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ABSTRACT

Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting
neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n–3 (ω-3) long-chain PUFA, is
involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and
affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the
placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could
induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence
for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol. Adv Nutr
2020;11:724–735.
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Introduction
Alcohol is a teratogenic compound that can pass through
the placenta, causing damage to the developing embryo.
Prenatal alcohol exposure could damage the brain and other
organs, resulting in developmental disabilities in the affected
children. Collectively, the detrimental effects of alcohol are
classified as fetal-alcohol spectrum disorders (FASDs). Due
to underreporting and inconsistent definitions worldwide,
the true prevalence of FASD is unknown (1), but recent
studies reported a prevalence of ∼4% in Canada (2) and 2–
5% in the United States (3). It is predicted that the numbers
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will only continue to increase with improved detection
methods and tools for FASD diagnosis.

There is no agreed-upon safe amount of alcohol that can
be consumed during pregnancy, and women may be unaware
they are pregnant, as pregnancy may occur unexpectedly.
Thus, it is possible that if alcohol is consumed in the
first few weeks after conception, this could result in FASD.
Therefore, the growing fetus, if exposed to any amount
of alcohol, may have a disruption in its development. In
particular, substantial evidence shows the detrimental impact
of prenatal alcohol exposure on the normal process of fetal
neurogenesis and brain development, as well as the affected
child’s cognitive and intellectual abilities. Despite this, there
is currently no prophylaxis to prevent FASD. Current public
health strategies focus on prevention via education and
counselling to the mother on alcohol abstinence. Since
maternal nutrition has been shown to play a role in FASD
occurrence and severity (4), it is worth exploring nutritional
strategies for FASD.

For the developing brain, the n–3 fatty acid DHA (22:6n–
3) is accepted as an essential nutrient. DHA is enriched in
neuronal membrane phospholipids (5) and has been impli-
cated in multiple brain functions, including neurogenesis and
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neuronal survival (6–8). With alcohol consumption, DHA
concentrations are compromised (see details in the section
below entitled “Prenatal alcohol-induced DHA deficiency”)
and this interferes with brain development (4, 9, 10).
Although consuming alcohol during pregnancy is ill-advised,
this review will focus on the association between DHA and
prenatal alcohol exposure, while also providing evidence on
the potential of DHA as a future therapeutic supplement for
preventing or mitigating the teratogenic effects of alcohol on
brain development and functions.

Current Status of Knowledge
DHA during pregnancy and brain development
The brain is rich in lipids (∼47.4% of dry matter) with
a high concentration of n–3 PUFAs essential for neuronal
development (5). DHA, the most abundant PUFA in the
brain, accounts for 50% of the total brain lipids and between
60% and 80% of the brain membrane phospholipids (11).
DHA is highly esterified to phosphatidylethanolamine and
phosphatidylserine (12, 13). The 6 cis double bonds enable
the kinking of DHA molecules, which prevents packing of
adjacent phospholipid molecules, causing disordered lipid
arrangements in membranes necessary to increase fluidity
by changing the physical-chemical properties (14). DHA
is enriched in the gray matter of the neuronal membrane
and is highest in the synaptic membrane (15, 16). It is
required for optimal neuronal membrane dynamics for the
proper functioning of receptors, ion channels, and proteins
involved in the transport of biochemical molecules and
synapsis. DHA has also been shown to play a critical role in
modulating neurogenesis, myelination, membrane integrity,
signal transduction, neurotransmission, and neuroplasticity
in neurons (15, 17). Overall, optimal DHA concentrations
are required to maintain neuronal membrane structure and
function, which is vital for overall neurological development.

The accretion of DHA is high during fetal and neonatal
brain-growth spurts and continues up to 2 y of life (5, 17). The
third trimester experiences the highest DHA accumulation;
however, this slows down during the late infant stages and
reaches a plateau during early adulthood (5). This confirms
the need for a constant supply of DHA from the fetal stages
to early life (5). Although DHA can be supplied via the diet,
the brain is fully capable of synthesizing DHA endogenously
via the neuroglial cells known as astrocytes (18). These cells
are able to begin the initial desaturation and elongation
steps from the dietary essential fatty acid α-linolenic acid
(ALA; 18:3n–3). Once desaturated and elongated, DHA is
released into the surrounding cerebrospinal fluid, where it
can then be used for multiple structural and functional roles
in the brain (18–20). However, whether the DHA supply
can be met solely by endogenous synthesis in vivo remains
controversial. This arises from studies tracking the entry of
radiolabeled ALA into the rat brain, where it was found
to be almost completely metabolized via β-oxidation into
aqueous β-oxidation products (21). This indicated that the
actual conversion of ALA into DHA was <0.2% (21). Thus,

it appears that the brain depends on the exogenous supply of
DHA more than endogenous synthesis in the brain.

Consequently, the low endogenous production of DHA
renders greater requirements for dietary sources of DHA,
particularly during the brain-growth-spurt period during the
end of pregnancy and throughout lactation. Current guide-
lines for the daily intake by pregnant and lactating women
recommended by the UN FAO is 300 mg EPA + DHA/d,
of which 200 mg should be DHA (22). However, the
current average daily intake is ∼100 mg in the United
States (23) and Canada (24), which is far lower than the
recommended intake. In fact, our recent study targeting
Canadian-Manitoban pregnant mothers’ intakes of DHA
found that only 16.1% of mothers met adequate intake levels
(25). Whether these mothers were consuming alcohol during
pregnancy, and therefore any consequential effect on DHA
concentrations, is unknown. Ultimately, it is evident that
DHA is an important structural component for the growth
of the brain and thus must be supplied at optimal amounts.

Effects of DHA on brain physiology and functions
The functions of DHA on brain development and neurocog-
nition have been shown in both rodent and human studies
(26, 27). This is thought to involve the interaction of DHA
with pathways responsible for the regulation of neurotrans-
mitters (28), neuronal survival (6), and neurotrophins (29,
30), thereby improving cognitive and memory function.

Effects of DHA on neurotransmitters.
The actions of neurotransmitters are vital for proper brain
development and function. DHA has been implicated in
the regulation of many neurobiological systems, such as the
glutamatergic system, dopaminergic system, noradrenergic
system, and serotonergic system (31–33) and their related
receptors. For example, Tang et al. (34) found that maternal
DHA deficiency led to a reduction in hippocampal cell
proliferation in neonatal female rat pups, in which the brain
membrane DHA was positively associated with metabolism
and turnover of glutamate and serotonin.

In addition, DHA increases synapsin and glutamate
receptor expressions, whereas the lack thereof decreases their
protein concentrations in hippocampal neurons (32). γ -
Aminobutyric acid (GABA) is an inhibitory neurotransmit-
ter that decreases neuronal excitability, thus reducing neuron
activity. DHA inhibits GABA activity by desensitizing GABA
receptors through altering lipid bilayer fluidity (35, 36).
Another neurotransmitter, dopamine, plays a major role in
reward-motivated behavior, motor control, and vasodilation.
In a mouse model, DHA feeding partially restored dopamin-
ergic neuronal system activity (37) and increased dopamine
concentrations in the hypothalamus (38). Decreased brain
DHA also caused a reduction in dopamine receptors in
female rats (39). Other studies reported the effects of DHA
on increasing neurotransmitters, such as noradrenaline (40)
and acetylcholine (41).

Overall, it is believed the mechanistic actions of DHA on
neurotransmitters, particularly during brain development,
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FIGURE 1 DHA supplementation protects the developing brain
against prenatal alcohol exposure. The negative effects of maternal
alcohol and/or DHA deficiency on physiological processes will
have detrimental consequences on the development or
physiological functioning of the offspring’s brain. The positive
effects of maternal DHA on physiological processes will potentially
have beneficial consequences on the development or
physiological functioning of the offspring’s brain. BDNF,
brain-derived neurotrophic factor; Gpx1, glutathione peroxidase-1;
GR, glutathione reductase; GSH, reduced glutathione; ROS, reactive
oxygen species; SOD, superoxide dismutase.

are on their metabolism and regulation (28, 42). These
findings underline the importance of DHA in the develop-
ment and functioning of the brain through the regulation of
its neurotransmitters. A deficiency of DHA may impair or
reduce neurogenesis and neural communications. Prenatal
and postnatal DHA supplementation could improve deficits
in memory, social behavior, and other cognitive functions by
increasing neurogenesis and modulating neurotransmitter
activities (Figure 1).

Effects of DHA on neurotrophins.
Neurotrophins, or neurotrophic factors, play vital roles in
proper brain development and function. It is also well known
that the disruption of neurotrophins or receptor function
during development could result in long-term changes in
cognition, memory formation, and mood (43). The timing
of neurogenesis, survival, and death of neurons is carefully
orchestrated in consultation with neurotrophin signaling
(43).

While there are several neurotrophins, brain-derived
neurotrophic factor (BDNF) is the best characterized (44).
BDNF exhibits a unique expression profile throughout the
development of the brain, with alterations to expression
causing significant and long-term consequences on neuronal
cell structure and function (43). This timing is of vital impor-
tance, and exposure to toxins or stress during gastrulation
and neurulation could influence the expression of these
neurotrophins in a timing-dependent manner (20, 43, 45).

BDNF is abundant in the developing brain and induces its
biological functions by binding to its high-affinity receptor
tropomyosin receptor kinase B (TrkB), which initiates down-
stream activation of the transcription factor cAMP response
element–binding protein (CREB) (20). The activation of

CREB turns on the expression of genes involved in neuronal
survival (46), neurogenesis (47), and plasticity (48). It is
through this mechanism that DHA has been implicated,
as several rodent studies have shown that maternal diets
high in DHA increase the expression of BDNF, TrkB, and
the phosphorylation of CREB (49) in the corresponding
offspring. Although it is not specific to DHA, human
studies have found n–3 PUFA supplementation to increase
BDNF in the peripheral circulation (50, 51), which is
thought to be correlated with overall central nervous system
expression (52). However, whether DHA supplementation
alone during pregnancy renders increased peripheral BDNF
in the developing offspring is unknown.

Effects of DHA in neurogenesis and synaptic plasticity.
The effects of DHA on neurogenesis, synaptic plasticity, and
overall growth of neurons are through its role in regulating
neurotransmitters and neurotrophins. Neurogenesis, neurite
growth, and synaptic plasticity are important physiological
processes that are crucial for brain functions. Although
there is limited evidence available, some data support DHA’s
contributions to these macro-scale processes; however, these
are highly mechanistic studies that used only rodent and/or
cell culture models. Both in vivo and in vitro evidence
showed that DHA stimulates differentiation of neural stem
cells of the hippocampus to mature neurons (53, 54),
indicating the importance of a constant supply of DHA.
DHA’s capacity to differentiate stem cells into neurons also
involves dendritic neurite sprouting, which has been shown
to promote neuronal plasticity (55). When DHA is deficient,
neurite growth in hippocampal neurons decreases in the
affected fetuses (32, 56). Uptake of DHA into neuronal
cells is important for increasing neurite growth in vitro. In
human neuroblastoma cells, an increase in the expression of
the neuron growth–associated protein-43 promoted neurite
outgrowth specifically in response to DHA concentrations
(57).

Synaptic plasticity is another factor determining neuronal
function, as it is required for long-term potentiation (LTP).
LTP of synapses produces long-lasting signal transmission
between the neurons, which improves neuronal functioning.
Experiments with hippocampal slices showed that DHA
supplementation resulted in greater LTP between synapses
(58). All of these findings strongly suggest that DHA
supplementation is required for both brain development
and function through promoting neurogenesis and neurite
outgrowth and improving neuronal plasticity. Animal studies
that found positive effects of maternal DHA or total n–3
PUFAs on various physiological and functional outcomes
in the offspring are shown in Table 1. However, whether
human maternal DHA supplementation during pregnancy
translates into better cognitive outcomes in the offspring
remains controversial.

Effects of DHA on learning and memory functions.
As mentioned, an adequate concentration of DHA is nec-
essary for optimal brain function—specifically, perinatal
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TABLE 1 Animal studies showing maternal DHA-mediated benefits on brain physiological and development outcomes of the offspring1

Study Animal model DHA or n–3 PUFA dose Duration of feeding Major outcomes

Tang et al. (34) Pregnant Sprague Dawley rats
(n = 7/group) and neonatal
offspring (n = 6–8/group)

Modified AIN-93G diet with fish
oil (20 g/kg; 25% wt/wt DHA
of total fatty acids) vs.
control diet with soybean oil
(50 g/kg)

Throughout gestation
(3 wk)

DHA deficiency impaired
offspring
serotonin/glutamatergic
system; also reduced
neurogenesis in
hippocampus compared
with DHA-supplemented
group

Matsui et al.
(33)

Pregnant wild-type/SERT-KO
C57BL/6 mice
(n = 3–4/group) and
offspring (variable;
5–10/group)

Modified AIN-93G diet with 1%
ethyl ester DHA (wt/wt of
diet) vs. no-DHA control diet

Throughout gestation,
lactation and to
postnatal day 60–70

DHA decreased offspring
dopamine content in
striatum of stressed SERT
mice, while improving
socialization

Balogun et al.
(29)

Pregnant C57BL/6 mouse
dams (n = 6/group) and
offspring (n = 6/group)

Modified AIN-93G diet with
20% fat, high n–3 PUFAs
(3.19% DHA wt/wt of total
fatty acids) vs. low n–3 PUFA
diet (0.39% DHA wt/wt of
total fatty acids)

Throughout gestation,
lactation, and 16 wk
postweaning

High n–3 PUFA diet increased
offspring cortical DHA and
BDNF at weaning and 16 wk
postweaning, which led to
increased activation of CREB

Bhatia et al. (20) Pregnant Sprague Dawley rats
(variable) and offspring
(n = 5–7/group)

Modified AIN-93G diet with
1.2% DHA wt/wt of diet vs. a
diet without DHA

Throughout gestation,
lactation, and 15 wk
postweaning

DHA deficiency decreased
offspring brain DHA and
BDNF signaling (CREB
activation) in frontal cortex,
hippocampus, and
hypothalamus

Cao et al. (32) Pregnant C57BL/6 mice
(unspecified n value) to
obtain fetuses at gestational
day 18 for ex vivo neuronal
cultures (unspecified n
value)

Modified AIN-93G diet with
DHA (DHASCO; 0.3%, wt/wt
diet) vs. no DHA control diet

Fed for 16 d throughout
gestation (days 2–18)

DHA supplementation
increased fetal synaptic
activation, glutamatergic
activity; also increased
neurite growth

Calderon and
Kim (56)

Pregnant Sprague Dawley rats
(unspecified n value) and
fetuses at gestational day 18
for ex vivo neuronal cultures
(unspecified n value)

NIH diet with DHA at 2.5 mol%
of total fatty acids vs. diets
with no DHA

Fed for 16 d throughout
gestation (days 2–18)

DHA supplementation
increased fetal hippocampal
neurite branches in length
and number

1BDNF, brain-derived neurotrophic factor; CREB, cAMP response element–binding protein; DHASCO, DHA-rich Single Cell Oil; KO-, knockout; SERT, serotonin transporter.

concentrations of DHA are critical for learning and memory
functions (59). When DHA is deficient in the young-adult
human brain, it results in impairment in learning ability
and memory function (60). A 58% decrease in rat brain
DHA is associated with impairment in spatial learning (61).
However, this deficit may not be permanent, as providing
dietary DHA during pregnancy and lactation to mice during
this deficient state was shown to improve memory and
learning ability (62). DHA also increased rat hippocam-
pus concentrations of Ca2+/calmodulin-dependent protein
kinase II, CREB, BDNF, and synapsin 1, which were
associated with improvement in short-term memory in rats
(63).

In human trials, a follow-up study in children at 39 mo
of age showed that, when feeding DHA-enriched infant
formula for 1 y, they had better visual and cognitive
development compared with those fed a control formula
with no added DHA (64). In another randomized controlled
trial, supplementation with infant formula containing DHA

(0.35%) resulted in an improved Mental Development Index,
a measurement of early cognitive and language develop-
ment, compared with a control group (formula with no
DHA) (65); however, no difference between the control and
DHA-supplemented group was observed at a 4-y follow-up
measurement (66). Furthermore, randomized clinical trials
showed DHA supplementation in cereal bars (300 mg/d
DHA) and fish oil (2.2 g/d DHA) during pregnancy improved
neurocognitive development in infants (67, 68). The results
showed improvements in problem solving and hand–eye
coordination compared with the placebo group (67, 68).
Overall, DHA provision during pregnancy appears to be
vital for the proper growth, development, and protection of
the fetal brain and, when limited, may cause alterations in
brain structure and functions. Therefore, it is conceivable
that any insults that may occur with environmental factors,
such as alcohol, may have a large impact on fetal brain
development, particularly when co-occurring with a DHA
deficiency during pregnancy.
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Effects of alcohol on the developing brain
The brain is the most vulnerable organ of the body during
prenatal alcohol exposure. In fact, severe cases of FASD
are marked by microcephaly and central nervous system
impairment. However, only a few human studies are avail-
able that assessed the biochemical or molecular alterations
induced by prenatal alcohol exposure and these were limited
to postnatal brain imaging (69). Therefore, much of the
current evidence collected on the molecular impacts of
prenatal alcohol is via animal and human in vitro and
animal in vivo studies. From this it has been proposed that
alcohol-induced neuronal death during the prenatal period
is due to oxidative stress (10), neuroinflammation (70), and
neurotrophin dysregulation (71).

Proposed prenatal alcohol-induced brain damage:
oxidative stress, inflammation, and apoptosis
Effects of alcohol on oxidative stress.
The 3 classical methods of alcohol metabolism are via the
alcohol dehydrogenase, cytochrome P450-2E1 (CYP2E1),
and catalase. These systems render formation of various
levels of alcohol-induced oxidative stress. This oxidative
stress is in the form of superoxide (O2

−•) and hydroperoxyl
(HO2

•) free radicals, which results in lipid peroxidation,
causing membrane disruption, enzymatic dysfunction, en-
doplasmic reticulum (ER) stress, and chromosomal alter-
ations. When alcohol is metabolized, CYP2E1-mediated
alcohol metabolism produces acetaldehyde and hydrogen
peroxide, which then interact with copper/iron, producing
reactive oxygen species (ROS) in the brain. Acetaldehyde
promotes ROS and NO generation through activation of
NAD(P)H/xanthine oxidase and NO synthase (72). Alde-
hyde dehydrogenase converts acetaldehyde to acetate, while
producing NAD(H). Excessive decreases in the NAD+ to
NAD(H) ratio increases superoxide radicals (73). These
free radicals are then neutralized by antioxidative enzymes
(glutathione peroxidase, superoxide dismutase, and glu-
tathione reductase) and the molecule reduced glutathione
(GSH); however, alcohol reduces the activities of these
enzymes while the alcohol-generated ROS depletes the GSH
pool (74). This alcohol-mediated oxidative stress leads to
neuronal membrane damage by increasing lipid and protein
peroxidation (75), disturbing membrane integrity, which
ultimately is thought to lead to neuronal death. Overall,
in utero alcohol exposure increases ROS concentrations
and subsequent oxidative stress, which are thought to be
responsible for the subsequent neuroinflammation through
activation of inflammatory cytokines (76, 77), which is then
followed by neuronal apoptosis in the developing brain
(78, 79).

Effects of alcohol on neuroinflammation.
Recent reports suggest that neuroimmune activation and in-
flammation play a role in the alcohol-induced neurotoxicity
(80, 81). For example, Terasaki and Schwarz (82) found rat
dams fed a low-to-moderate dose of alcohol (blood alcohol:
70 mg/dL; ∼1–2 drinks per sitting for humans) increased
fetal hippocampus and cerebral cortex proinflammatory

cytokines (TNF-ɑ, IL-5, IL-21) and chemokines [chemokine
ligands (CCL) 3, CCL6, CCL9, and the chemokine re-
ceptor 2 (CCR2) compared with controls that were not
prenatal alcohol-exposed. Additionally, the hippocampus has
also been shown to upregulate Toll-IL-1 receptor domain-
containing adaptor protein inducing IFN-β (TRIF), TNF-ɑ,
and IL-1β in rats after being prenatally exposed to alcohol
(80). These alcohol-induced cellular immune cascades have
been associated with the activation of microglia, which is
thought to be via the activation of Toll-like receptor 4 (TLR4)
(81). Other rodent studies have also linked alcohol exposure
during the perinatal and neonatal period to microglial
activation, the release of cytokines, and later-life cognitive
deficits (83, 84). The adult male offspring, exposed to binge-
alcohol consumption (blood alcohol: 79 mg/dL) during pre-
and early posnatally, had motor coordination and spatial
working memory impairments (84). Interestingly, these
behavioral effects were associated with an upregulation of
proinflammatory signaling (TLR4, NF-κB, p65, caspase-1,
and IL-1β), gliosis (glial cell reaction to injury), a reduction
in several structural myelin proteins, and ultimately neuronal
cell death in both the prefrontal cortex and hippocampus of
adult mice exposed to alcohol.

Ultimately, this dysregulated neuronal immune response
is associated with neuronal death and later-life cognitive
impairment; however, the exact mechanism of the altered
regulation and expression of these cytokines remains elusive.

Effects of alcohol on neurotrophins.
As a double-edged sword, the underlying processes of neu-
ronal death are also coupled with a reduction in neurogenesis
and protection via BDNF. A recent review by Boschen and
Klintsova (71) covered extensively the effect of prenatal
alcohol exposure on brain neurotrophin regulation during
development. The authors found that the effect of alcohol
exposure on neurotrophins and their receptor expression
in the developing brain was highly dependent on alcohol
dose, timing of exposure, route of exposure, and the brain
region studied (71), which is in agreement with the severity
of FASD as reviewed by Young et al. (4). BDNF, a well-
studied neurotrophin in rodent models, has demonstrated
downstream signaling changes in various brain regions
after prenatal alcohol exposure (70). For example, following
alcohol exposure [3 g · kg−1 · d−1 via gastric intubation;
equivalent to a moderate alcohol dose similar to the amount
reached by women having 1–2 drinks within 1 h (85)]
between gestational days 5 and 20, BDNF protein and
mRNA were reduced in the rat cortex and hippocampus
when assessed on postnatal day (PD) 7–8 (85). Additionally,
prenatal alcohol exposure has also been shown to alter
concentrations of the TrkB receptor, the high-affinity BDNF
receptor, inhibiting the phosphorylation of TrkB on PD 7–
8 while leaving the total amount of TrkB unchanged (86).
Therefore, it can be postulated that downstream BDNF-
induced CREB activation is reduced, rendering a reduction
in neurogenesis, LTP, and neuronal protection mechanisms
in the fetal brain. However, no studies to date have assessed
whether any intervention or treatment can be given to
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attenuate the effects of alcohol on the developing brain’s
neurotrophin signaling.

Not only does alcohol have a direct effect on BDNF but
it has also been shown to influence BDNF via the widely
distributed N-methyl-D-aspartic acid (NMDA) and GABA
receptors. The effects of alcohol on the glutamatergic NMDA
receptor antagonist and GABAA receptor agonist are well
known. These receptors are also affected by neurotrophins,
like BDNF, and present a potential area of cross-talk between
BDNF and alcohol action (71, 87).

Protective effects of DHA: potential therapeutic during
prenatal alcohol exposure?
The effects of prenatal alcohol exposure on the developing
offspring’s brain have shown the need for targets to help
prevent or mitigate FASD. Interestingly, many of the mech-
anisms described have been shown to be affected by DHA.
Thus, in the following sections we will describe what is
known about DHA supplementation during prenatal alcohol
exposure and the evidence to support its use as a potential
therapeutic.

Effects of DHA on alcohol-induced neuronal oxidative
stress.
Although DHA is not an antioxidant molecule itself, it
has been shown to upregulate antioxidant mechanisms.
Induction of heme oxygenase-1 promotes antioxidant
activity, which has been shown to protect neuronal cells
and neuroplasticity (88). In vitro studies using 30 μM
DHA was shown to induce heme oxygenase-1 expression
by activating protein kinase-B and extracellular signal–
regulated kinase pathways and to decrease NO synthesis
by reducing NO synthase expression in microglial cells
(89). Haorah et al. (72) showed a marked increase in
the lipid peroxidation product 4-hydroxynonenal, while
decreasing neurofilaments with alcohol exposure. While
lipid peroxidation may decrease DHA concentrations, this
could be normalized with supplementation or increased
intake. This may stabilize neuronal membranes and prevent
neuronal cell damage. A study by Patten et al. (90) showed
that a fish-oil–enriched maternal diet containing 10% fat
(24.6% DHA, %wt/wt) increased the antioxidant GSH, which
was accompanied by a reduction in lipid peroxidation in
certain brain regions in rat offspring, compared with a diet
containing no DHA. In their follow-up study, Patten et al.
(90) found that the same amount of DHA supplementation
resulted in functional improvement in the prenatal alcohol-
exposed brain as evidenced by reversing long-term deficits in
synaptic plasticity. These findings suggest that DHA together
with antioxidants could protect against alcohol-induced
oxidative damage on developing neurons.

Alcohol-induced oxidative stress, via ROS, has also
been linked to ER stress in the developing brain (91). As
mentioned earlier, alcohol produces substantial ROS by the
mitochondria, which impairs redox conditions in the ER
(92). This ER stress triggers the unfolded protein response
that initially shuts down protein synthesis and, if prolonged,

renders the activation of apoptosis (93). Inhibition in
protein synthesis causes accumulation or depletion of Ca2+,
disrupting Ca2+ homeostasis. This could be due to increased
inositol triphosphate receptors (IP3R), ryanodine receptor-
1, or the inactivation of sarco/endoplasmic reticulum Ca2+

ATPase could be the underlying mechanism. This is where
DHA has been shown to have effects on, by inhibiting the
IP3R pathway, preventing Ca2+ depletion, and reducing ER
stress (94, 95). Another potential pathway for DHA to inhibit
ER stress is via the previously discussed neurotrophin BDNF.
BDNF has been shown to suppress ER stress (96), whereas
a maternal diet providing 1.25% (wt/wt of total fat) DHA
increased BDNF in the brains of offspring (63). Therefore, the
DHA-induced BDNF expression and its effect on ER stress in
the developing brain should be further explored.

Ultimately, preventing ER stress could be an underlying
mechanism by which DHA reduces ROS production. Inter-
estingly, a recent clinical study showed that when pregnant
women were supplemented with a dairy drink containing
EPA + DHA (400 mg/d), both mothers and neonates had
significantly lower oxidative stress levels compared with
a control group that received a regular dairy drink (97).
Therefore, preventing or reducing oxidative stress levels by
DHA could be a major cellular mechanism through which
DHA prevents alcohol-induced neural damage.

Effects of DHA on alcohol-induced neuroinflammation.
Alcohol-induced neuronal damage is also linked to neuroin-
flammation through activation of inflammatory cytokines
such as IL-6, TNF-α, and transforming growth factor (76,
77). Resolvin, a bioactive metabolite of DHA, has anti-
inflammatory properties (98) that decrease inflammation
in microglial cell cultures (99). DHA could directly block
microglia-mediated activation of the transcription factor
NF-κB, which initiates multiple inflammatory processes
(100). DHA also targets cyclooxygenase-2 (COX2) to re-
duce neuroinflammation (101) by decreasing the formation
of the arachidonic acid (C20:4n–6)–derived inflammatory
eicosanoids. In 1 study, binge alcohol exposure in rats led
to increased aquaporin 4 (AQ4), proinflammatory phos-
pholipase A2 (PLA2), and poly[ADP ribose]polymerase 1
(PARP1) in brain regions with extensive neurodegeneration.
In the same study, in vitro supplementation with DHA
blocked AQ4, PLA2, and PARP1 in rat hippocampal slices,
supporting its anti-inflammatory action for neuronal protec-
tion (102). These studies all indicate that DHA supplementa-
tion may block alcohol-induced increases in neuroinflamma-
tion and neurodegeneration. However, whether DHA supple-
mentation during prenatal alcohol exposure has an effect on
cytokines and microglial responses is yet to be determined.

Effects of DHA on alcohol-induced neuronal apoptosis.
The loss of neurons with alcohol exposure culminates
in memory loss and cognitive decline. The final step of
alcohol-induced neurodegeneration involves apoptosis
(103). Apoptotic signaling operates by activating either the
extrinsic pathway mediated by caspase-8 or the intrinsic
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(mitochondria-associated) pathway mediated through the
apoptosis-inducing factor. The extrinsic pathway goes
through a cascade of caspase activation and suppression of
B cell lymphoma (Bcl)-2 and Bcl-extra large, whereas the
mitochondrial pathway results in DNA damage via PARP
activation (104). Both pathways trigger cell death and pave
the way for clearance by macrophages and other cell types.
Alcohol consumption greatly affects hippocampal growth,
development, and life of neuronal cells by apoptosis and neu-
ron cell death (105). In vitro evidence using the hippocampal
cultures from rats showed that alcohol-exposed samples had
a higher rate of apoptotic death, which was accompanied by
decreased DHA-enriched phosphatidylserine accumulation
(106). DHA-phosphatidylserine accumulation is known to
protect against apoptosis; therefore, the supply of DHA may
be critically important with increased alcohol exposure.
Another DHA metabolite, neuroprotectin D1, produced
through the release of unesterified DHA released by PLA2,
is a strong inhibitor of oxidative stress–induced apoptosis
and COX2 (107). Neuroprotectin D1 via COX2 exerts
neuroprotection through inhibition of proinflammatory
signaling and leukocyte infiltration (108).

Collectively, evidence from both in vitro and in vivo
studies suggests that DHA supplementation could preserve
neuronal functions by improving membrane integrity and
synaptic plasticity and prevent alcohol-induced neurodegen-
eration through reducing oxidative stress, lipid peroxidation,
inflammation, and apoptosis. Whether DHA supplementa-
tion during prenatal alcohol exposure has an effect on BDNF
expression, and whether this is protective against apoptosis
in the brain, requires further study.

Prenatal alcohol-induced DHA deficiency
As mentioned earlier, the average pregnant North American
woman does not consume enough DHA according to
recommendations, which renders low concentrations for
the developing fetal brain. Additionally, pregnant women
consuming alcohol have decreased maternal intake of n–3
PUFA or DHA foods (109); thus, maternal DHA status and
the placental transfer of DHA to the fetus are also decreased
(110). May et al. (111) found that South African mothers
of children with FASD consumed more total nutrients
[protein, vitamin E, C, vitamin B-6, magnesium, phosphorus,
EPA, DHA, and docosapentaenoic acid (DPA, C22:5n–3)]
compared with their nondrinking controls; however, all
mothers were still deficient in these nutrients. Although
mothers with FASD children consumed more nutrients,
this difference did not lead to any protective or enhanced
developmental outcome (109), which may have been due to
multiple factors including nutrient absorption and transport
or competition with alcohol in the intestine. For instance,
placental fatty acid transport is concentration gradient
dependent and has a preference towards DHA via fatty acid–
binding proteins (110, 112); thus, alcohol may attenuate
placental transportation and reduce the supply of DHA to
the fetus. For example, an ex vivo experiment found that
DHA transport across the human placenta to the developing

fetus is decreased when in the presence of alcohol (110).
Whether this ex vivo finding also occurs in vivo requires
further verification.

Interestingly, this potential reduction in DHA transport
to the developing fetal brain via the placenta may account
for the observed reduction in brain DHA (113). Experiments
on guinea pigs showed that alcohol administration decreased
DHA concentrations in fetal brain phospholipids (113).
However, whether this finding is true for human feto-
placental transport and DHA accumulation in the developing
brain requires further elucidation.

Effects of DHA supplementation on pregnancy
outcomes and cognitive function: efficacy and
effectiveness on the implications for FASD
As described above, the information with regard to the
use of DHA as a therapeutic agent during prenatal alcohol
exposure is limited, specifically to animal in vivo and in
vitro models. Although these studies show its effectiveness
against alcohol insult, the question arises as to whether DHA
supplementation in human models is effective. No study to
date has been done on maternal alcohol consumption and
DHA supplementation; therefore, we are limited to clinical
trials involving maternal DHA supplementation and their
overall effect on pregnancy outcomes, including cognition.

Effects of DHA supplementation on pregnancy outcomes.
Many studies have reported the benefits of n–3 PUFA
(DHA and EPA) supplementation on pregnancy outcomes
(108, 109). According to the 2006 Cochrane review, n–3
PUFA supplementation during gestation resulted in higher
birth weight and size in infants (114). In addition, a meta-
analysis of randomized clinical trials reported that high-
risk pregnancies benefited from supplementation with n–3
PUFAs (115). Furthermore, dietary studies showed that the
consumption of n–3 PUFA–rich oily fish (4–5 times/mo)
was positively correlated to neonatal weight and head
circumference, whereas lean fish consumption (low in n–
3 PUFAs) was negatively correlated with these outcomes
(116). Therefore, the evidence suggests that supplementation
or optimal dietary intake of n–3 PUFAs could potentially
improve pregnancy outcomes in women consuming alcohol
during pregnancy.

As shown above, most studies used mixtures of n–
3 PUFAs and reported beneficial outcomes at the end
of pregnancy; only a few studies used DHA alone. A
recently published article that re-analyzed 2 clinical trials
[Donor Milk for Improved Neurodevelopmental Outcomes
(DOMInO) (117) and Kansas University DHA Outcome
Study (KUDOS) (118)] showed a significant reduction in
the incidence of preterm birth with 800 mg (DOMInO) and
600 mg (KUDOS)/d of DHA supplementation in pregnant
women from Australia and the United States (119). A study
involving African-American women living in low-income
environments, who are at risk of poor nutrition during
pregnancy, found that DHA supplementation improved birth
weight (120). Additionally, Harris et al. (121) showed that 300
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TABLE 2 Clinical evidence showing DHA-mediated benefits on pregnancy and cognitive development of the offspring1

Study

Study population and
number of participants

in the DHA group
DHA dose (other

ingredients)
Duration of

supplementation Major outcomes

Prenatal supplementation
Keenan et al. (120) Low-income African

American pregnant
women, n = 43

450 mg/d 6 wk (starting 16–21
wk of gestation)

Increased birth weight and cortisol
response compared with soybean
oil placebo group

Carlson et al. (118) Pregnant women (8–16
wk of gestation),
n = 178

600 mg/d (algae oil
capsules)

24–32 wk (or until
birth)

Increased gestation duration and
infant size compared with
soybean/corn oil placebo group

Innis and Friesen (122) Pregnant women, n = 67 400 mg/d 16 wk of gestation to
delivery

Improved visual acuity compared
with corn/soybean oil placebo
group

Dunstan et al. (67) Pregnant women, n = 52 2.2 g/d (in fish oil with 1.1 g
EPA)

19 wk (starting 20 wk
of gestation)

Improvement in child’s eye and hand
coordination compared with olive
oil placebo group

Judge et al. (68) Pregnant women, n = 14 300 mg/d (in cereal bars) 15 wk (starting 24 wk
of gestation)

Improved problem-solving skills at
9 mo old compared with
cereal-based placebo group

Postnatal supplementation
Birch et al. (65) 5-d-old healthy infants,

n = 79
Ad libitum, 0.36% DHA (with

0.72% AA of total fatty
acids, supplemented
with iron)

16 wk Improved visual acuity and IQ
maturation compared with 0.36%
iron + DHA group

1AA, arachidonic acid; IQ, intelligence quotient.

or 600 mg/d of DHA supplementation increased gestational
length. Innis and Friesen (122) also reported that 400 mg/d of
DHA improved visual acuity. Overall, the major findings of
these studies were the benefits of prenatal supplementation
with n–3 PUFAs or DHA alone on birth weight, length,
and, most importantly, gestational length, which are all vital
factors for optimal brain growth.

International recommendations for pregnant women and
mothers are the same as for the general population (22),
which may be suboptimal due to the increased demand
for DHA during embryo development (123). The human
studies discussed in this review show how n–3 PUFAs,
primarily DHA, could alter outcomes of at-risk pregnancies
and improve cognitive functions in children (Table 2). More
clinical supplementation studies are needed to establish
the appropriate dosage for pregnant women, breastfeeding
mothers, infant formulas for term and preterm infants, and
infants at risk of various disease states.

Effects of DHA supplementation on pregnancy outcomes
during prenatal alcohol exposure.
Despite studies showing positive outcomes using DHA
supplementation during pregnancy, there are currently no
known human studies on the protective effects of DHA
supplementation for FASD. A few animal studies, however,
showed promising results. In a rodent study, postnatal
DHA supplementation (10 g · kg−1 · d−1) via artificial
rat milk for 10 d improved behavioral deficits in animals
prenatally exposed to alcohol, while improving postnatal
vocalizations, playing nature, and anxiety in rats (9). Another
study postnatally providing DHA (24.6% of a 10%-fat diet)

after prenatal ethanol exposure showed that it increased
the antioxidant GSH and reduced lipid peroxidation in the
dentate gyrus and cerebellum (10). Thus, DHA can at least
partially reverse the negative effects after prenatal alcohol
exposure.

Although these studies supplemented DHA postnatally,
1 study found that prenatal supplementation with tuna
oil (130 mg DHA/d) increased DHA in the fetal brain of
guinea pigs exposed to alcohol and partially restored motor
function deficits (124). Therefore, if alcohol is consumed
during pregnancy, providing DHA postnatally or prenatally
may mitigate the negative effects on the developing brain.
Although animal studies provide beneficial effects of DHA,
a randomized controlled trial involving alcohol and DHA
during pregnancy is yet to be done. However, a clinical study
in this regard has ethical ramifications. Thus, future studies
should work with an at-risk group in an ethical and respectful
manner to determine if mothers are consuming alcohol
during pregnancy. This will help establish baseline data for
the future follow-up of these alcohol-exposed children and to
determine how DHA played a role on their future prognosis.

Controversies related to DHA supplementation and
cognitive function
The various effects of maternal and/or postnatal DHA or n–3
PUFA supplementation are summarized in Table 2. As stated
previously, the variability in the cognitive and behavioral
results makes it difficult to make a conclusive statement
on the effects of maternal DHA supplementation on infant
brain development. However, many of these studies were
conducted in healthy infants, suggesting that DHA may not
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provide any additional benefits when consumed at higher
amounts than normal recommendations. Providing DHA ex
utero to increase the concentrations to match those in the
womb might be more beneficial for preterm infants (125).
Maintaining optimal DHA concentrations in malnourished
pregnant women and breastfeeding mothers may provide
greater cognitive development in those offspring compared
with offspring of mothers who did not meet optimal DHA
concentrations. The FASD population is deficient in DHA;
thus, there is a strong possibility that DHA supplementation
will benefit infants born to pregnant mothers who consume
alcohol during pregnancy.

Remaining Knowledge Gaps
Clinical evidence is required to further establish the role
of DHA as a therapeutic and/or preventative molecule
against prenatal alcohol-induced developmental deficits on
the brain. We recently conducted a pilot study on food-intake
patterns among pregnant women from a Canadian Indige-
nous reserve, Point Douglas area, in Winnipeg, Manitoba,
Canada. We found that DHA was one of the lowest nutrients
consumed in women exposed to alcohol during pregnancy
(25). Thus, DHA could benefit pregnant women at high risk
of being exposed to alcohol, but we do not know the real
status of their DHA concentrations. In this regard, we are
currently collecting data to determine the nutritional status
of pregnant mothers drinking alcohol in remote First Nation
Communities in northern Manitoba. Once we have sufficient
information, it will be clearer if DHA may indeed be an
important nutrition strategy for those vulnerable mothers.
It is of interest to know whether DHA supplementation
could reverse some of the cognitive deficits seen in children
with FASD. Unfortunately, there are limited human and
animal studies showing the potential of DHA to reverse
the detrimental effects of alcohol on brain development.
Based on earlier evidence, DHA supplementation could
easily increase the status of DHA in the brain, but functional
improvement may be limited by the extent of the damage
caused by prenatal alcohol. However, more research is needed
to examine the effect of DHA replenishment on the brain
of offspring using rodent models after exposure to alcohol
prenatally. This can then be followed up in neonates to adults.

Conclusions
FASD is a pandemic with far-reaching adverse effects on
the individual, family, social, and health care systems.
DHA requirements may be higher in pregnancy for the
optimal development of the fetus. However, directly or
indirectly, alcohol may negatively affect DHA intake, absorp-
tion, and circulating blood concentrations. Supplementation
with DHA necessary for fetal development in pregnant
women who may consume alcohol and who have a low
DHA intake could mitigate the severe effects of prenatal
alcohol exposure. DHA is a potential candidate because it
could increase neurogenesis and plasticity, while reducing
oxidative stress, inflammation, and apoptosis induced by
alcohol exposure in brain. In vitro and in vivo studies with

DHA have shown promise, but more clinical studies are
needed to validate the efficacy and dose of DHA needed
to mitigate the developmental abnormalities due to prenatal
alcohol exposure. Overall, global research must focus on
early detection, treatment, and rehabilitation of individuals
suffering from developmental deficits due to prenatal alcohol
exposure.
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