words,
the interaction between the host and exogenous exposures
(e.g., diet, drugs, and gut microbiota) is an important
factor regarding dietary response, and identifying such
“functional” metabotypes may offer advantages over “clinical
biomarker–based” metabotypes as well as enterotypes for the
optimization of a diet to an individual for the prevention
of cardiometabolic disease. However, much more work
is needed to investigate whether responses to particular
diets and dietary items are indeed metabotype-specific
and whether diets tailored for metabotypes could lead to
health improvements that are clinically meaningful. Ongoing
and future studies will hopefully: shed light on whether
metabotype clusters can be deduced in general populations,
elucidate potential main determinants and, test whether the
response to specific dietary interventions, such as diets high
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in fermentable fiber, vary across distinct metabotypes. If so,
finding easily measured biomarkers of metabotypes is our
highest priority, to allow the tailoring of diets for optimal
prevention at a large scale.
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