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Abstract

Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are 

commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated 

with implantation of ECM-based materials range from unacceptable to excellent. The variable 

clinical results are largely due to differences in the preparation of the material, including 

characteristics of the source tissue, the method and efficacy of decellularization, and post-

decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive 

tissue remodeling include mechanical support, degradation and release of bioactive molecules, 

recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the 

immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and 

the impact of these methods on the quality of the final product are described herein. Examples of 

favorable cellular responses of immune and stem cells associated with constructive tissue 

remodeling of ECM bioscaffolds are described.
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1. Introduction: Bioscaffolds Derived from Extracellular Matrix

Biologic materials composed of mammalian extracellular matrix (ECM) have been 

effectively used for the repair and reconstruction of a variety of tissues, including skeletal 

muscle 68,162,229,255, esophagus 12,111,184,185, tendon 16,50,62,90,92, lower urinary tract 
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14,29,142,168,199, and heart 13,89,139,197,217,269, among others 52,87,137,138 in both preclinical 

animal studies and human clinical studies. These studies have largely shown constructive, 

functional tissue remodeling with the partial restoration of site appropriate tissue 9. This 

deviation from the default tissue injury response of inflammation and scar tissue formation 

is consistently associated with modulation of the host innate and adaptive immune response 
7,17,35,36,69 and the recruitment and differentiation of endogenous stem cells 2,23,69. 

However, not all studies in which ECM-based materials have been used report this type of 

constructive healing response 236,260. Alternative and less favorable outcomes include serous 

fluid accumulation at the implant site, rapid degradation of the material with associated 

mechanical failure in load bearing sites, or a lack of biomaterial degradation and an 

associated foreign body response 106,125,218,236,247,260. These alternative outcomes have 

typically been associated with variations in manufacturing methods and/or source tissues. A 

partial list of commercially available ECM bioscaffolds is provided in Table 1 to show the 

variability of source materials and approved clinical indications. The present manuscript 

provides an overview of the effects of production methods upon the quality of and cellular 

response to ECM bioscaffolds.

2. Methods of Preparation

ECM bioscaffolds are typically prepared by the decellularization of mammalian tissue, 

either xenogeneic or allogeneic in origin, to produce a material consisting of the remaining 

native ECM, and the inherent signaling molecules therein. Though simple in principle, the 

manufacturing process of ECM biomaterials is actually quite complex and non-trivial. 

Considerations that must be taken into account include selection of the source tissue, method 

of decellularization, and inclusion of post-decellularization processing steps such as terminal 

sterilization or chemical crosslinking. The choices made at each step of manufacturing can 

markedly affect the physical and biochemical properties of the scaffold and the downstream 

cellular response and remodeling outcome. The characteristics of ECM bioscaffolds that can 

influence cell behavior are summarized in Figure 1 and described in detail below.

2.1. Tissue Source

2.1.1. Species—ECM bioscaffolds are prepared by decellularization and processing of 

source tissues harvested from humans (allogeneic) or other (xenogeneic) species. The 

constituent molecules of the ECM are highly conserved across mammalian species which is 

one of the reasons that devices manufactured from xenogeneic ECM do not elicit an adverse 

inflammatory response when implanted in humans. Basement membrane proteins, such as 

laminin and collagen IV, are some of the most highly evolutionarily conserved proteins 
116,117,141 . High cross-species homology has been observed for other ECM components, 

including collagens 51,73, fibronectin 188, glycosaminoglycans (GAGs) 118,188 and growth 

factors 147. Stated simply, bioactive ECM components are very similar across species; 

therefore similar cellular responses are elicited by allogeneic and xenogeneic bioscaffolds 
131. Importantly, the host immune response and downstream constructive remodeling are 

also similar between ECM-based bioscaffolds derived from different species 35,36.
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Multiple studies have attempted to compare the cellular response to ECM scaffolds from 

xenogeneic and allogeneic sources 8,39,95,127,l43,l83,221,256. However, a systematic 

comparison between bioscaffolds from different species is essentially impossible due to 

numerous confounding variables 131,256. Commercially available biologic scaffolds can 

differ in the source tissue, tissue supplier, processing and sterilization methods, and 

packaging or storage conditions. The majority of the processing steps for commercial 

scaffolds are also proprietary which limits the ability to isolate specific factors that may 

affect the cellular response.

Allogeneic biological scaffolds are procured from cadaveric tissue and therefore allow 

limited control of variables that may affect the ECM properties, such as age or health status 

of the donor 127,131. As discussed in detail below, the age of the source tissue, 

decellularization protocol, and post-decellularization processing can affect the cellular 

response to ECM bioscaffolds. Either innate species-related or age-related changes in the 

ECM between species often necessitate different decellularization or processing protocols 

for the same tissue type harvested from different species 127.

Commercially available human and porcine matrices have shown differences in the growth 

of fibroblasts in vitro 8, and the extent of cellular infiltration 39 and rate of remodeling 183 in 

vivo. VeDepo et al. compared species-specific effects of the same decellularization protocol 

on aortic valve tissue from human and ovine sources 256. In this study, the same 

decellularization protocol was able to effectively remove cellular material from both species, 

despite almost triple the cell density in ovine leaflets compared to human. However, the 

same decellularization process induced different effects on the collagen crosslinking density, 

glycosaminoglycan content and mechanical properties of the ovine versus human tissue 256. 

This study emphasizes the difficulty in isolating the species related differences in the cell 

response to ECM bioscaffolds.

2.1.2. Anatomic Site—The ECM consists of the structural and functional molecules 

secreted by the resident cells of an organ or tissue. Therefore the composition, structural and 

mechanical properties of the ECM vary widely for each tissue and organ 132,140,164,277. As a 

result of these organ-specific differences in structure and composition, the isolation of ECM 

from diverse anatomic sites typically requires a tissue specific decellularization protocol. As 

described above, dissimilarities in the processing of ECM from different tissue anatomic 

locations makes direct comparison of ECM properties between tissues a challenging task. 

The native ECM of a tissue is the optimal substrate for survival, differentiation and function 

of the resident cells. Intuitively it would seem that exogenously implanted ECM bioscaffolds 

from the same tissue anatomic location (homologous) should provide advantages and 

improved outcomes compared to non-homologous ECM. However, in reality the impact of 

the anatomic site of ECM source tissue (homologous vs. heterologous) is often non-intuitive 

and not predictable.

Depending on the context or specific outcome measured, homologous ECM has been 

reported to be superior 57,132,140,164,219,276,293, similar 57,132,140,277 or even inferior 76 to 

heterologous ECM. For example, Keane et al. compared the response of esophageal stem 

cells to hydrogels derived from homologous esophageal mucosa ECM (eECM) and 
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heterologous small intestinal submucosa (SIS-ECM) and urinary bladder (UBM-ECM) 132. 

Each tissue type had a distinct protein profile as indicated by gel chromatography. In vitro 

homologous eECM promoted migration of esophageal stem cells and formation of 

significantly more esophageal organoids than both heterologous ECM types. However, there 

was no difference in the size or number of proliferating cells within an individual organoid 

between eECM and UBM-ECM. In vivo, eECM and UBM-ECM promoted essentially 

identical remodeling of the esophageal mucosa 132. This study suggested that homologous 

ECM does maintain some site-specific favorable properties of the native tissue, but these 

properties may contribute only minimally to the overall remodeling response.

The cell and host response to ECM derived from source tissue of different heterologous 

anatomic sites also varies. The biochemical composition of ECM hydrogels prepared from a 

wide range of heterologous tissue sources can promote different activation states of 

macrophages in vitro 71,166. The mechanical properties of ECM prepared from different 

anatomic locations varies widely and can be misleading with respect to expected 

performance in different clinical applications. ECM bioscaffolds derived from dermis are 

stronger than UBM-ECM and SIS-ECM bioscaffolds. However, despite differences in pre-

implantation strength, UBM-ECM 285 and SIS-ECM 149 have both been reported to promote 

equivalent strength of the implantation site as dermis ECM following tissue integration. 

Further, the ECM scaffolds derived from dermis showed little tissue incorporation and a 

poor remodeling outcome compared to UBM-ECM 285 and SIS-ECM 149.

2.1.3. Age of Source Animal—The age of the source tissue donor affects the 

mechanical properties and composition of the resulting ECM bioscaffold 
153,154,215,231,246,271,272,275. The ECM of fetal and neonatal tissues is enriched in 

glycosaminoglycans such as hyaluronic acid 152,215,245,267 and fibronectin 153 compared to 

adult ECM. Laminin 96, elastin 96,267, and growth factor 246 content is reduced with age. The 

collagen of young animals contains fewer crosslinks than that of adult ECM 155; a factor that 

contributes to more rapid degradation of young ECM compared to the ECM of adults246.

The changes that occur within the native ECM during aging have a direct effect on the in 

vitro and in vivo cellular response and remodeling outcome of decellularized ECM 

bioscaffolds prepared from these tissues. The first systematic examination of the effect of 

source animal age was performed by Tottey et al. in 2011 246. SIS-ECM bioscaffolds were 

produced from pigs that differed only in age (3, 12, 26, or >56 weeks old). Differences in the 

physical and compositional properties of the scaffolds were associated with a distinct 

cellular response in vitro. The ECM from 52 week old animals was significantly less 

chemotactic for perivascular stem cells than the ECM harvested from younger 12 week old 

animals 246. ECM derived from old animals promoted an altered macrophage phenotype 

associated with reduced expression of both pro- and anti-inflammatory markers compared to 

ECM from younger animals in vitro 154. In a pro-inflammatory environment, macrophages 

treated with ECM from 52 week old animals had significantly increased pro-inflammatory 

iNOS expression, decreased MHC-II expression, and decreased nitric oxide production 

compared to macrophages treated with ECM from 12 week old animals 154.
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The host response and remodeling outcome to equivalent SIS-ECM scaffolds were evaluated 

in vivo following implantation in a rat model of abdominal wall repair 228. ECM harvested 

from 3 and 12 week old pigs promoted the formation of more site appropriate skeletal 

muscle than ECM from older pigs. This constructive remodeling response to young ECM 

was associated with a predominately anti-inflammatory (M2-like) macrophage phenotype. 

Implanted scaffolds derived from 52 week old animals elicited limited cellular infiltrate that 

did not completely penetrate the thickness of the scaffold, and the macrophages that did 

infiltrate the matrix comprised a balance of pro-inflammatory (M1-like) and anti-

inflammatory (M2-like) phenotypes. At 6 months post implantation of the 52 week old 

ECM, the site was characterized by deposition of a dense collagenous connective tissue with 

no evidence of innervation or new skeletal muscle formation, a stark contrast to the response 

to ECM from younger animals 228.

The impact of source animal age has also been demonstrated in the heart. ECM derived from 

the heart of fetal mice promoted increased adhesion and expansion of neonatal 

cardiomyocytes 231,275 and heart-derived progenitor cells 231 in vitro compared to adult 

mouse heart ECM. ECM from the hearts of neonatal mice promoted angiogenesis and 

increased endothelial cell activity compared to adult heart ECM both in vitro and in vivo 267. 

In a mouse model of myocardial infarction, a single injection of neonatal heart ECM into the 

ventricle resulted in significantly improved dimensional and functional parameters at 6 

weeks compared to adult heart ECM 267. Neonatal ECM also significantly reduced fibrosis, 

ventricular stiffening and the chronic inflammatory response. The injection of adult mouse 

heart ECM did not show any significant improvement compared to saline control in any of 

the parameters evaluated 267.

2.2. Decellularization Efficiency

The ultimate goal of decellularization is the removal of all cellular components from the 

source tissue while preserving the complex structure and composition of the native ECM. In 

reality however, any process that disrupts and removes the cellular components of a tissue 

will alter the ECM ultrastructure and composition to some extent. Complete removal of all 

cellular remnants is not possible because of the intimate relationship between cell 

membranes and the surrounding matrix, the adhesive nature of the negatively charged 

nucleic acids, and the entrapment of cell debris within the structural matrix molecules. 

However, a balance between thorough removal of cells and maintenance of ECM integrity 

must be achieved to avoid a proinflammatory response when the ECM-based material is 

used as a biologic scaffold. The optimal decellularization method for each tissue depends on 

multiple variables including the tissue source, size, thickness, morphology, and cell and 

matrix density 274.

2.2.1. Adequate Removal of Cellular Material—Failure to adequately remove 

cellular material promotes an intense inflammatory response in the recipient that is 

associated with poor downstream tissue remodeling 134,150,210. Keane et al. compared SIS-

ECM produced by three different decellularization protocols and showed that more effective 

removal of DNA was associated with more favorable host tissue response in a rodent model 

of body wall repair 134. However, DNA content is not the only determinant of the host 
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response to ECM scaffolds: mitochondria and cell membrane remnants also induced a pro-

inflammatory response in a dose dependent manner in vivo 150. There are likely many other 

yet to be identified quantifiable indicators of decellularization efficiency. The value in 

identifying such indicators is significant and additional work in the area is needed.

Although there are no standard criteria by which to determine adequate decellularization of a 

source tissue to produce an ECM biomaterial, Crapo et al. have suggested three quantitative 

criteria: 1) lack of visible nuclei in tissue sections stained with 4’,6-diamino-phenylindole 

(DAPI) and hematoxylin and eosin, 2) less than 50ng of double-strand DNA per mg of dry 

weight ECM, and 3) fragment length of remnant DNA less than 200 base pairs 56. These 

criteria are relatively stringent and may be too conservative for certain tissue types or 

applications 54. In fact, many commercially available ECM scaffold materials fail to meet 

these criteria and are still associated with largely positive clinical outcomes 88,191.

2.2.2. Preservation of ECM Structure and Composition—The specific 

decellularization protocol can have dramatic effects on the mechanical and biological 

properties of the resulting scaffold 146,148,157,200. A detailed description of the most 

commonly used decellularization agents and techniques and their effect on the ECM can be 

found in reviews specific to this topic 56,93,135. In general, decellularization protocols consist 

of a combination of physical and chemical treatments.

Physical methods such as sonication, freezing/thawing, and direct application of pressure or 

force are commonly used to disrupt cell membranes and facilitate the release of cellular 

remnants from the scaffold. Physical methods can directly disrupt the structure of the ECM, 

but otherwise cause minimal damage to the composition and bioactivity of the material and 

therefore are safely incorporated into tissue processing protocols 135.

Chemical methods are generally more damaging to the ECM ultrastructure and molecular 

integrity than physical methods. However, use of these agents is often necessary to achieve 

adequate removal of cell debris. Each chemical agent has a unique mode of action in aiding 

cell removal and therefore has a different effect on the resulting ECM bioscaffold. 

Detrimental effects on the ECM can include removal of growth factors and GAGs, damage 

to collagen, and crosslinking of ECM proteins. Ionic detergents such as sodium dodecyl 

sulfate (SDS) and sodium deoxycholate (DOC) are effective decellularization agents but 

unavoidably alter critical ECM components such as basement membrane proteins and GAGs 
74,200,232. Non-ionic detergents such as CHAPS and zwitterionic detergents such as Triton-X 

100 are less disruptive than SDS and DOC but also have detrimental effects upon 

composition and molecular integrity 74,171,201,232. Exposure to solvents such as alcohols are 

typically included as a step in the decellularization of tissues with a high lipid content, 

including brain, pancreas and adipose 34,57,164.

The use of supercritical carbon dioxide as a decellularization agent is increasingly common 

and could represent an attractive approach which has relatively less disruptive 

effects41,100,112,214,220,261,287. The low viscosity and high transport rate characteristic of 

supercritical fluids enable short and simple decellularization protocols and the inert carbon 

dioxide causes minimal alteration of the ECM mechanical properties 41,112,135,214,261.
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Not only can the combination of decellularization reagents change for each protocol, the 

concentration, duration, sequence of treatment, and technique for application are additional 

variables to consider. The complexity and duration of the overall decellularization protocol 

is often related to the geometric conservation desired in the ECM product (i.e. small pieces 

or slices vs. intact whole organ) 56. In general, thin laminate tissues such as urinary bladder, 

small intestine, pericardium and amnion can be sufficiently decellularized with mechanical 

disruption followed by relatively mild detergents or acids 80,84,135,254. Tissues that are more 

dense, such as dermis or myocardium, often require exposure to harsh enzymes (e.g. trypsin) 

and ionic detergents (e.g. DOC, SDS) for extended periods of time 126,200,222,276. When 

access to intact vasculature is possible, removal of cellular material can be achieved by 

perfusion of the decellularization agent through the whole organ 28,75,196.

An often overlooked consequence of the use of such detergents is the necessity for thorough 

rinsing to remove residual detergent that can negatively impact the cellular response to the 

material 43,274. A study by White et al. used time of flight secondary ion mass spectroscopy 

(ToF-SIMS) to detect residual detergents following decellularization of a UBM-ECM 

scaffold. Detergent fragments of DOC, SDS, and Triton X-100 were detected in the 

scaffolds despite extensive washing. Residual SDS in particular was associated with 

abnormal phenotype, poor viability and low confluence of cells in a dose dependent manner 

in this study 274 and in other studies 202,211,263.

2.3. Post-Decellularization Processing

2.3.1. Physical Form—The physical form of the ECM can dictate the relevant clinical 

applications of the ECM-based product, and can also directly impact the cellular response 
72. Immediately following the decellularization process, the ECM is typically in a hydrated 

state. Maintaining hydration of the ECM through the decellularization process better 

preserves the structural protein architecture (e.g., collagen) and promotes improved cellular 

infiltration and attachment compared to dehydrated/rehydrated scaffolds 85. However the 

hydrated ECM is susceptible to continuous elution of soluble bioactive molecules such as 

cytokines and growth factors 200. ECM-based bioscaffolds are therefore typically dehydrated 

by lyophilization to minimize the loss of soluble factors and improve stability (e.g., shelf 

life). Dehydration of the ECM also allows for further processing to change the physical form 

or configuration of the material.

Commonly used ECM-based medical devices such as those composed of SIS, UBM and 

dermis, are usually in a two-dimensional sheet configuration. Single-layer SIS-ECM and 

UBM-ECM sheets have a distinct “sided-ness” that can affect cellular behavior on the 

surface 33. However single-layer SIS-ECM and UBM-ECM often lack the mechanical 

strength required for load-bearing applications such as body wall repair 90,247,253. One 

method to increase the strength of the material is lamination of multiple sheets of ECM by 

vacuum pressing 80,83. The multilaminate material can be specifically designed to minimize 

anisotropy of a single sheet (i.e. by altering the orientation of each layer), and to either 

maintain or eliminate the sidedness of the exposed layers 10. Vacuum pressing can also be 

used to create 3-D shapes to fit an anatomical location such as the gastroesophageal junction 

or esophagus 10.
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Single or multilayered sheet forms of the ECM have limitations of their clinical utility due to 

their fixed geometry and inability to be implanted by minimally invasive procedures. A 

powder or particulate form of the ECM can be obtained by comminution of the lyophilized 

sheet form of the material. The particle size, homogeneity and ultrastructure of the material 

depend on the source of the ECM and the method used to produce the powder 91. The 

powder form retains the micro and ultrastructural characteristics of the parent ECM, but has 

greatly increased surface area available to interact with host cells 91. Further, the powder 

configuration allows for manufacture of a compact 3-D scaffold 70,226, delivery by topical 

application 137,203,294, or injection of a suspension 48,208,235,239,280. ECM powder 

suspensions have been successfully administered by injection, but the needle size required to 

accommodate the particle can be prohibitive for certain clinical applications, and a carrier 

such as glycerin is often required to increase the viscosity 10,280.

The discovery that the ECM could be manufactured into a liquid or gel form has greatly 

expanded its potential use in vitro and in vivo. The gel form can be more readily passed 

through a needle or catheter than a suspension of particles and can conform to the 3-D space 

upon injection 81,233. The hydrogel form is produced first by solubilization of the ECM 

material into protein monomeric components (“pre-gel”) followed by spontaneous 

reformation of the intramolecular bonds into a hydrogel upon neutralization to physiologic 

conditions and exposure to body temperature (37°C) 31,81,209. The most prevalent method of 

solubilization into the pre-gel form is enzymatic digestion of the powdered ECM with 

pepsin in a dilute acid solution 81,258, although other techniques have also been used 251. 

Entropy-driven self-assembly into the hydrogel form occurs following neutralization of the 

pH and salts to physiologic conditions and raising the temperature to 37°C. Importantly, 

these properties allow delivery of the neutralized pre-gel as a viscous solution to an 

anatomic location where it will subsequently gel in situ. The gelation kinetics and 

mechanical properties of ECM hydrogels depend on multiple factors including tissue source, 

pre-gel concentration and neutralization conditions 128,145,151,251,276. The formulation, 

characterization and cellular response to ECM hydrogels have been extensively reviewed 

elsewhere 209,240,264.

2.3.2. Chemical Crosslinking—Chemical crosslinking agents are frequently included 

in the processing of biologic scaffolds as a method to increase the mechanical strength and 

decrease the rate of degradation 158,190,268. It should be noted that significant natural 

crosslinks exist within the structural molecules (such as collagen) of the native ECM. 

Chemically mediated crosslinking has also been investigated as a method to mask antigenic 

epitopes within the ECM after the decellularization process 55,181, although credible 

citations for the specific molecular basis and rationale of this approach cannot be found. In 

certain applications the use of chemical crosslinking may be justified and successfully 

implemented 26,46,123,158,213, but in general there are more negative consequences than 

positive consequences.

Glutaraldehyde is the most commonly described approach to crosslinking collagen-based 

materials, including ECM bioscaffolds. Glutaraldehyde increases the mechanical strength of 

scaffolds. However, glutaraldehyde is also associated various adverse effects including 

cellular toxicity and mineralization of the implanted material 4,159,216,234. Alternative 
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crosslinking strategies have been investigated, primarily to mitigate cytotoxic effects. A 

wide range of crosslinking agents, including genipin 18,26,46,243,266,270, carbodiimide 
17,44,186,253, hexamethylene diisocyanate (HMDI) 186,253, glyoxal 32, and vitamin B2 123, 

have been considered and have generally shown improved biocompatibility compared to 

glutaraldehyde. The mechanism of action of the various crosslinking agents differs and can 

therefore confer specific effects on the surface characteristics and microstructure of the 

material. For example, carbodiimide crosslinked UBM-ECM scaffolds are associated with a 

dense, compact fiber network with small pore size 33. Glutaraldehyde crosslinked ECM-

based bioscaffolds produce thick bundles of collagen but maintain a similar pore size to that 

of non-crosslinked UBM-ECM 33.

Regardless of the agent used, the very nature of crosslinking changes the cellular response to 

the ECM scaffold. The process of ECM scaffold degradation generates bioactive cryptic 

peptides and releases embedded growth factors, cytokines and ECM-associated extracellular 

vesicles, termed matrix-bound nanovesicles (MBV), that contain protein, microRNA and 

lipid cargo 115. These degradation products have been associated with chemoattraction of 

progenitor cells, recruitment and subsequent activation of macrophages toward a pro-

remodeling phenotype, promotion of angiogenesis and antimicrobial activity. By definition, 

changing the degradation behavior of the ECM through crosslinking changes the release 

profile of these bioactive degradation products thereby eliciting a distinct, and often 

unfavorable, response. Finally, delaying or preventing ECM-based bioscaffold degradation 

results in a foreign body reaction 35,55,61,279.

The detrimental effects caused by chemical crosslinking of ECM bioscaffolds have been 

extensively studied, particularly in the context of soft-tissue repair. Multiple studies have 

evaluated commercially available scaffolds in a rat model of partial thickness abdominal 

wall repair 17,35,253. The source tissue, bioscaffold configuration and processing methods 

that have been investigated vary widely. In all cases, chemical crosslinking of the ECM 

device has led to a poor remodeling outcome. Commercially available ECM products that 

are chemically crosslinked were invariably associated with the presence of multinucleate 

giant cells 253 and chronic foreign body response with associated fibrous encapsulation 
35,253. The same rat model has also been used to evaluate the effect of carbodiimide 

crosslinking upon scaffolds composed of SIS-ECM 254 and ACell MatriStem®, a 

commercially available UBM-ECM product 279. Carbodiimide crosslinking was associated 

with minimal cellular infiltration into the scaffold 254, a predominately pro-inflammatory 

macrophage phenotype 279, and no evidence of degradation or remodeling of the scaffold 
254.

Small animal 101,129,130,170,178, large animal 38,42,165 and human clinical studies 45 have all 

shown potential disadvantages of chemically crosslinked ECM scaffolds for ventral hernia 

repair. Implantation of non-crosslinked ECM scaffolds have been associated with 

significantly lower adhesion surface area and adhesion tenacity compared to crosslinked 

ECM scaffolds in both rat 130,178 and guinea pig 38 models of ventral hernia repair. Hernia 

repair in Yucatan minipigs showed greater cellular infiltration, ECM deposition and 

neovascularization for non-crosslinked scaffolds at 1 month post-surgery 42,165, consistent 

with improved early remodeling. No significant differences were observed in the strength of 
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the repair site at 1 month 42,165 or at 12 months 42 between crosslinked and non-crosslinked 

scaffolds, despite greater mechanical strength of crosslinked scaffolds at the time of 

implantation.

Pre-clinical studies have also found that Strattice™ (non-crosslinked porcine dermis ECM) 

is less susceptible to infection 178 and is better able to clear bacteria 101 in a deliberately 

contaminated surgical area compared to Permacol™ (crosslinked porcine dermis ECM). A 

retrospective review was conducted of patients who underwent abdominal wall hernia repair 

with Strattice™ and Permacol™ 45. Non-crosslinked Strattice™ was associated with a 

significantly lower overall short-term complication rate, including significantly fewer 

occurrences of wound infection compared to Permacol™ 45. A recently registered clinical 

trial will be the first randomized controlled study to evaluate the rate of recurrence and 

postoperative complications for Permacol™ versus Strattice™ in abdominal wall 

reconstruction 40.

2.3.3. Terminal Sterilization—The large majority of ECM-based biologic scaffolds are 

classified as a surgical mesh with the primary mechanism of action being “to provide 

reinforcement for soft tissue where weakness exists”, and therefore are regulated as a 

medical device by the Food and Drug Administration (FDA). According to the International 

Organization for Standardization (ISO) medical devices should be terminally sterilized to 

achieve a log10 reduction in virus sufficient to produce a safe product wherever possible, but 

aseptic processing can be used as an alternative (ISO 22442-1, ISO 13408-1)119,120. Though 

current FDA guidelines include case-by-case validation of sterilization of devices derived 

from animal tissue due to their complexity, terminal sterilization remains the standard for 

ECM bioscaffolds 249. Allografts composed of human ECM are considered “human cells, 

tissues, and cellular and tissue-based product” (HCT/P) by the FDA and are therefore not 

required to be sterile. The industry standard for HCT/P includes the use of aseptic technique 

during harvesting and processing to prevent contamination 248.

Terminal sterilization is performed following the physical methods of tissue preparation, the 

decellularization process, and the occasional use of disinfection agents. Chemical 

disinfection agents (e.g., hydrogen peroxide or peracetic acid) can cause oxidation of ECM 

proteins and alter cross-linking patterns of collagen fibers 107, but the altered ECM can still 

support cell attachment 108,163. Terminal sterilization processes can alter the ultrastructure, 

biologic activity and mechanical properties of an ECM bioscaffold which in turn can affect 

the cellular response to the material. Heat-based sterilization methods cannot be used for 

ECM bioscaffolds because the majority of ECM proteins are subject to irreversible 

denaturation at temperatures between 60 - 65°C 54. The most commonly used methods of 

terminal sterilization for ECM bioscaffolds are ionizing radiation and ethylene oxide.

The effect of exposure to ionizing radiation, including electron beam and gamma irradiation, 

on ECM bioscaffolds has been investigated. Low doses of gamma irradiation (<15kGy) have 

been reported to increase the strength and stiffness of the scaffold 98, but higher doses 

decrease the mechanical properties in a dose dependent manner 60,98. Gamma irradiation can 

induce structural 250 and biochemical 60,212 changes in the scaffold. Even very low doses of 

irradiation can affect collagen crosslinking 241 and the scission of collagen chains increases 
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with dose 19. Gamma irradiation can also negatively impact cell attachment 163 and induce 

cell death due to peroxidation of residual lipids in the scaffold 175. Dearth et al. found that 

increasing the dose of gamma and electron beam irradiation to 40kGy adversely affected the 

material properties and changed the degradation rate and cellular response to a porcine 

dermis ECM scaffold in vivo 60.

The reported effects of ethylene oxide (EtO) sterilization on ECM scaffolds are variable and 

depend on the parameters of each study. Exposure to EtO can have minimal effects on the 

mechanical properties 60,84,121 or can substantially increase the stiffness of the scaffold 204. 

EtO sterilization did not affect the attachment or activity of fibroblasts 107 or endothelial 

cells 60 in vitro, but did inhibit cell attachment, proliferation, and viability of human 

umbilical cord Wharton’s Jelly matrix cells compared to a non-sterilized scaffold 163. 

Ethylene oxide reduces the DNA, total protein and growth factor content compared to other 

sterilization methods 60 and can render proteins inactive or undetectable by alkylation 63. 

EtO treatment has the potential to leave behind harmful residues within the ECM that can 

cause an adverse host immune response and poor remodeling outcome 122, but has also been 

shown to successfully promote a constructive remodeling response in a rodent model of 

abdominal wall repair 60.

Sterilization by supercritical carbon dioxide is prevalent in food and pharmaceuticals 230, 

and is emerging as a promising technique for ECM bioscaffolds. Supercritical carbon 

dioxide sterilization has been shown to successfully inactivate a large panel of 

microorganisms 25. Exposure of ECM scaffolds to supercritical carbon dioxide has shown 

minimal damage to the mechanical properties, tissue architecture and ECM content 
20,25,104,287. Bioscaffolds sterilized by this method support cell viability and proliferation in 

vitro 20,25,287. Supercritical carbon dioxide has also recently been shown to successfully 

sterilize a hydrogel form of ECM while maintaining the ability of the solubilized ECM to 

form a gel and exert known effects upon macrophages and perivascular stem cells 273. The 

host response to supercritical carbon dioxide sterilized ECM scaffolds has yet to be 

evaluated in vivo.

3. Favorable Cellular Response to ECM Bioscaffolds

As described in detail above, there are many factors that contribute to the overall quality of 

an ECM bioscaffold and each of these can affect the host response to the material. The 

seemingly endless variables involved in producing an ECM scaffold and the wide range of 

clinical applications make the definition of an “ideal” ECM bioscaffold impossible. 

However, when close attention is given to the variables known to affect the host response the 

chance for a favorable outcome can be maximized.

The term “constructive remodeling” has been used to describe the in vivo events that occur 

following implantation of a thoroughly decellularized, sterile ECM bioscaffold 
9,12,36,68,162,255. ConstructiVe remodeling is characterized by degradation and gradual 

replacement of the bioscaffold with site appropriate functional tissue. This type of in vivo 

response to an implanted biomaterial is in stark contrast to the default wound healing 
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response that is associated with a pro-inflammatory environment and the deposition of dense 

scar tissue.

As stated in the introduction, the remodeling outcomes following ECM bioscaffold 

implantation have not always been constructive 106,125,218,236,247,260. A mild or intense 

inflammatory response and/or a serous fluid accumulation have occurred with associated 

scar tissue formation as occurs with the default wound healing response. Such results are 

commonly associated with ECM-based products that have significant cell remnants, residual 

chemicals from disinfection and decellularization processes, or the use of chemical 

crosslinking methods that alter structural and functional protein constituents and that inhibit 

or delay degradation of the scaffold 35,36,134,150,176.

Though the specific mechanisms by which ECM bioscaffolds promote a positive 

constructive tissue remodeling are not fully understood, the following processes are 

consistently associated with such outcomes: 1) degradation of the ECM bioscaffold to 

release bioactive signaling molecules 3,59,254, 2) modulation of the host immune response 

toward a pro-remodeling and regulatory type 2 phenotype 7,17,35,36,69, and 3) recruitment 

and differentiation of endogenous stem/progenitor cells 2,23,70. The potential favorable 

response of immune cells and stem/progenitor cells to ECM bioscaffolds is described in 

detail below.

3.1. Immune Cells

Implantation of any material, including ECM scaffolds, is associated with the immediate 

adsorption of proteins to the surface. Competitive protein exchange results in a dynamic 

mixture of adsorbed proteins (Vroman effect)105. At early time points the composition is 

dominated by high concentration proteins that are eventually displaced by proteins with a 

higher affinity for the implanted material. Protein adsorption is followed by activation of the 

innate immune response, including dendritic cells, neutrophils and macrophages 11,49. The 

adaptive immune system consisting of lymphocytes (B and T cells) may also be activated 

depending on the type of the biomaterial 78,174. Both macrophages and T helper cells can 

assume diverse phenotypes that are characterized by their gene and protein expression 

profiles, and associated functions. In simplified terms, a proinflammatory phenotype of 

macrophages and T helper cells is associated with expression of cytotoxic signaling 

molecules, and a pro-healing and regulatory phenotype is associated with anti-inflammatory 

and regulatory signaling molecules 24,97,160,161,172,177. ECM-based biomaterials that are 

devoid of cellular material, retain the ultrastructure and bioactive components of the native 

ECM, and that can be readily degraded by infiltrating host cells have been repeatedly shown 

to stimulate a strong pro-healing phenotype of both the adaptive and innate immune systems 
7,17,35,36,39.

A seminal study by Allman et al. in 2001 showed that there is a robust host immune 

response to implanted ECM bioscaffolds with activation of T helper cells to a “Th2” 

phenotype. Implantation of porcine-derived ECM in a murine host elicited production of 

anti-inflammatory cytokines, including interleukin (IL)-4 and IL-10, and noncomplement 

fixing IgG1 antibody isotype. Both of these responses were consistent with recognition of 

the presence of the biomaterial, acceptance of the decellularized xenogeneic scaffold, and 
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lack of an adverse immune response. The constructive remodeling response to the scaffold 

was reported as T cell independent in this model although macrophage participation and 

macrophage phenotype were not examined6. Importantly, the strong Th2 response induced 

by ECM scaffolds was maintained following a secondary exposure to the scaffold 6 and 

therefore was not associated with an adverse sensitization phenomenon. The same group 

subsequently showed that ECM bioscaffold implantation did not cause generalized immune 

suppression, did not impair the antibody-mediated immune response to viral or bacterial 

infection, and did not impair the cell-mediated immune response to contact or xenogeneic 

skin graft rejection 7.

In 2009 Valentin et al. showed that ECM bioscaffolds induce a favorable host innate immune 

response, specifically the macrophage phenotype component of the innate response. This 

macrophage response was not only sufficient but was required for constructive remodeling 

of the scaffold 254. Further, the early macrophage phenotypic profile induced by degradation 

of an ECM bioscaffold in vivo was predictive of downstream remodeling responses 35. That 

is, increased infiltration of M2-like CD206+ macrophages and higher ratios of M2:M1 

macrophages within the implantation site at 14 days were associated with more positive 

remodeling outcomes 35. Macrophages exposed to the degradation products of ECM 

bioscaffolds can directly activate macrophages towards an anti-inflammatory “M2-like” 

(iNOS−/Fizz1+) phenotype 71,227. The ECM-induced macrophage phenotype has been 

extensively characterized and is broadly associated with upregulation of anti-inflammatory 

genes and proteins 70,77,207, downregulation or suppression of pro-inflammatory genes and 

proteins 114,133, high antigen presenting capabilities 206 and expression of damage 

associated molecular patterns (DAMPs) 208. Increased expression of DAMPS is 

hypothesized to contribute to a constructive wound healing response by amplifying 

endogenous wound-associated signaling pathways 208.

The macrophage phenotype induced by ECM bioscaffolds is complex and varies depending 

on the source and/or processing of the ECM 71,114,206. The phenotype in response to ECM 

scaffolds is distinct from that induced by IFNγ + LPS (classically activated), IL-4 

(alternatively activated), cellular xenogeneic scaffolds and synthetic scaffolds 114,208. 

Importantly, the phenotype elicited by ECM-based bioscaffolds is different from that of 

tumor associated macrophages, another subset of M2 macrophages 278. The activation of 

M2-like macrophages by ECM bioscaffolds is dependent on the presence of Th2 cells 
207,278. Although the exact mechanisms by which the ECM promotes a type 2-like immune 

response is only partially understood, it is known that degradation of the ECM and 

subsequent release of cryptic peptides, growth factors, MBV, and other bioactive molecules 

is required. Huleihel et al. showed that MBV alone can recapitulate the immunomodulatory 

properties of the parent ECM 113,115. Whole UBM-ECM as well as isolated UBM-MBV can 

also activate microglia, the resident macrophages of the central nervous system, to an anti-

inflammatory type 2 phenotype 76,169.

Recent studies have characterized the ECM-induced immune cells infiltrating within the 

bioscaffold and within the adjacent native tissue in detail with a multicolor flow cytometry 

panel and have shown robust populations of macrophages, dendritic cells, T cells and B cells 
206-208. The overall profile of infiltrating immune cells was significantly different between 
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ECM bioscaffolds prepared from different source tissues (bone, cardiac, liver, spleen and 

lung), but the general pattern was very similar 206. ECM bioscaffolds elicited a higher 

proportion of T helper cells than cytotoxic T cells 206,207,265. Regulatory T cells (Tregs) 

were also recruited to the site of implantation and were associated with increased levels of 

anti-inflammatory IL-10 cytokine secretion compared to autograft or saline 77,103,206,207.

Wang et al. used a humanized mouse model to characterize the temporal human immune 

response to xenogeneic and allogeneic decellularized myocardial ECM hydrogels. Although 

both decellularized scaffolds elicited a Th2 and M2-like macrophage phenotype, the quantity 

of cells and Th2 phenotype were more robust in response to the xenogeneic scaffold 

compared to the allogeneic scaffold. However, it is unknown if the amplified type 2 response 

was due to the xenogenecity of the bioscaffold or to differences in the source tissue, 

including older source age, greater collagen crosslinking and a more vigorous 

decellularization protocol associated with the allogeneic ECM 265.

3.2. Stem and Progenitor Cells

ECM bioscaffolds, or more specifically the products of ECM bioscaffold degradation, have 

been shown to be chemotactic for stem and progenitor cells in vitro and in vivo. 23,30,57,201. 

Implantation of ECM bioscaffolds promotes recruitment of marrow-derived progenitor cells 
15,288, cardiomyocyte progenitor cells 136,269,291, skeletal muscle interstitial stem cells 195, 

and perivascular stem cells to the site of implantation 70,229.

Perivascular stem cells (PVSC) are typically found surrounding microvessels and capillaries 

and can contribute to remodeling of acute skeletal muscle injury and contribute to the 

satellite cell pool if mobilized outside of their normal niche 64. Implantation of an SIS-ECM 

bioscaffold in a volumetric skeletal muscle defect promoted mobilization of perivascular 

stem cells away from their normal perivascular niche to the site of the defect in both a rodent 

model and in human patients 70,229. SIS-ECM implantation resulted in significantly more 

CD146+ PVSC both at the margin and the center of the remodeling ECM within the defect 

site and was associated with subsequent formation of functional vascularized and innervated 

striated functional muscle 70,229. Although the specific mechanism directing stem cell 

recruitment is not known, cryptic peptides from the α subunit of collagen III recapitulate 

progenitor cell chemotaxis in vitro and site-directed accumulation in vivo 3.

The ability of ECM bioscaffolds to support stem cell differentiation or commitment towards 

a specific lineage is well established and has recently been reviewed in detail 1. ECM 

derived from adipose 34,156,192,283,284, bone 102,242, central nervous system 18,57,66,164, 

cartilage 46,47,192,244,252,257,281, heart 65,67,79,82,86,127,198,231, kidney 28,37,187,205, liver 
21,22,124,144,182,290, lung 53,58,94,180,223,225,292, salivary gland 224, skeletal muscle 
65,110,194,195,229,262, tendon 99,189,282,286,289, among other tissues 5,109,167,173,179,193 have 

been studied in the context of stem cell differentiation. This concept is based upon the 

premise that the ECM of each tissue represents the secreted product of the cells that reside 

within that tissue, possesses tissue specific biologic signals, and is therefore the ideal 

substrate for supporting cell attachment, growth, and homeostatic differentiation 27,30,132. 

These same concepts are part of the tissue organization field theory (TOFT) that, in part, 

supposes that the microenvironment created by the ECM facilitates either a normal or 
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neoplastic differentiation state 237,238. ECM prepared in several different forms (whole 

organ, tissue slices, hydrogel, coating) have been investigated for their differentiation effects 

upon cells ranging from pluripotent embryonic stem cells to tissue specific progenitor cells 
1. ECM-induced stem cell differentiation in the context of the heart will briefly be described 

to highlight the potential of the ECM and bioscaffolds composed of ECM in directing cell 

fate.

In multiple contexts and culture systems, ECM derived from the myocardium has been 

shown to support cardiac cell differentiation or maturation. Gaetani et al. showed that 3D 

culture in a hydrogel from porcine ventricular ECM could support cardiogenic 

differentiation of human adult and fetal cardiac progenitor cells 86. The myocardial matrix 

hydrogel promoted increased gene expression of cardiac markers (GATA-4 and MLC2v) and 

vascular marker (VEGFR2) in fetal cardiac progenitor cells. Expression of early cardiac 

markers (Nkx2.5 and MEF2c) and vascular markers (VEGFR2 and CD31) were also 

increased in adult cardiac progenitor cells after 4 days in culture within myocardial ECM 

hydrogel compared to a collagen type I hydrogel. The ECM hydrogel supported increased 

proliferation of the progenitor cells, and cells cultured within the myocardial matrix were 

better able to maintain viability in an environment of oxidative stress induced by hydrogen 

peroxide. This study demonstrated that a cardiac-specific hydrogel could enhance the 

cardiogenic commitment, proliferation and survival of human cardiac progenitor cells in 3D 

culture 86.

Though ECM bioscaffolds are most commonly used as a tool to help direct stem cell 

differentiation or commitment towards a specific lineage, one study instead looked at the 

ability of ECM to maintain an undifferentiated phenotype. De Waele et al. used 

decellularized mouse brain ECM sections as a 3D substrate for culture of rat neural stem 

cells 259. In the presence of mitogenic stimuli (epidermal growth factor and human basic 

fibroblast growth factor), the majority of seeded neural stem cells retained their stemness 

and did not differentiate towards astrocytes or neurons after 7 weeks in culture 259.

4. Summary

Bioscaffolds composed of mammalian ECM have the potential to facilitate favorable 

remodeling processes in a wide range of clinical applications. The mechanisms by which 

ECM mediates constructive tissue remodeling include degradation and generation of 

bioactive molecules, recruitment and differentiation of endogenous stem and progenitor 

cells, and modulation of the immune response, among others. These positive outcomes are 

critically dependent upon the methods used to manufacture the ECM material. As described 

above, the source of the tissue, decellularization protocol and inclusion of additional 

processing steps affect the cellular response and remodeling outcome elicited by ECM 

bioscaffolds. Commercially available ECM products vary in their manufacturing methods 

and therefore can be associated with markedly different clinical outcomes.
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Abbreviations:

ECM extracellular matrix

SIS small intestinal submucosa

UBM urinary bladder matrix

GAGs glycosaminoglycans

SDS sodium dodecyl sulfate

DOC sodium deoxycholate

ToF-SIMS time of flight secondary ion mass spectroscopy

HMDI hexamethylene diisocyanate

MBV matrix bound nanovesicles

FDA United States Food and Drug Administration

ISO International Organization for Standardization

HCT/P Human Cell and Tissue Product

EtO ethylene oxide

TOFT tissue organization field theory

DAMP damage associated molecular pattern

PVSC perivascular stem cells
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Figure 1. 
Characteristics of ECM bioscaffolds that can influence cell behavior.
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Table 1.

Source tissue, application focus and post-decellularization processing steps of common commercially 

available ECM bioscaffolds. (*VentriGel is in clinical trials, Glu: glutaraldehyde, HMDI: hexamethylene 

diisocyanate, Gamma: Gamma irradiation, E-beam: Electron beam irradiation)

Product Manufacturer Source Tissue Application
Focus Form Crosslinking

Agent
Terminal
Sterilization

AlloDerm RTM BioHorizons Human dermis Soft tissue, dentistry Dry --- ---

AlloMax BD Bard Human dermis Soft tissue Dry --- Gamma

AlloPatch HD ConMed Human dermis Tendon Dry --- ---

Avalus Medtronic Bovine pericardium Valve replacement Hydrated Glu Liquid Chemical

Biodesign Hernia 
Graft Cook Biotech Porcine small intestine Soft tissue Dry --- EtO

CardioCel Admedus Bovine pericardium Cardiac tissue Dry Glu Propylene Oxide

DermaSpan Zimmer Biomet Human dermis Soft tissue, tendon Dry --- Gamma

FlexHD Pliable Mentor Human dermis Breast Hydrated --- ---

Fortiva RTI Surgical Porcine dermis Soft tissue Hydrated --- Gamma

Freestyle Medtronic Porcine heart valve Valve replacement Hydrated Glu Liquid Chemical

Gentrix Surgical 
Matrix Acell Porcine urinary 

bladder Soft tissue 6 Layer --- E-beam

GraftJacket Wright Medical Human dermis Soft tissue Dry --- ---

Grafton DBM Medtronic Human bone Bone Powder --- ---

InteguPly Aziyo Biologicals Human dermis Soft tissue, wound 
care Dry --- Gamma

Meso BioMatrix DSM Porcine mesothelium Soft tissue Dry --- EtO

MicroMatrix Acell Porcine urinary 
bladder Wound care Powder --- E-beam

Miroderm Reprise Biomedical Porcine liver Soft tissue Hydrated --- E-beam

Oasis Ultra Cook Biotech Porcine small intestine Wound care 3 Layer --- EtO

Peri-Guard Repair 
Patch Baxter Bovine pericardium Soft tissue Hydrated Glu Liquid Chemical

Permacol Medtronic Porcine dermis Soft tissue Hydrated HMDI Gamma

ProLayer Stryker Human dermis Soft tissue Hydrated --- E-beam

Strattice LifeCell Corp. Porcine dermis Soft tissue Hydrated --- E-beam

Trifecta Abbott Bovine pericardium Valve replacement Hydrated Glu Liquid Chemical

TutoPatch RTI Surgical Bovine pericardium Soft tissue Dry --- Gamma

Tutoplast 
Pericardium Coloplast Human pericardium Soft tissue Dry --- Gamma

VentriGel* Ventrix Porcine ventricle Cardiac tissue Hydrogel --- ---

XenMatrix BD Bard Porcine dermis Soft tissue Hydrated --- E-beam
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