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The Utility of Applying Various Image Preprocessing Strategies  
to Reduce the Ambiguity in Deep Learning-based  

Clinical Image Diagnosis

Yasuhiko Tachibana1*, Takayuki Obata1, Jeff Kershaw1, Hironao Sakaki2,  
Takuya Urushihata3, Tokuhiko Omatsu1, Riwa Kishimoto1, and Tatsuya Higashi4

Purpose: A general problem of machine-learning algorithms based on the convolutional neural network 
(CNN) technique is that the reason for the output judgement is unclear. The purpose of this study was to 
introduce a strategy that may facilitate better understanding of how and why a specific judgement was made  
by the algorithm. The strategy is to preprocess the input image data in different ways to highlight the most 
important aspects of the images for reaching the output judgement.
Materials and Methods: T2-weighted brain image series falling into two age-ranges were used. Classifying 
each series into one of the two age-ranges was the given task for the CNN model. The images from each 
series were preprocessed in five different ways to generate five different image sets: (1) subimages from the 
inner area of the brain, (2) subimages from the periphery of the brain, (3–5) subimages of brain parenchyma, 
gray matter area, and white matter area, respectively, extracted from the subimages of (2). The CNN model 
was trained and tested in five different ways using one of these image sets. The network architecture and all 
the parameters for training and testing remained unchanged.
Results: The judgement accuracy achieved by training was different when the image set used for training 
was different. Some of the differences was statistically significant. The judgement accuracy decreased signifi-
cantly when either extra-parenchymal or gray matter area was removed from the periphery of the brain  
(P < 0.05).
Conclusion: The proposed strategy may help visualize what features of the images were important for the 
algorithm to reach correct judgement, helping humans to understand how and why a particular judgement 
was made by a CNN.
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Introduction
Machine-learning approaches are increasingly becoming a 
topic of interest in medical diagnostic imaging. Amongst 
these approaches, deep-learning techniques, which are some-
times referred to as a sort of artificial intelligence, have 
developed very rapidly in recent years and are now attracting 
a great deal of attention.1,2 Before these techniques emerged, 

computer-aided or -assisted diagnosis usually required 
humans to extract specific features from the raw data (e.g. CT 
number, Apparent Diffusion Coefficient, and connectivity) 
that could be used as seed elements for diagnosis.  
The extracted features were input to a computer algorithm so 
that it could learn how to combine the information to reach  
a correct judgement. On the other hand, in addition to 
learning how to combine information to reach a judgement, 
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deep-learning techniques can also automatically extract the 
features from more primitive data inputs (e.g. image data).3,4 
In short, a deep-learning algorithm is a network of many simple 
data-processing modules that include multiple adjustable 
parameters within each module, and the feature extraction 
and learning is automatically accomplished by optimizing 
these parameters through a training process.

The convolutional neural network (CNN) technique, the 
main subject of the present research, is a form of deep learning 
that is specialized for data sets such as images of two or more 
dimensions. A number of achievements using the CNN tech-
nique have already been reported.5–9 As an example of CNN-
based diagnosis,10 in a previous report, MRI images of 
Alzheimer’s disease patients were labeled with information 
about what stage of the disease the patient was at, and the image/
label pairs were then used to train a CNN model. After training, 
the CNN model achieved a high accuracy when judging the 
disease stage for a new series of unlabeled MRI images.

Even though there have been some excellent results with 
the CNN technique, there are nevertheless some persistent 
issues that have not yet been solved.1 One particular example 
of this is the ambiguity in how and why the algorithm reached 
its final judgment. At present, this seems to be a ubiquitous 
problem in the deep-learning field, and it is an especially 
important problem that needs to be resolved in order to pro-
mote the application of a CNN as a useful tool for clinical 
diagnostic imaging. In the clinic, the importance of knowing 
the reasons for a judgement is never less than the importance 
of the accuracy of the diagnosis itself.

A method named Gradient-weighted Class Activation 
Mapping (Grad-CAM)11 is one approach towards solving this 
problem. When applied to an image classification task, this 
method visualizes which regions in the input image and/or 
which of the various parameters across the CNN model have a 
strong influence on the judgement. However, since Grad-
CAM is completely data driven, it only specifies positions in a 
specific image that had a large influence on the judgement, and 
neither the medical rationality nor the consistency of the 
specified area are considered. In this research we introduce a 
strategy that may help to reduce the ambiguity of CNN-based 
judgement while considering the medical rationality and con-
sistency. The basic idea is to extract and/or mask a part of the 
image information in various ways that can be medically 
meaningful, and then train a CNN model separately for each 
pattern. As it can be assumed that the performance of a trained 
CNN model is related to how important the masked informa-
tion was to the accuracy of the judgement, the differences 
between the achieved accuracy of the respective training may 
promote human understanding of how and why a particular 
decision was made by the model. In short, the largest differ-
ence with Grad-CAM is that the users (clinicians) can narrow 
down the possible candidates responsible for the conclusion 
that is obtained (e.g. which tissue’s structure is most important 
in reaching the judgement) via image preprocessing before 
model training. This additional step may facilitate a link with 

the model prediction and one or more of the possible conclu-
sions (e.g. diagnoses), so that the users can more easily inter-
pret the model prediction.

The purpose of this study was to evaluate the usefulness 
of this strategy.

Materials and Methods
In this study, the images for training and testing were pre-
processed in five different ways by extracting and/or masking 
different parts of the original images. Each image set was 
then used to train a CNN model separately to observe how 
the result of training and testing (i.e. judgement accuracy) 
changes as a function of the different preprocessings. Details 
are described in the following subsections.

Original image data
Four hundred and ninety-nine T2-weighted brain image 
series acquired from 499 healthy volunteers were down-
loaded from the website (http://www.humanconnectomepro-
ject.org/) of the Human Connectome Project.12 All the image 
series were acquired using 3 T MRI systems developed by a 
single vendor (Human Connectome Scanner12) with identical 
scanning parameters, including TR: 3200 ms, TE: 561 ms, 
FOV: 224 × 224 mm2, and voxel size 0.7 mm iso.

Each image series was tagged with the sex and one of 
two age-ranges for the volunteers: 22–25 years (male: 111, 
female: 73) and 31–35 years (male: 111, female: 204).  
In addition, each series was bundled with the results of ana-
tomical segmentation performed using the FSL software,13 
which enabled us to extract gray matter area and white matter 
area from the original image slices in this study.

Image preprocessing to create five different image 
sets for training and testing
The goal of the training in this study was to classify the 
image series for each volunteer to the correct age-range. The 
following steps were performed to generate data sets for 
training and testing:

1.	 The data from 80 volunteers, consisting of 20 ran-
domly extracted image series for each combination of 
age-range and sex, was selected as data for testing, and 
the remaining data sets were used for training.

2.	 Every second slice was selected from both the training 
and testing data starting from the slice that included the 
largest brain area to the slice 42 mm below the tip of 
the brain. This step was performed to generally exclude 
slices that may not include sufficient brain area (i.e. the 
slice at the tip of the brain and the slice at the skull 
base). An in-house software program working on 
MATLAB 2016a (The MathWorks, Inc., Natick, 
MA, USA) referencing the anatomical segmentation 
data was used for this step as well as for all the fol-
lowing image preprocessing.
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was approximately equal. Note that it was expected 
that the subimages corresponding to each repetition 
were different because the initial rotation of the image 
was updated randomly for each repetition.

5.	 Finally, the subimages from around the periphery of the 
brain were further processed to extract the brain paren-
chyma, gray matter area, and white matter area (Fig. 2). 
The deleted parts of an image were filled with Gaussian 
noise: mean and dispersion adjusted for each subimage so 
that mean and dispersion of all the pixel in the subimage 
before and after this process were the same (Fig. 2).

After performing all these steps, five different image 
groups had been generated for training and testing (Fig. 2). 

Fig. 2  Five differently preprocessed image 
sets (pp1–5) were generated for training and 
testing the model in five different ways. pp1 
and 2: the subimages from around the inner 
area of the brain and those from around the 
periphery of the brain, respectively (images 
generated in steps 1–4 of the section “Image 
preprocessing to create five different image 
sets for training and testing”, see Fig. 1); 
pp3–5: the brain parenchymal area, gray mat-
ter area, and white matter area, respectively, 
were further extracted from the pp2 images. 
The deleted parts of the images were with 
Gaussian noise so that the mean and disper-
sion of pp3–5 images was the same as for the 
original pp2 image.

3.	 Twelve subimages from around the periphery of the 
brain (64 × 64 pixels), and another 12 same-sized 
medial subimages were subsampled from each slice 
selected in the previous step (Fig. 1 contains a detailed 
description of the procedure). The initial angular 
location for the subimage selection was randomly 
selected, but after that the remaining subimages were 
selected at regular angular intervals (i.e. each angular 
interval was 30°).

4.	 The subsampling was repeated up to four times for the 
training images to increase the number of images for 
training; the number of repetitions was automatically 
adjusted so that the number of series included in the 
training data for each sex and age-range combination 

Fig. 1  Twelve subimages from around the periphery of the brain and another 12 subimages from the inner area of the brain were subsam-
pled automatically from each slice selected in preprocessing step 3. (a) First, each slice image was rotated through a random angle around 
the center of the brain. Four small subimages (64 × 64 pixels each) were then defined on a horizontal line passing through the center of 
the brain (gray line). The first two images were taken from the peripheral brain area (green squares), with the ratio of the brain parenchyma 
length to the extra-parenchyma length along the line being 2:1. Next, another two subimages (64 × 64 pixels each, blue squares) adjacent 
to the peripheral images on the medial sides were selected as images from the inner area of the brain. (b) The subsampling of peripheral and 
medial images was repeated 12 times after rotating the line in 30° increments beginning from the initial orientation. Overall, the procedure 
results in 12 subimages sampled at regular angular intervals for both the peripheral and the inner area of the brain.

a b
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The five groups were: subimages from the inner area of the 
brain (preprocessed image set 1: pp1); subimages from the 
peripheral area of the brain (pp2); subimages of the brain 
parenchyma area, gray matter area, and white matter area 
generated from the pp2 images (pp3–5). The number of sub-
images in each image set was approximately 200000.  
As described later, we aimed to focus on the importance of 
cortical gray matter and white matter for the classification of 
images from the periphery of the brain. Therefore, the method 
above was adopted so that both the shape and the fraction of 
cortical gray matter and white matter regions contained in 
each subimage from the periphery area are roughly the 
same, and that the sampling was performed evenly from 
the whole brain. In addition, subsampling from the inner area 
of the brain was performed as above in order to balance the 
number of images and the positional distribution of the sub-
images in the brain between pp1 and pp2–5.

Training the CNN in five different patterns using  
image sets pp1–5
A custom-made personal computer (CPU: Intel Core 
i7-5930K, RAM: 32 GB, GPU: NVIDIA Tesla40c, OS: 
Ubuntu14.04LTS) equipped with the Caffe software 
package14 was used to perform the training and testing.  
A two-dimensional neural network model bundled in this 
package, named CaffeNet,15 was used throughout this study. 
Briefly, the network model included five convolutional 
layers, with each accompanied by its own rectified linear unit 
layer, along with three max-pooling layers and three fully-
connected layers. The final fully-connected layer was con-
nected to a softmax layer for classification.

The CNN was trained in five different patterns 
(CNN1–5) to judge the correct age-range (i.e. 22–25 or 
31–35 years) for each subimage. The trainings were per-
formed separately using the training data of one of the sets 
pp1–5 for each training (CNN1 corresponded to the trained 
model using pp1, CNN2 to the trained model using pp2, 
and so on). The network structure as well as the training 
parameters were identical for each training. The training 

parameters included the number of iterations as 150000, a 
batch size of 128, and learning rate was fixed to 0.003 
(Optimization was performed with the stochastic gradient 
descent [SGD] algorithm).

Testing the CNNs
Testing was performed using the test data sets of pp1 to 5 
(CNN1 was tested with the test images of pp1, CNN2 with 
those of pp2, and so on). To statistically compare the accu-
racy of classification among the trained models, the fraction 
of slices that were accurately classified per series was defined 
as follows:

1.	 Each subimage for testing from ppi (i = 1–5) was 
passed to the corresponding trained CNNi, which out-
puts the probabilities of the subimage belonging to 
each age-range. The age-range assigned with the 
highest probability was considered as the classifica-
tion judgement of the CNNi for that subimage. When 
the probabilities for each age-range were equal, the 
classification for that subimage was regarded as failed 
and this judgement was fixed automatically to the 
incorrect one.

2.	 The judgement for each slice was determined as the 
most common judgement amongst the 12 subimages 
corresponding to that slice. For a case of the judgement 
being divided evenly (i.e. 6 vs. 6), the classification 
was regarded as a failed judgement, similar to the pre-
vious step.

3.	 The fraction of slices that were accurately classified 
was recorded for each volunteer and used for statistical 
comparison between CNN1-5. The Steel–Dwass test 
was used for this multiple comparison, and P < 0.05 
was considered to indicate a significant difference.

Results
The results are summarized in Fig. 3. The fraction of accurately 
classified slices per series differed among the differently 

Fig. 3  The fraction of accurately classified slices 
per series differed among the five differently trained 
models (CNN1–5). The differences between CNN 1, 
2 and CNN 3–5, as well as the differences between 
CNN 3, 4 and CNN 5 were significant (P < 0.05). 
Apart from the image sets used for training and test-
ing, the settings were identical for all training pat-
terns. CNN1–5: the models trained by preprocessed 
image sets 1–5 (pp1–5, see Fig. 2), respectively.  
*P < 0.05. CNN, convolutional neural network.
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trained models. CNN1 and 2 achieved higher fractions than 
CNNs 3–5, and the differences were significant (P < 0.05). 
Amongst CNNs 3–5, the judgement accuracies of CNNs  
3 and 4 were higher than that of CNN5, and the differences 
were significant (P < 0.05). The difference between CNNs  
1 and 2, as well as the difference between CNNs 3 and 4, 
were not significant.

Discussion
In this study, we applied differently preprocessed image sets 
for training and testing in order to facilitate better under-
standing of how and why a decision was made by a CNN. As 
described in the introduction, the proposed strategy does not 
aim to extract important features for classification as mere 
positions on the image, but to extract important features as 
medically meaningful answers. In the example shown in this 
study, the question “which feature is most important for clas-
sification?” was refined to the question “which tissue is most 
important for classification?” by narrowing down the candi-
date tissues through the image preprocessing. As shown in 
the results, differences were found in the accuracy of the 
trained models, but some differences were statistically sig-
nificant and others were not (Fig. 3). From the differences in 
this statistical significance, it may be possible to estimate 
which tissue of the image was most important for a CNN to 
reach a correct judgement.

There was a significant difference in judgement accuracy 
between CNNs 2 and 3, with that of CNN2 being higher 
(Fig. 3). As the network model and all the training para
meters were identical to each other, the image set used for 
training, which was the only difference between the two, can 
be regarded as the reason for this difference. Here, the image 
information that existed in pp2 but not in pp3 was the 
extra-parenchymal space and the areas of subcutaneous fat 
and skull. Assuming that there was relatively little difference 
in subcutaneous fat and skull due to age, it is most likely that 
the size and/or shape of the extra-parenchymal space differed 
between the two age-range groups. Also, as there was no dif-
ference in accuracy between CNNs 3 and 4, but the judge-
ment accuracy of CNN5 was significantly lower (Fig. 3), it is 
possible to postulate that the image information included in 
the gray matter area was more important for a correct judge-
ment than that included in the white matter area. On the other 
hand, as the difference in accuracy was not significant 
between CNNs 1 and 2, it might be inferred that the image 
information obtained from the ventricles (e.g. size and shape) 
is roughly equivalent to that obtained from the extra-
parenchymal space. In this way, the method used in this study, 
which performed various image preprocessing procedures to 
isolate different image information, and then separately 
trained and tested the CNN model in multiple ways, may 
facilitate better understanding of how and why a judgement 
was made. It was not surprising that a trained model that was 
fed less information than another (e.g. CNN5 compared 

with CNN3) had an inferior accuracy. However, the impor-
tant part of the strategy was to divide those differences in 
accuracy into those that were significant and those that were 
not significant. This study suggested through a binary classi-
fication example that focusing on this difference in significance 
may help evaluating what specific structure/tissue was impor-
tant for the classification.

Solving the ambiguity for CNN-based clinical image 
diagnosis is important. As, in reality, it is impossible to 
achieve an accuracy of 100% in medical image diagnosis, it 
is necessary to know the limitations of the method to predict 
possible mistakes. On the other hand, if the conditions under 
which mistakes are likely to occur are understood, an imper-
fect diagnosis may not be such a serious problem. Software 
previously developed to support the image-based diagnosis 
of Alzheimer’s disease (Voxel-based specific regional anal-
ysis system for Alzheimer’s disease [VSRAD]) is a good 
example.16,17 VSRAD detects the pattern of brain atrophy  
of a patient from MRI images based on a voxel-based-
morphometry technique and compares it to the pattern of 
Alzheimer’s disease patients. A physician can use the soft-
ware as a useful supporting tool while keeping in mind that a 
patient with brain volume loss due to an old infarction or a 
patient with hydrocephalus, for example, is more likely to be 
misjudged by the software. Conversely, without any under-
standing of how a judgement was reached by VSRAD, a phy-
sician may have doubts about the reliability of the judgement. 
The proposed method might be useful to predict such limita-
tion for a CNN.

The suggested method may be useful for highlighting 
image features that are important for judgement accuracy. 
However, it should be remembered that the appropriate-
ness of the highlighted features is not by itself proven. 
This study suggests that several anatomical areas are more 
important for selecting the age-range correctly, but it has 
been only partly proven within this study. Whether the 
suggestions are valuable or not can be assessed by com-
paring them with other established evidence and also with 
empirical expectations. For example, the suggestion that 
the extra-parenchymal space is different for the two age-
range groups can be tested by comparing the data with 
established brain atlases.18 If a suggestion proves to be rea-
sonable, physicians will be more likely to accept a CNN as 
a clinical tool because they can understand its limitations. 
On the other hand, even if a suggestion is not in accord 
with established knowledge, it does not automatically 
mean that it is incorrect. It might in fact indicate a candi-
date for a new biomarker to be investigated in additional 
studies. The biomarkers established in this way might pro-
vide unique information compared to conventional bio-
markers designed based on biological and anatomical 
knowledge.19–21

The proposed strategy does not completely solve the 
ambiguity of CNN based judgement. This is because the pre-
sent method only indirectly suggests from the parallel training 
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what the important characteristic for the classification was. It 
still does not explain exactly how the information was pro-
cessed in each model during training. Nevertheless, the sug-
gested method would be useful for decreasing the ambiguity 
of the CNN based decision in the clinic because the feature 
of the input image that was important to the training can be 
related to a medically meaningful object such as tissue type.

Detailed information about how a trained model made 
a judgement from the images is essentially coded and 
retained in the parameters of the optimized layers of the 
model.22–24 Analyzing that information may help under-
stand the decision process in a more detailed and concrete 
way than the proposed method. However, there is as yet no 
general technique that can decode such information into an 
understandable format. The justification for a judgement 
needs to be simple enough to be quickly and easily under-
standable for clinical use by physicians. This is one of the 
benefits of the method proposed in this study, because the 
results are easily translatable as information that is familiar 
to physicians. The grad-CAM method11 can also displays 
the analysis results in an easy-to-understand heat-map. 
However, as mentioned above, it can only show the impor-
tant positions for individual images. The strategy proposed 
here makes it easier to interpret the model prediction by 
refining the problem to a more specific set of possible can-
didates such as tissue types.

Another benefit of the proposed method is that it narrows 
down the candidate tissue to be evaluated using medical 
knowledge. This may be useful for suppressing clinically 
meaningless results, and also for accomplishing the training 
and testing with a relatively small sample size.

A possible limitation of this study was that the effect of the 
degree of image processing on the results was not considered. 
Particularly, the pp4 images (gray matter area) contained a 
long border between the extracted gray matter and the parts 
that were removed in the segmenting process, but those of 
pp1 and 2 (inner and peripheral areas of the brain, respec-
tively) did not. Such strong artificial contrast may potentially 
affect the training itself. However, considering the fact that the 
difference in judgement accuracy between CNNs 3 and 4 was 
not significant, but the differences between CNNs 3 and 5, as 
well as between CNNs 4 and 5 were (Fig. 3), the degree of 
image processing probably did not strongly influence accu-
racy. Acquiring images with variable contrasts in one scan ses-
sion may help to overcome this limitation, as it may enable 
masking and/or emphasizing certain information by changing 
the contrast between different tissue types. For example, if an 
additional image set were available, where the images are sim-
ilar to pp3 but have no contrast between the gray and white 
matter areas, the comparison between the classification results 
using that image set and that using pp3 will enable direct 
assessment about the importance of the margin between the 
gray and white matters. The degree of image processing does 
not need to be considered in such a case.

Conclusion
Parallel training and testing using image sets preprocessed in 
different ways may represent a useful strategy to facilitate 
better understanding of how and why a judgement was made 
by a CNN.
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